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Abstract: For a simple, undirected graph G(V,E), a function h : V (G) → {0, 1, 2}
such that each edge (u, v) of G is either incident with a vertex with weight at least one or

there exists a vertex w such that either (u,w) ∈ E(G) or (v, w) ∈ E(G) and h(w) = 2,

is called a vertex-edge Roman dominating function (ve-RDF) of G. For a graph G, the
smallest possible weight of a ve-RDF of G which is denoted by γveR(G), is known as the

vertex-edge Roman domination number of G. The problem of determining γveR(G) of
a graph G is called minimum vertex-edge Roman domination problem (MVERDP). In

this article, we show that the problem of deciding if G has a ve-RDF of weight at most

l for star convex bipartite graphs, comb convex bipartite graphs, chordal graphs and
planar graphs is NP-complete. On the positive side, we show that MVERDP is linear

time solvable for threshold graphs, chain graphs and bounded tree-width graphs. On the

approximation point of view, a 2-approximation algorithm for MVERDP is presented.
It is also shown that vertex cover and vertex-edge Roman domination problems are not

equivalent in computational complexity aspects. Finally, an integer linear programming

formulation for MVERDP is presented.

Keywords: Vertex-edge Roman-domination, Graph classes, NP-complete, Vertex

cover, Integer linear programming

AMS Subject classification: 05C69, 68Q25

1. Introduction

Let G(V, E) be a simple, undirected graph.For a vertex u of G, the (open) neigh-

borhood which is denoted by NG(u), is the set {v : (u, v) ∈ E(G)} and its degree
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is |NG(u)|. The closed neighborhood of u is NG[u] = {u} ∪ NG(u). Maximum

degree of G, denoted by ∆, is maxu∈V (G)|NG(u)|. A vertex v is called an isolated

vertex if |NG(v)| = 0. A vertex of degree n − 1 is called a universal vertex, where

n = |V (G)|. A graph formed with the vertex set S ⊆ V (H) of graph H and the

edge set {(u, v) : u, v ∈ S} is called an induced subgraph of H and is denoted by

H[S]. A subset S of V in a graph G is said to be independent if no two vertices in

S are adjacent. A bipartite graph G = (X,Y,E) is called tree convex if there exists

a tree T = (X,F ) such that, for each y in Y , the neighbors of y induce a subtree in

T . When T is a star (comb), G is called star (comb) convex bipartite graph [19]. In

a graph G, a vertex v is simplicial if its neighborhood NG(v) induces a clique. An

ordering {v1, v2, . . . , vn} of the vertices of V is a perfect elimination ordering (PEO),

if vi is a simplicial of the induced subgraph Gi = G[{vi, vi+1, . . . , vn}] for every i,

1 ≤ i ≤ n. A graph G is chordal if and only if G admits a PEO. For an integer n ≥ 1,

a star graph is a complete bipartite graph K1,n. The maximum degree vertex of a

star graph is called the center vertex of it. A vertex cover of a graph G is a subset

C ⊆ V (G) such that if (u, v) ∈ E(G), then u ∈ C or v ∈ C or both. A minimum

vertex cover is a vertex cover of smallest possible size. The vertex cover number

denoted τ(G) is the size of a minimum vertex cover in G. For undefined terminology

and notations we refer to [28].

A dominating set (DS) of a graph G is a set D such that D ⊆ V (G) and

∪w∈DNG[w] = V (G). The domination number of G, which is denoted by γ(G), is

min{|T | : T is a DS of G}. Given a graph G and a positive integer l, the domination

decision problem is to check whether G has a DS of size at most l. Literature on the

concept of domination has been surveyed in [11, 12].

The concept of Roman domination was introduced in 2004 by Cockayne et al. in

[8]. A function f : V → {0, 1, 2} is a Roman dominating function (RDF) on G if

every vertex u ∈ V for which f(u) = 0 is adjacent to at least one vertex v for which

f(v) = 2. We refer to [1–4] for the literature on the concept of new variants of

Roman domination in graphs.

