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indices is better than the correlation with other indices.
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1. Introduction

The topological index, a graph invariant, is the numerical quantity associated with

the graph structure. It can be utilized for modeling the information such as quan-

titative structure-property relationship (QSPR) and quantitative structure-activity

relationship (QSAR) of molecules in theoretical chemistry. Several such indices based

on the degrees and distances in a graph have been proposed and studied [9–11, 21].

In this paper we define the terminal status of a vertex and hence define the terminal

status connectivity indices of a connected graph based on the distance. Further we
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give explicit formulae for the terminal status of a vertex and for terminal status

indices of some graphs. Also obtain bounds for these indices and carry regression

analysis of terminal status connectivity indices with the physico-chemical properties

of cycloalkanes.

Let G be a simple, connected graph with n vertices and m edges. Let its vertex set

be V (G) = {v1, v2, . . . , vn} and edge set E(G). The edge joining the vertices u and

v is denoted by uv. Two vertices are said to be neighbors of each other if they are

adjacent. The degree of a vertex u in a graph G is the number of its neighbors and

is denoted by dG(u). A vertex u is said to be terminal vertex or pendent vertex if

dG(u) = 1. In G, the distance between the vertices u and v is the length of the

shortest path joining them and is denoted by dG(u, v). The diameter of a graph G,

denoted by diam(G) is the maximum distance between any pair of vertices of G. The

status of a vertex u, denoted by σG(u) is defined as

σG(u) =
∑

v∈V (G)

dG(u, v). (1)

The Wiener index of a graph G, denoted by W (G), is defined as the sum of the

distances between all pairs of vertices of G. That is

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
u∈V (G)

σG(u).

This molecular structure descriptor was introduced by Wiener [35] in 1947. For

details on its chemical applications and mathematical properties one may refer to

[3, 4, 14, 20, 29, 33, 34].

If the graph G has k pendent vertices v1, v2, . . . , vk, then its terminal distance matrix

is the square matrix of order k whose (i, j)-th entry is dG(vi, vj). Terminal distance

matrices were used for modeling amino acid sequences of proteins and of the genetic

codes [17, 27, 28].

The terminal Wiener index TW (G) of a connected graph G is defined as the sum of

the distances between all pairs of its pendent vertices.

Thus, if VT (G) = {v1, v2, . . . , vk} is the set of all pendent vertices of G, then

TW (G) =
∑

1≤i<j≤k

dG(vi, vj).

This distance-based molecular structure descriptor was put forward by Gutman,

Furtula and Petrović [12]. The same was also studied by Székely, Wang and Wu [30].
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More on the terminal Wiener index can be found in [2, 8, 16, 23].

Analogous to the Eq. (1), we define here the terminal status of a vertex u as

tsG(u) =
∑

v∈VT (G)

dG(u, v),

where VT (G) is the set of all pendent vertices of G. Therefore

TW (G) =
1

2

∑
u∈VT (G)

tsG(u).

The first and second Zagreb indices of a graph G are defined as [15]

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

The Zagreb indices were used in the structure property model [13, 18, 19, 22, 31].

The first and second status connectivity indices of a connected graph G are defined

as [24, 25]

S1(G) =
∑

uv∈E(G)

[σG(u) + σG(v)] and S2(G) =
∑

uv∈E(G)

σG(u)σG(v).

There are several other indices such as eccentricity index [1, 32], Randic index [6, 26],

degree distance of a graph [5, 7] etc.

Motivated by the invariants as above, we define here first terminal status connectivity

index TS1(G) and second terminal status connectivity index TS2(G) of a connected

graph G as:

TS1(G) =
∑

uv∈E(G)

[tsG(u) + tsG(v)] (2)

and

TS2(G) =
∑

uv∈E(G)

tsG(u)tsG(v). (3)

The Eq. (2) can be expressed as

TS1(G) =
∑

u∈V (G)

dG(u)tsG(u).

