$Short\ Note$

A note on Roman *k*-tuple domination number

Noor A'lawiah Abd Aziz¹ and Nader Jafari Rad²

¹School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia nooralawiah@gmail.com

²Department of Mathematics, Shahed University, Tehran, Iran n.jafarirad@gmail.com

Received: 25 July 2021; Accepted: 8 August 2021 Published Online: 10 August 2021

Abstract: For an integer $k \geq 2$, a Roman k-tuple dominating function, (or just RkDF), in a graph G is a function $f: V(G) \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least k vertices v for which f(v) = 2, and every vertex u for which $f(u) \neq 0$ is adjacent to at least k - 1 vertices v for which f(v) = 2. The Roman k-tuple domination number of G is the minimum weight of an RkDF in G. In this note we settle two problems posed in [Roman k-tuple Domination in Graphs, Iranian J. Math. Sci. Inform. 15 (2020), 101–115].

Keywords: Roman domination, Total Roman domination; Roman k-tuple domination

AMS Subject classification: 05C69

1. Introduction

For a graph G = (V, E), we denote by N(v) the open neighborhood of a given vertex v. A function $f: V \longrightarrow \{0, 1, 2\}$ is called a Roman dominating function or just an RDF if for every vertex $v \in V$ with f(v) = 0, there exists a vertex $u \in N(v)$ with f(u) = 2. The weight of an RDF f is the sum $f(V) = \sum_{v \in V} f(v)$. The minimum weight of an RDF on G is called the Roman domination number of G and is denoted by $\gamma_R(G)$. A total Roman dominating function (TRDF) of a graph G with no isolated vertex is an RDF f such that the subgraph induced by $\{v: f(v) \neq 0\}$ has no isolated vertex. The total Roman domination number $\gamma_{tR}(G)$ is the minimum weight of a TRDF on G. The concept of Roman domination was first studied in depth by Cockayne et al. [3], and subsequently developed with many variations, see for example, [1, 2]. Recently, Kazemi [4] introduced Roman k-tuple dominating functions. For an integer $k \geq 2$, a Roman k-tuple dominating function, (or just RkDF), in a graph G is a function $f: V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0

© 2022 Azarbaijan Shahid Madani University

is adjacent to at least k vertices v for which f(v) = 2, and every vertex u for which $f(u) \neq 0$ is adjacent to at least k - 1 vertices v for which f(v) = 2. The Roman k-tuple domination number, denoted $\gamma_{\times k,R}(G)$, is the minimum weight of an RkDF in G. Kazemi in [4] posed the following problems.

Problem 1. Characterize graphs G with $\gamma_{\times 2,R}(G) = \gamma_R(G)$.

Problem 2. Find graphs G with $\gamma_{\times 2,R}(G) = \gamma_{tR}(G)$.

For an RDF (TRDF, or R2DF) f we denote $f = (V_0, V_1, V_2)$, where $V_i = \{v \in V : f(v) = i\}$, for i = 0, 1, 2. A R2DF with minimum weight is called a $\gamma_{\times 2,R}(G)$ -function. Let G be a graph of order $n \ge 2$, and let $f = (V_0, V_1, V_2)$ be a $\gamma_{\times 2,R}(G)$ -function. Clearly $|V_2| \ge 2$. Let $v \in V_2$. Then $g = (V_0, V_1 \cup \{v\}, V_2 - \{v\})$ is a TRDF for G, and $h = (V_0 \cup \{v\}, V_1, V_2 - \{v\})$ is an RDF for G. Thus, $\gamma_{\times 2,R}(G) \ge \gamma_{tR}(G) + 1$ and $\gamma_{\times 2,R}(G) \ge \gamma_R(G) + 2$. Both bounds are sharp, as can be seen in a cycle C_3 . Thus, there is no graph G with $\gamma_{\times 2,R}(G) = \gamma_R(G)$ or $\gamma_{\times 2,R}(G) = \gamma_{tR}(G)$, and so both Problems 1 and 2 are settled.

References

- H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin, and I.G. Yero, *Total Roman domination in graphs*, Appl. Anal. Discrete Math. **10** (2016), no. 2, 501–517.
- [2] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs, Springer, 2020, pp. 365–409.
- [3] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.
- [4] A P Kazemi, Roman k-tuple domination in graphs, Iranian Journal of Mathematical Sciences and Informatics 15 (2020), no. 2, 101–115.