A vertex u ∈ V is said to ve-dominate an edge (x, y) ∈ E if x ∈ N [u] or

y ∈ N [u] or both. The concept of vertex-edge domination was introduced by Peters

in 1986 [25]. A set D ⊆ V is a vertex-edge dominating set (or simply, a ve-dominating

set) of G if, every edge of G is ve-dominated by some vertex of G. We refer to

[5, 6, 14, 17, 18, 24, 25, 30] for the literature on the concept of vertex-edge domination

and its variants in graphs.

The concept of verex-edge Roman domination has been introduced in [26]. A function

f : V → {0, 1, 2} is a vertex-edge Roman dominating function (ve-RDF) on G if every

edge (u, v) is either incident with a vertex with weight at least one or there exists a

vertex w such that either (u,w) ∈ E(G) or (v, w) ∈ E(G) and h(w) = 2. The weight

of a ve-RDF f is the value f(V ) =
∑

u∈V f(u). The vertex-edge Roman domination

number is the minimum weight of a ve-RDF on G and is denoted by γveR(G). The

minimum vertex-edge Roman domination problem (MVERDP) is to find a ve-RDF

of minimum weight in the input graph. The decision version of vertex-edge Roman
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domination problem is defined as follows.

Vertex-Edge Roman Domination Problem (VERDP)

Instance : A simple, undirected graph G and a positive integer k.

Question : Does G have a ve-RDF of weight at most k?

In [15] it has been shown that VERDP is NP-complete for bipartite graphs. In

this paper, we investigate the algorithmic aspects of VERDP in some subclasses

of bipartite graphs, chordal graphs and planar graphs. We also investigate the

complexity of MVERDP in approximation point of view. It is also shown that vertex

cover and vertex-edge Roman domination problems are not equivalent in computa-

tional complexity aspects. Finally, an integer linear programming formulation for

MVERDP is presented.

2. Complexity Results

In this section, first, we show that VERDP is NP-complete for star convex bipartite

graphs, comb convex bipartite graphs and chordal graphs by giving a polynomial

time reduction from a well-known NP-complete problem, Exact-3-Cover (X3SC)[10],

which is defined as follows.

EXACT-3-COVER (X3SC)

Instance : A finite set X with | X | = 3q and a collection C of 3-element subsets of

X.

Question : Is there a subcollection C ′ of C such that every element of X appears in

exactly one member of C ′?

Theorem 1. VERDP is NP-complete for star convex bipartite graphs.

Proof. Given a star convex bipartite graph G and a function f , whether f is a ve-

RDF of size at most k can be checked in polynomial time. Hence VERDP for star

convex bipartite graphs is a member of NP.

Now we show that VERDP is NP-hard by transforming an instance 〈X,C〉 of X3SC,

where X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct}, to an instance 〈G, k〉 of

VERDP for star convex bipartite graphs as follows. Create vertices xi, yi for each

xi ∈ X and ci for each Ci ∈ C and also create vertices a, {a1, a2, . . . , a2q+4} and

{b1, b2, . . . , b2q+4}. Add edges (a, ai) for each ai and (ai, bi) for each i, 1 ≤ i ≤ 2q+ 4.

Also add edges (a, ci) for each ci and (cj , xi) if xi ∈ Cj . The graph constructed is

shown in Figure 1. Let A = {a} ∪ {xi : 1 ≤ i ≤ 3q} ∪ {bi : 1 ≤ i ≤ 2q + 4} and

B = V \ A. The set A induces a star with vertex a as central vertex, as shown in

Figure 2, and the neighbors of each element in B induce a subtree of star. Therefore

G is a star convex bipartite graph and can be constructed from the given instance

〈X,C〉 of X3SC in polynomial time. Next we show that X3SC has a solution if and

only if G has a ve-RDF with weight at most 2q + 2.

Suppose C ′ is a solution for X3SC with |C ′| = q. We define a function f : V →
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Figure 1. Construction of a star convex bipartite graph from an instance of X3SC

Figure 2. Star Graph

{0, 1, 2} as follows.

f(u) =

{
2, if u ∈ C ′ or u = a

0, otherwise
(1)

Clearly, f is a ve-RDF and f(V ) = 2q + 2.