The vertex set of a graph given in Fig. 1 is V (G) = {v1, v2, v3, v4, v5, v6, v7} and

pendent vertex set is VT (G) = {v1, v2, v7}. The terminal status of vertices of G are
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Figure 1. Graph G

tsG(v1) = 5, tsG(v2) = 5, tsG(v3) = 4, tsG(v4) = 5, tsG(v5) = 8, tsG(v6) = 8 and

tsG(v7) = 6. Therefore TS1(G) = 80 and TS2(G) = 234.

In Section 2 we obtain the terminal status of vertices and in Section 3 we obtain the

terminal status connectivity indices. In Section 4 we carry the regression analysis of

indices and physico-chemical properties of cycloalkanes followed by the Section 5 as

conclusion.

2. Terminal status of vertices

In this section we find terminal status of the vertices of a graph.

Observations

1. If G has no pendent vertex then tsG(u) = 0 for all u ∈ V (G).

2. If G has exactly one pendent vertex, say u, then tsG(u) = 0.

3. If G has at least one pendent vertex, then tsG(u) ≥ 1, where u is not a pendent

vertex.

4. If G has at least two pendent vertices, then tsG(u) ≥ 1 for all u ∈ V (G).

5. There is no pendent vertex in G such that tsG(u) = 1, except for G ∼= K2,

where Kn is a complete graph on n vertices.

Theorem 1. Let G be a connected graph with n vertices and diam(G) ≤ 2. Let u be the
vertex having pendent neighbor. Then dG(u) = n− 1.

Proof. For any vertex u, dG(u) ≤ n − 1. Let u be the vertex having pendent

neighbor. Suppose dG(u) < n − 1, then there exists a vertex, say v, which is not

adjacent to u. Then the distance between vertex v and any pendent vertex is greater

than 2. This contradicts to the fact that diam(G) ≤ 2. Hence dG(u) = n− 1.
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Theorem 2. Let G be a connected graph with n vertices and diam(G) = 2. Then there
exists a unique vertex having pendent neighbor.

Proof. Suppose there are two vertices say u and v having pendent neighbors. With-

out loss of generality, let u′ be the pendent neighbor of u and v′ be the pendent

neighbor of v. Then dG(u′, v′) > 2. This contradicts to the fact that diam(G) = 2.

Hence the result follows.

Theorem 3. Let G be a graph on n vertices with diam(G) ≤ 2 and nt be the number of
pendent vertices of G.
(i) If u is not a pendent vertex, then

tsG(u) =

 2nt, if u has no pendent neighbor

nt, if u has pendent neighbor.

(ii) If u is a pendent vertex, then

tsG(u) =

 1, for n = 2

2(nt − 1), for n ≥ 3.

Proof. (i) Let u be a non pendent vertex having no pendent neighbor. Then the

distance between vertex u and any pendent vertex is 2. There are nt pendent vertices

in G. Therefore tsG(u) = 2nt.

Similarly if u is non pendent vertex having pendent neighbor, then the distance

between vertex u and any pendent vertex is 1. There are nt pendent vertices in G.

Therefore tsG(u) = nt.

(ii) If n = 2, then G ∼= K2. Hence for any pendent vertex u of K2, tsG(u) = 1. Now

let n ≥ 3 and let u be the pendent vertex in G. Then distance between u and other

pendent vertex is 2. There are nt − 1 pendent vertices other than u in G. Therefore

tsG(u) = 2(nt − 1).

The following is a consequence of Theorem 3.

Corollary 1. Let K1,n−1 be a star on n ≥ 3 vertices. Then

tsK1,n−1(u) =

 n− 1, if u is a central vertex of K1,n−1

2(n− 2), if u is a pendent vertex of K1,n−1.

Theorem 4. Let Pn be a path on n vertices. Then tsPn(u) = n− 1 for all u ∈ V (Pn).
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Proof. Let u1, u2, . . . , un be the vertices of a path Pn such that ui is adjacent to

ui+1, i = 1, 2, . . . , n− 1. Hence u1 and un are the pendent vertices of Pn. Therefore

for i = 1, 2, . . . , n

tsPn(ui) = dPn(ui, u1) + dPn(ui, un)

= (i− 1) + (n− i)
= n− 1.

The graph G+k is obtained from G by attaching k pendent vertices to each vertex of

G (see Fig. 2).