Conversely, suppose that G has a ve-RDF g with weight k = 2q+ 2. Also, for j = 0, 1

or 2, let Vj = {v | g(v) = j}. We state two claims.

Claim 1 : g(a) = 2 and {a1, a2, . . . , a2q+4} ∪ {b1, b2, . . . , b2q+4} ⊂ V0.

Proof : Proof follows from the definition of ve-RDF and the fact that g(V ) = 2q+ 2.

Claim 2 : {x1, x2, . . . , x3q} ∪ {y1, y2, . . . , y3q} ⊂ V0.

Proof : (Proof by contradiction) Let m = |{i : g(xi) ≥ 1 or g(yi) ≥ 1}|. Clearly,

number of edges of the form (xi, yi) with g(xi) = 0 and g(yi) = 0 is 3q − m. Let

M = {(xi, yi) : g(xi) = 0 and g(yi) = 0}. Since g is a ve-RDF, every edge of M should
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be ve-dominated by a vertex with weight 2. Therefore, number of cj ‘s required with

weight two is at least d 3q−m3 e. Hence g(V ) = 2 +m+ 2d 3q−m3 e, which is greater than

k, a contradiction.

From the fact that g is a ve-RDF and the above claim, it follows that |{c1, c2, . . . , ct}∩
V2| = q. Now {c1, c2, . . . , ct} ∩ V2 is an exact cover for X3SC.

Since every star convex bipartite graph is a tree convex bipartite, we have the the

following.

Corollary 1. VERDP is NP-complete for tree convex bipartite graphs.

Theorem 2. VERDP is NP-complete for comb convex bipartite graphs.

Proof. Given a comb convex bipartite graph G and a function f , whether f is a

ve-RDF of size at most k can be checked in polynomial time. Hence VERDP for

comb convex bipartite graphs is a member of NP.

Now we show that VERDP is NP-hard by transforming an instance 〈X,C〉 of X3SC,

where X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct}, to an instance 〈G, k〉 of

VERDP for comb convex bipartite graphs as follows.

Create vertices xi, x
′
i, yi for each xi ∈ X and ci for each Ci ∈ C. Add edges (cj , xi) if

xi ∈ Cj . Also add edges by joining each cj to every x′i and (xi, yi) for all i, 1 ≤ i ≤ 3q.

The graph constructed is shown in Figure 3. Let A = {xi, x′i : 1 ≤ i ≤ 3q} and

B = V \A. The set A induces a comb with elements {x′i : 1 ≤ i ≤ 3q } as backbone

and {xi : 1 ≤ i ≤ 3q } as teeth, as shown in Figure 4, and the neighbors of each

element in B induce a subtree of the comb. Therefore G is a comb convex bipartite

graph and can be constructed from the given instance 〈X,C〉 of X3SC in polynomial

time. Next we show that X3SC has a solution if and only if G has a ve-RDF with

weight at most 2q.

Suppose C ′ is a solution for X3SC with |C ′| = q. We define a function f : V →
{0, 1, 2} as follows.

f(u) =

{
2, if u ∈ C ′

0, otherwise
(2)

Clearly, f is a ve-RDF and f(V ) = 2q.

Conversely, suppose that G has a ve-RDF g with weight k = 2q. Also, for j = 0, 1 or

2, let Vj = {v | g(v) = j}. Converse proof is similar to the proof given in Theorem 1.

We state the following claim without proof.

Claim 3 : {x1, x2, . . . , x3q} ∪ {y1, y2, . . . , y3q} ⊂ V0.

From the fact that g is a ve-RDF and the above claim, it follows that |{c1, c2, . . . , ct}∩
V2| = q. Now {c1, c2, . . . , ct} ∩ V2 is an exact cover for X3SC.

Theorem 3. VERDP is NP-complete for chordal graphs.
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Figure 3. Construction of a comb convex bipartite graph from an instance of X3SC

Figure 4. Comb Graph

Proof. Clearly, VERDP for chordal graphs is in NP. Now we show that VERDP is

NP-hard by transforming an instance 〈X,C〉 of X3SC, where X = {x1, x2, . . . , x3q}
and C = {C1, C2, . . . , Ct}, to an instance 〈G, k〉 of VERDP for chordal graphs as

follows. Create vertices xi, yi for each xi ∈ X and ci for each Ci ∈ C. Add edges

(xi, yi) for all i, 1 ≤ i ≤ 3q and (cj , xi) if xi ∈ Cj . Also add edges between every pair

of distinct vertices ci and cj . The graph G can be constructed in polynomial time.

It is easy to verify that (y1, y2, . . . , y3q, x1, x2, . . . , x3q, c1, c2, . . . , ct) is a PEO of G.

Hence G is a chordal graph. Next, we show that X3SC has a solution if and only if

G has a ve-RDF with weight at most 2q.

Suppose C ′ is a solution for X3SC with |C ′| = q. We define a function f : V →
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{0, 1, 2} as follows.

f(u) =

{
2, if u ∈ C ′

0, otherwise
(3)

Clearly, f is a ve-RDF and f(V ) = 2q.

Conversely, suppose that G has a ve-RDF g with weight k = 2q. Converse proof is

similar to the proof given in Theorem 1.

Next, we show that VERDP is NP-complete for planar graphs by giving a polynomial

time reduction from Planar Exact Cover by 3-Sets (Planar X3C) [21], which is a

NP-complete problem and is defined as follows.

Planar Exact Cover by 3 Sets (Planar X3C)

Instance : A finite set X = {x1, x2, . . ., x3q} and a collection C = {c1, c2, . . ., ct}
of 3-element subsets of X such that (i) every element of X occurs in at most three

subsets and (ii) the induced graph is planar. (This induced graph H(V,E) is defined

as the graph such that V = X ∪ C and E = {(xi, cj) if xi ∈ cj}).
Question : Is there a subcollection C ′ of C such that every element of X appears in

exactly one member of C ′ ?

Theorem 4. VERDP is NP-complete for planar graphs.

Proof. Clearly, VERDP is a member of NP. We transform an instance 〈X,C〉 of

Planar X3C, where X = {x1, x2, . . ., x3q} and C = {c1, c2, . . ., ct}, to an instance

〈G, k〉 of VERDP same as in Theorem 3. Clearly, G is a planar graph and can be

constructed from the given instance 〈X,C〉 of Planar X3C in polynomial time. Next

we show that, Planar X3C has a solution if and only if G has a ve-RDF with weight

at most 2q.

Suppose C ′ is a solution for Planar X3C with |C ′| = q. We construct a ve-RDF f ,

on G, same as in Equation 3. Clearly, f(V ) = 2q = k.

The proof of the converse is similar to the proof given in Theorem 1.

3. Threshold Graphs

In this section, we determine the vertex-edge Roman domination number of threshold

graphs.

Definition 1. A graph G = (V,E) is called a threshold graph if there is a real number

T and a real number w(v) for every v ∈ V such that a set S ⊆ V is independent if

and only if
∑

v∈S w(S) ≤ T .

Although several characterizations are defined for threshold graphs, we use the fol-

lowing characterization of threshold graphs given in [20] to prove that vertex-edge

Roman domination number can be computed in linear time for threshold graphs.

A graph G is a threshold graph if and only if it is a split graph and, for split partition

(C, I) of V where C is a clique and I is an independent set, there is an ordering
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(x1, x2, . . . , xp) of vertices of C such that NG[x1] ⊆ NG[x2] ⊆ NG[x3] ⊆ . . . ⊆ NG[xp],

and there is an ordering (y1, y2, . . . , yq) of the vertices of I such that NG(y1) ⊇
NG(y2) ⊇ NG(y3) ⊇ . . . ⊇ NG(yq).