Figure 2. Graph G+k.

Theorem 5. Let G be a connected graph on n vertices with vertex set V (G). Then for
k ≥ 1,

tsG+k (u) =

 2nk − 2 + kσG(v), if u is a pendent vertex in G+k adjacent to v ∈ V (G)

nk + kσG(u), if u is not a pendent vertex in G+k.

Proof. Without loss of generality, let the vertices of G be v1, v2, . . . , vn. We consider

two cases.

Case 1. Let u be the pendent vertex in G+k adjacent to v1 = v ∈ V (G). Then

the sum of distances between vertex u and the (k − 1) pendent vertices adjacent

to v1 is 2(k − 1). The sum of distances from u to k pendent vertices adjacent to



H.S. Ramane, K. Bhajantri, D.V. Kitturmath 281

vi ∈ V (G) \ {v1} is k(2 + dG(v, vi)), i = 2, 3, . . . , n. Therefore

tsG+k(u) = 2(k − 1) +

n∑
i=2

k(2 + dG(v1, vi))

= 2(k − 1) + 2k(n− 1) + k

n∑
i=2

dG(v1, vi)

= 2nk − 2 + kσG(v1)

= 2nk − 2 + kσG(v).

Case 2. Let u be the non pendent vertex in G+k. Without loss of generality, let

u = v1. Then the sum of distances between vertex u and pendent vertices adjacent

to u is k. The sum of distances from u = v1 to k pendent vertices adjacent to

vi ∈ V (G) \ {v1} is k + kdG(v1, vi), i = 2, 3, . . . , n. Therefore

tsG+k(u) = k +

n∑
i=2

[k + kdG(v1, vi)]

= k + k(n− 1) + k

n∑
i=2

dG(v1, vi)

= nk + kσG(v1)

= nk + kσG(u).

Theorem 6. Let G be a graph on n ≥ 3 vertices with diam(G) = D and nt be the number
of pendent vertices of G.
(i) If u is not a pendent vertex and has no pendent neighbor, then

2nt ≤ tsG(u) ≤ Dnt.

(ii) If u is not a pendent vertex and has nu number of pendent neighbors, then

2nt − nu ≤ tsG(u) ≤ nu + (D − 1)(nt − nu).

(iii) If u is a pendent vertex, then

2(nt − 1) ≤ tsG(u) ≤ D(nt − 1).

Proof. (i) Let u be a non pendent vertex having no pendent neighbor. Then the

distance between vertex u and any pendent vertex is at least 2 and at most D. There

are nt pendent vertices in G. Therefore 2nt ≤ tsG(u) ≤ Dnt.
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(ii) Let u be a non pendent vertex having nu number of pendent neighbors.

Then the distance between vertex u and these nu pendent vertices is 1 and

the distance between u and remaining nt − nu pendent vertices is at least 2 and

at most D−1. Therefore nu+2(nt−nu) = 2nt−nu ≤ tsG(u) ≤ nu+(D−1)(nt−nu).

(iii) Let u be the pendent vertex in G. Then distance between u and other pendent

vertex is at least 2 and at most D. There are nt − 1 pendent vertices other than u in

G. Therefore 2(nt − 1) ≤ tsG(u) ≤ D(nt − 1).

3. Terminal status connectivity indices of graphs

In this section we obtain the terminal status connectivity indices of graphs. Also we

give the bounds for these indices.

Observations

1. If G has no pendent vertex then TS1(G) = 0 and TS2(G) = 0.

2. If G has at least one pendent vertex, then TS1(G) ≥ 2 and TS2(G) ≥ 1.

3. By the definitions of status connectivity indices and terminal status connectivity

indices, we have S1(G) ≥ TS1(G) and S2(G) ≥ TS2(G).

Theorem 7. Let G be a connected graph with diam(G) = 2 having n vertices, m edges
and nt pendent vertices. Then

TS1(G) = nt(4m− n− 1)

and

TS2(G) = 2n2
t (2m− n).

Proof. Here n ≥ 3 as diam(G) = 2. The edge set E(G) of a graph G can be

partitioned into three sets E1, E2 and E3, where

E1 = {uv | u and v has no pendent neighbor. Further dG(u) > 1 and dG(v) > 1},
E2 = {uv | u has pendent neighbor but v does not or vice-versa and dG(u), dG(v) > 1}
and

E3 = {uv | either u or v is a pendent vertex}.
It is easy to check that |E1| = m− n+ 1, |E2| = n− nt − 1 and |E3| = nt.

Further by Theorem 3, we have, if u is not a pendent vertex, then

tsG(u) =

 2nt, if u has no pendent neighbor

nt, if u has pendent neighbor
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and if u is a pendent vertex, then tsG(u) = 2(nt − 1).

Therefore

TS1(G) =
∑

uv∈E(G)

[tsG(u) + tsG(v)]

=
∑

uv∈E1

[tsG(u) + tsG(v)] +
∑

uv∈E2

[tsG(u) + tsG(v)] +
∑

uv∈E3

[tsG(u) + tsG(v)]

=
∑

uv∈E1

[2nt + 2nt] +
∑

uv∈E2

[nt + 2nt] +
∑

uv∈E3

[2(nt − 1) + nt]

= 4nt(m− n+ 1) + 3nt(n− nt − 1) + nt(3nt − 2)

= nt(4m− n− 1)

and

TS2(G) =
∑

uv∈E(G)

tsG(u)tsG(v)

=
∑

uv∈E1

tsG(u)tsG(v) +
∑

uv∈E2

tsG(u)tsG(v) +
∑

uv∈E3

tsG(u)tsG(v)

=
∑

uv∈E1

(2nt)(2nt) +
∑

uv∈E2

(nt)(2nt) +
∑

uv∈E3

(2(nt − 1))(nt)

= 4n2t (m− n+ 1) + 2n2t (n− nt− 1) + 2n2t (nt − 1)

= 2n2t (2m− n).

Corollary 2. Let K1,n−1 be a star on n ≥ 3 vertices. Then

TS1(K1,n−1) = (n− 1)(3n− 5)

and

TS2(K1,n−1) = 2(n− 1)2(n− 2).

Theorem 8. Let Pn be a path on n vertices. Then

TS1(Pn) = 2(n− 1)2

and

TS2(Pn) = (n− 1)3.
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Proof. By Theorem 4, we have, tsPn
(u) = n− 1 for all u ∈ V (Pn). Therefore

TS1(Pn) =
∑

uv∈E(Pn)

[tsPn
(u) + tsPn

(v)]

=
∑

uv∈E(Pn)

2(n− 1)

= 2(n− 1)2

and

TS2(Pn) =
∑

uv∈E(Pn)

tsPn
(u)tsPn

(v)

=
∑

uv∈E(Pn)

(n− 1)2

= (n− 1)3.

Theorem 9. Let G be a graph with n vertices and m edges. Then for k ≥ 1

TS1(G
+k) = nk(3nk − 2) + 2mnk + kS1(G) + 4k2W (G)

and

TS2(G
+k) = 2n2k2(nk − 1) + 2k2(3nk − 2)W (G) + k3

∑
v∈V (G)

(σG(u))
2

+mn2k2 + nk2S1(G) + k2S2(G).

Proof. By Theorem 5

tsG+k (u) =

{
2nk − 2 + kσG(v), if u is a pendent vertex in G+k adjacent to v ∈ V (G)
nk + kσG(u), if u is non pendent vertex.

The edge set E(G+k) can be partitioned into two sets E1 and E2, where

E1 = {uv | u is a pendent vertex and v is non pendent vertex} and

E2 = {uv | u and v are non pendent vertices}. It is easy to check that |E1| = nk and
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|E2| = m. Therefore

TS1(G+k) =
∑

uv∈E(G+k)

(tsG+k(u) + tsG+k(v))

=
∑

uv∈E1

(tsG+k(u) + tsG+k(v)) +
∑

uv∈E2

(tsG+k(u) + tsG+k(v))

=
∑

uv∈E1

(2nk − 2 + kσG(v) + nk + kσG(v))

+
∑

uv∈E2

(nk + kσG(u) + nk + kσG(v))