Theorem 5. Let G be a connected threshold graph. Then

γveR(G) =


0, if |V (G)| = 1

1, if G = K1,n (n ≥ 1)

2, otherwise

Proof. If |V (G)| = 1 or G = K1,n (n ≥ 1) then by the definition of ve-RDF the

result follows. Otherwise, let G be a connected threshold graph with p clique vertices

(x1, x2, . . . , xp) such that NG[x1] ⊆ NG[x2] ⊆ NG[x3] ⊆ . . . ⊆ NG[xp]. Now, define a

function f : V → {0, 1, 2} as follows.

f(v) =

{
2, if v = xp

0, otherwise
(4)

Clearly, f is a ve-RDF and γveR(G) ≤ 2. From the definition of ve-RDF, it follows

that γveR(G) ≥ 2. Therefore γveR(G) = 2.

Now, the following result is immediate from Theorem 5.

If G is disconnected with k connected components G1, G2, . . . , Gk then

γveR(G) =
∑k

i=1 γveR(Gi).

Theorem 6. MVERDP can be solvable in linear time for threshold graphs.

Proof. Since the ordering of the vertices of the clique and the number of connected

components in a threshold graph can be determined in linear time [16, 20], the result

follows.

4. Chain Graphs

In this section, we determine the vertex-edge Roman domination number of chain

graphs. A bipartite graph G = (X,Y,E) is called a chain graph if the neighborhoods

of the vertices of X form a chain, that is, the vertices of X can be linearly ordered,

say (x1, x2, ..., xp), such that NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xp). If G = (X,Y,E)

is a chain graph, then the neighborhoods of the vertices of Y also form a chain.

An ordering α = (x1, x2, . . . , xp, y1, y2, . . . , yq) of X ∪ Y is called a chain ordering if

NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xp) and NG(y1) ⊇ NG(y2) ⊇ . . . ⊇ NG(yq). Every

chain graph admits a chain ordering [29].
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Theorem 7. Let G(X,Y,E)(6= K1) be a chain graph. Then,

γveR(G) =

{
1, if |X| = 1 or |Y | = 1

2, otherwise
(5)

Proof. Let G(X,Y,E) be a connected chain graph with the chain ordering

α = (x1, x2, . . . , xp, y1, y2, . . . , yq). Now, define a function f : V → {0, 1, 2}

Case (1) : |X| = 1 then f(v) =

{
1, if v = x1

0, otherwise

Case (2) : |Y | = 1 then f(v) =

{
1, if v = y1

0, otherwise

Case (3) : |X| ≥ 2 and |Y | ≥ 2 then f(v) =

{
2, if v = xp

0, otherwise

Clearly, f is a ve-RDF in each of the three cases. From the definition of ve-RDF it is

clear that γveR(G) ≥ 1 in cases 1, 2 and γveR(G) ≥ 2 in case 3.

If the chain graph G is disconnected with k connected components G1, G2, . . . , Gk

then it is easy to verify that γveR(G) =
∑k

i=1 γveR(Gi). Now, the following result is

immediate from Theorem 7.

Theorem 8. MVERDP can be solvable in linear time for chain graphs.

Proof. Since the chain ordering and the connected components can be computed in

linear time [16, 27], the result follows.

5. Bounded Treewidth Graphs

A tree decomposition of a graph H is a tree T1 with the vertex set V (T1) =

{Z1, Z2, . . . , }, a subset of the power set of V (H) with the following requirements.

i). V (H) =
⋃

Zv∈V (T1)
Zv

ii). ∀(u, v) ∈ E(H), there exists a vertex Zt ∈ V (T1) such that u, v ∈ Zt, and

iii). ∀v ∈ V (H), the induced subgraph {Zt : v ∈ Zt and Zt ∈ V (T1)} is a subtree of

T .

Then the tree decomposition T1 of H is said to have width equals to max{|Zt| − 1 :

Zt ∈ V (T1)}. The treewidth is the smallest width of a tree decomposition of a graph.

A graph problem for bounded treewidth graphs is linear time solvable if there exists a

counting monadic second-order logic (CMSOL) formula for it. We show that VERDP

can be expressed in CMSOL [7].