=
∑

uv∈E1

(3nk − 2 + 2kσG(v)) +
∑

uv∈E2

(2nk + k(σG(u) + σG(v)))

= nk(3nk − 2) + 2k2
∑

v∈V (G)

σG(v) + 2mnk + k
∑

uv∈E(G)

(σG(u) + σG(v))

= nk(3nk − 2) + 2mnk + 4k2W (G) + kS1(G)

and

TS2(G+k) =
∑

uv∈E(G+k)

tsG+k(u)tsG+k(v)

=
∑

uv∈E1

tsG+k(u)tsG+k(v) +
∑

uv∈E2

tsG+k(u)tsG+k(v)

=
∑

uv∈E1

(2nk − 2 + kσG(v))(nk + kσG(v))

+
∑

uv∈E2

(nk + kσG(u))(nk + kσG(v))

=
∑

uv∈E1

(
2n2k2 − 2nk + (3nk2 − 2k)σG(v) + k2(σG(v))2

)
+
∑

uv∈E2

(
n2k2 + nk2(σG(u) + σG(v)) + k2(σG(u)σG(v))

)
= nk(2n2k2 − 2nk) + k(3nk2 − 2k)

∑
v∈V (G)

σG(v) + k3
∑

v∈V (G)

(σG(v))2

+mn2k2 + nk2
∑

uv∈E(G)

(σG(u) + σG(v)) + k2
∑

uv∈E(G)

σG(u)σG(v)

= 2n2k2(nk − 1) + 2k2(3nk − 2)W (G) + k3
∑

v∈V (G)

(σG(v))2

+mn2k2 + nk2S1(G) + k2S2(G).
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For a graph G with diam(G) ≤ 2 [24],

σG(v) = 2n− 2− dG(u),

S1(G) = 4m(n− 1)−M1(G),

S2(G) = 4m(n− 1)2 − 2(n− 1)M1(G) +M2(G).

Substituting these in Theorem 9 we get the next corollary.

Corollary 3. Let G be a graph on n vertices and m edges and let diam(G) ≤ 2. Then
for k ≥ 1

TS1(G
+k) = nk(3nk − 2) + 2mnk + 4mk(n− 1)−M1(G) + 4nk2(n− 1)− 2m

and

TS2(G
+k) = 2n2k2(nk − 1) + k(3nk2 − 2k) (2n(n− 1)− 2m)

+k3
(
4n(n2 − 2n+ 1)− 8m(n− 1) +M1(G)

)
+mn2k2

+4mnk2(n− 1)−M1(G) + k2
(
4m(n− 1)2 − 2(n− 1)M1(G) +M2(G)

)
.

Corollaries 4 to 7 are straightforward from the Corollary 3.

Corollary 4. Let Kn be a complete graph on n vertices and m edges. Then

TS1(K
+k
n ) = nk(3nk − 2) + 2mnk + kn(n− 1)2 + 2k2n(n− 1)

and

TS2(K
+k
n ) = 2n2k2(nk − 1) + k2n(n− 1)(3nk − 2) + k3n(n− 1)2 +mn2k2

+nk2(n− 1)2 +
k2

2
n(n− 1)3.

Corollary 5. Let Kp,q be the complete bipartite graph on n = p+ q vertices and m = pq
edges. Then

TS1(K
+k
p,q ) = nk(3nk − 2) + 2mnk + kpq(3p+ 3q − 4) + 4k2(p2 + q2 + pq − p− q)

and

TS2(K
+k
p,q ) = 2n2k2(nk − 1) + 2k(3nk2 − 2k)(p2 + q2 + pq − p− q)

+k3[p(q + 2p− 2)2 + q(p+ 2q − 2)2] +mn2k2

+nk2pq(3p+ 3q − 4) + k2pq(2(p+ q − 1)(p+ q − 2) + pq).
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A wheel Wn+1 is a graph obtained from the cycle Cn, n ≥ 3, by adding a new vertex

and making it adjacent to all the vertices of Cn.

Corollary 6. Let Wn+1 be the wheel on n+ 1 vertices and m edges. Then

TS1(W
+k
n+1) = nk(3nk − 2) + 2mnk + k(7n2 − 9n) + 4k2n(n− 1)

and

TS2(W
+k
n+1) = 2n2k2(nk − 1) + 2kn(3nk2 − 2k)(n− 1) + nk3(4n2 − 11n+ 9).

+mn2k2 + nk2(7n2 − 9n) + k2(6n3 − 15n2 + 9n).

A windmill graph Fn, n ≥ 2, is a graph that can be constructed by coalescence n

copies of the cycle C3 of length 3 with a common vertex. It has 2n + 1 vertices and

3n edges.

Corollary 7. Let Fn be the windmill graph on 2n+ 1 vertices and m edges. Then

TS1(F
+k
n ) = nk(3nk − 2) + 2mnk + k(20n2 − 8n) + 4nk2(4n− 1)

and

TS2(F
+k
n ) = 2n2k2(nk − 1) + 2nk(3nk2 − 2k)(4n− 1) + 4nk3(8n2 − 7n+ 2)

+mn2k2 + nk2(20n2 − 8n) + k2(32n3 − 24n2 + 4n).

Corollaries 8 and 9 follows from the Theorem 9.

Corollary 8. Let Pn be a path on n vertices. Then

TS1(P
+k
n ) = nk(3nk − 2) + 2mnk +

k

3
n(n− 1)(2n− 1) + 4k2W (Pn)

and

TS2(P
+k
n ) = 2n2k2(nk − 1) + 2k(3nk2 − 2k)W (Pn) + k3

∑
v∈V (Pn)

(σPn(v))
2 +mn2k2

+
n2k2

3
(n− 1)(2n− 1)

+k2
[
(n− 1)(n4 − n2)

4
− n(n− 1)(n3 − n)

2
+
n(n− 1)(2n− 1)(2n2 − 1)

6

]
−k2

[
n3(n− 1)2

2
− 1

30
(6(n− 1)5 + 15(n− 1)4 − 10(n− 1)3 + (n− 1))

]
.
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Corollary 9. Let Cn be a cycle on n ≥ 3 vertices.
(i) If n is even, then

TS1(C
+k
n ) = nk(3nk − 2) + 2mnk +

kn3

2
+
k2n3

2

and

TS2(C
+k
n ) = 2n2k2(nk − 1) + (3nk2 − 2k)

k3n3

2
+
k3n5

16
+mn2k2 +

n4k2

2
+
n5k2

16
.

(ii) If n is odd, then

TS1(C
+k
n ) = nk(3nk − 2) + 2mnk +

kn(n2 − 1)

2
+
k2n(n2 − 1)

2

and

TS2(C
+k
n ) = 2n2k2(nk − 1) + (3nk2 − 2k)

nk(n2 − 1)

4
+
k3n(n2 − 1)2

16

+mn2k2 +
n2k2(n2 − 1)

2
+
nk2(n2 − 1)2

16
.

Theorem 10. Let G be a connected graph with n ≥ 3 vertices, m edges and nt pendent
vertices. Let diam(G) = D. Then

nt(2m+ nt − 2) ≤ TS1(G) ≤ nt(2Dm−D − nt)

and

n2
t (m+ nt − 2) ≤ TS2(G) ≤ Dn2

t (Dm−D − nt + 1).

Proof. The edge set E(G) of a graph G can be partitioned into two

sets E1 and E2, where E1 = {uv | dG(u) = 1 and dG(v) > 1} and

E2 = {uv | dG(u) > 1 and dG(v) > 1}. It is easy to check that |E1| = nt and

|E2| = m− nt.

We first prove the lower bound. If uv ∈ E1, then tsG(u) ≥ 2(nt− 1) and tsG(v) ≥ nt.
If uv ∈ E2, then tsG(u) ≥ nt and tsG(v) ≥ nt. Therefore

TS1(G) =
∑

uv∈E(G)

[tsG(u) + tsG(v)]

=
∑

uv∈E1

[tsG(u) + tsG(v)] +
∑

uv∈E2

[tsG(u) + tsG(v)]

≥
∑

uv∈E1

[2(nt − 1) + nt] +
∑

uv∈E2

[nt + nt]

= nt(3nt − 2) + (m− nt)(2nt)
= nt(2m+ nt − 2)
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and

TS2(G) =
∑

uv∈E(G)

tsG(u)tsG(v)]

=
∑

uv∈E1

tsG(u)tsG(v) +
∑

uv∈E2

tsG(u)tsG(v)

≥
∑

uv∈E1

2(nt − 1)nt +
∑

uv∈E2

(nt)(nt)

= 2n2t (nt − 1) + (m− nt)(n2t )

= n2t (m+ nt − 2).

Next we prove the upper bound. If uv ∈ E1, then tsG(u) ≤ D(nt − 1) and tsG(v) ≤
(D − 1)nt. If uv ∈ E2, then tsG(u) ≤ Dnt and tsG(v) ≤ Dnt. Therefore

TS1(G) =
∑

uv∈E(G)

[tsG(u) + tsG(v)]

=
∑

uv∈E1

[tsG(u) + tsG(v)] +
∑

uv∈E2

[tsG(u) + tsG(v)]

≤
∑

uv∈E1

[D(nt − 1) + (D − 1)nt] +
∑

uv∈E2

[Dnt +Dnt]

= nt(2Dnt −D − nt) + (m− nt)(2Dnt)
= nt(2Dm−D − nt)

and

TS2(G) =
∑

uv∈E(G)

tsG(u)tsG(v)

=
∑

uv∈E1

tsG(u)tsG(v) +
∑

uv∈E2

tsG(u)tsG(v)

≤
∑

uv∈E1

D(nt − 1)(D − 1)nt +
∑

uv∈E2

(Dnt)(Dnt)

= Dn2t (nt − 1)(D − 1) + (m− nt)D2n2t

= Dn2t (Dm−D − nt + 1).

4. Regression analysis

In this section we investigate and discuss the correlation of boiling point (BP ) and

critical temperature (CT ) of the cycloalkanes with the topological indices based on

the degrees and distances.
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Figure 3. Molecular structure of Cycloalkanes

Experimental values of the boiling point and critical temperature of the cycloalkanes

are given in Table 1.

The scatter plots of BP and CT with the indices M1, M2, S1, S2, W , TW , TS1 and

TS2 are shown in Figs. 4 to 19.

The linear regression models for the boiling point (BP ) using the data of Table 1 are

obtained using the least square fitting procedure as implimented in Eqs. (4) to (11).
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Table 1. Physical properties and indices of Cycloalkanes

Sl. Cycloalkanes BP CT M1 M2 S1 S2 W TW TS1 TS2

No. in [K] in [K]

1 cyclo 388.25 601.57 28 28 168 1008 42 0 0 0

heptane

2 3-methyl 379.31 583 30 31 163 946 42 0 31 40
cyclohexane

3 1,2-dimethyl 370.37 564.59 32 35 150 705 40 3 56 117
cyclopentane

4 1,1-dimethyl 375.28 562.9 34 36 146 752 39 2 52 108
cyclopentane

5 ethyl 375.04 573.36 30 32 164 965 43 0 36 54
cyclopentane

6 1,3-dimethyl 370.37 564.59 32 34 154 841 41 4 60 129
cyclopentane

7 1,2,3-trimethyl 361.43 546.33 32 39 153 826 42 10 85 258
cyclobutane

8 1-ethyl-2,3-dimethyl 357.16 537.31 34 41 158 892 44 11 90 290

cyclopropane

9 1,1,2,3-tetramethyl 366.34 544.19 38 48 140 688 40 16 100 355

cyclopropane

10 1,1,3-trimethyl 366.34 544.19 36 39 153 828 42 10 85 260

cyclobutane

11 1,1,2-trimethyl 366.34 544.19 36 41 145 734 40 8 81 214
cyclobutane

12 1-ethyl-1-methyl 371.01 553.3 34 38 155 852 42 3 58 127

cyclobutane

13 1,1,2,2-tetramethyl 362.31 523.08 40 48 136 640 39 16 96 324
cyclopropane

14 1-ethyl-2-methyl 366.1 555.27 32 36 163 946 44 4 64 148
cyclobutane

15 1-ethyl-3-methyl 366.1 555.27 32 35 171 1052 46 5 70 175
cyclobutane

16 1-ethyl-1,2-dimethyl 362.07 534.91 36 39 150 796 42 10 84 251
cyclopropane

17 2-ethyl-1,1-dimethyl 362.07 534.91 36 42 154 843 43 10 86 265

cyclopropane

18 propyl 370.77 564.05 30 32 183 1208 48 0 41 72

cyclobutane

19 butyl 366.5 555.06 30 32 186 1384 51 0 44 85

cyclopropane

20 1-methyl-2-propyl 361.83 546.26 32 36 178 1140 48 5 72 185
cyclopropane

21 1-methyl-1-propyl 366.74 544.02 34 38 166 983 45 4 64 148

cyclopropane
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Table 2. Correlation coefficient (R) between indices and properties of cycloalkanes.

Index Boiling point (BP) Critical temparature (CT)

M1 0.647 0.862

M2 0.769 0.909

S1 0.248 0.445

S2 0.193 0.369

W 0.111 0.084

TW 0.764 0.851

TS1 0.922 0.950

TS2 0.871 0.920

BP = 420.850(±14.427)− 1.598(±0.432)M1 (4)

BP = 409.073(±7.949)− 1.113(±0.212)M2 (5)

BP = 345.825(±19.688) + 0.138(±0.124)S1 (6)

BP = 345.825(±19.688) + 0.138(±0.124)S2 (7)

BP = 379.001(±23.141)− 0.262(±0.537)W (8)

BP = 374.146(±1.638)− 1.110(±0.215)TW (9)

BP = 385.518(±1.830)− 0.275(±0.027)TS1 (10)

BP = 379.025(±1.670)− 0.066(±0.008)TS2 (11)

From Table 2, the model (10) shows that the correlation of the boiling point of the

cycloalkanes with first terminal status connectivity index is better (R = 0.950) than

the correlation with other degree and distance based topological indices considered in

this paper.

The linear regression models for the critical temperature (CT ) using the data of Table

1 are given in Eqs. (12) to (19).

CT = 732.329(±24.326)− 5.394(±0.729)M1 (12)

CT = 676.734(±13.165)− 3.330(±0.351)M2 (13)

CT = 453.479(±46.124) + 0.0.627(±0.289)S1 (14)

CT = 518.722(±20.227) + 0.038(±0.022)S2 (15)

CT = 531.575(±58.798) + 0.499(±1.364)W (16)

CT = 571.086(±3.381)− 3.132(±0.444)TW (17)

CT = 599.449(±3.723)− 0.719(±0.054)TS1 (18)

CT = 583.206(±3.378)− 0.176(±0.017)TS2 (19)
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Figure 4. Scatter plot between BP and M1.

From Table 2, the model (18) shows that the correlation of the critical temperature

of the cycloalkanes with first terminal status connectivity index is better (R = 0.922)

than the correlation with other topological indices.

5. Conclusion

The terminal status of a vertex and terminal status connectivity indices are introduced

and obtained these for some graphs. Also obtained the bounds for these parameters.

Further a regression analysis of the boiling point and critical temperature of the cy-

cloalkanes with the distance based indices has been carried out and compared the

linear models. The linear model obtained, based on the first terminal status connec-

tivity index, is better than the models based on the other indices.
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Figure 5. Scatter plot between BP and M2.

Figure 6. Scatter plot between BP and S1.

Figure 7. Scatter plot between BP and S2.
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Figure 8. Scatter plot between BP and W ,

Figure 9. Scatter plot between BP and TW .

Figure 10. Scatter plot between BP and TS1.
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Figure 11. Scatter plot between BP and TS2.

Figure 12. Scatter plot between CT and M1.

Figure 13. Scatter plot between CT and M2.
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Figure 14. Scatter plot between CT and S1.

Figure 15. Scatter plot between CT and S2.

Figure 16. Scatter plot between CT and W .
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Figure 17. Scatter plot between CT and TW .

Figure 18. Scatter plot between CT and TS1.

Figure 19. Scatter plot between CT and TS2.
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