Theorem 9. Given a graph G and a positive integer k, VERDP can be expressed in
CMSOL.
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Proof. Let f : V (G) → {0, 1, 2} be a function. Also, for j = 0, 1 or 2, let Vj = {v |
f(v) = j}. A CMSOL formula for the VERDP is expressed as follows.

veRom Dom(V ) = (f(V ) ≤ k) ∧ ∃V0, V1, V2,∀u, v[[adj(u, v) ∧ [¬(u ∈ V0 ∧ v ∈
V0) ∨ ∃w((adj(u,w) ∨ adj(v, w)) ∧ w ∈ V2)]] ∨ ¬adj(u, v)],

where adj(u, v) holds true iff (u, v) ∈ E(G).

Now, the theorem below follows from Courcelle’s result [9] and Theorem 9.

Theorem 10. MVERDP for graphs with treewidth at most a constant is solvable in
linear time.

5.1. Approximation Algorithm

In this subsection, we design an approximation algorithm for optimization version of

vertex-edge Roman domination problem based on the approximation result known

for VERTEX COVER problem, which is given below.

VERTEX COVER

Instance: A simple, undirected graph G = (V,E).

Solution: Minimum cardinality vertex cover C of G.

Measure: Cardinality of C.

Now, we propose a 2-approximation algorithm for MVERDP.

The following approximation result has been obtained in [16] for VERTEX COVER

problem.

Theorem 11 ([16]). VERTEX COVER problem has an approximation algorithm with
approximation ratio of 2.

By Theorem 11, let APP-VERTEX-COVER be an approximation algorithm that

gives a vertex cover C of a graph G such that |C| ≤ |C∗|, where C∗ is an optimal

vertex cover of the graph G.

Next, we propose an algorithm APP-VERD to compute an approximate solution of

MVERDP. In our algorithm, first we compute a vertex cover C of the input graph

G using the approximation algorithm APP-VERTEX-COVER. Next, we construct a

triple Tr in which every vertex in C will be assigned with weight 1 and the remaining

vertices will be assigned with weight 0.

Now, let Tr = (C ′, ∅, C) be the triple obtained by using the APP-VERTEX-COVER

algorithm. It can be easily seen that every vertex v ∈ V is assigned with weight either

0 or 1. Since C is a vertex cover of G, every edge (u, v) ∈ E(G) is incident with a

vertex with weight 1. Thus, Tr gives a ve-RDF of G.
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Algorithm 1 APP-VERD(G)
Input: A simple, undirected graph G.

Output: A vertex-edge Roman dominating triple Tr of G.
1: C ← APP-VERTEX-COVER(G)

2: Tr ← (V \ C,C, ∅)
3: return Tr.

We note that the algorithm APP-VERD computes a vertex-edge Roman dominating

triple Tr of the given graph G in polynomial time. Hence, we have the following

result.

Theorem 12. The MVERDP in a graph can be approximated with an approximation
ratio of 2.

Proof. Let C be the vertex cover produced by the algorithm APP-VERTEX-

COVER, Tr be the vertex-edge Roman dominating triple produced by the algorithm

APP-VERD and Wr be the weight of Tr.

It can be observed that Wr = |C|. It is known that |C| ≤ 2τ(G). Therefore,

Wr ≤ 2τ(G). Since τ(G) ≤ γveR(G), it follows that Wr ≤ 2γveR(G).

We have the following corollary of Theorem 12.

Corollary 2. MVERDP problem is in APX.

6. Complexity Contrast between Vertex Cover and Vertex-
Edge Roman Domination Problems

Although cardinality of an optimal vertex cover is a lower bound on the minimum

weight of a vertex-edge Roman dominating function of a graph, respective problems

differ in computational complexity. In particular, we show that there exists a graph

class for which VERDP is polynomial-time solvable, whereas the VERTEX COVER

problem is NP-complete. Similar study has been made between domination and other

domination parameters in [13, 22, 23].

We construct a new class of graphs in which the MVERDP can be solved trivially,

whereas the decision version of the VERTEX COVER problem is NP-complete, which

is defined as follows.

VERTEX COVER DECISION

Instance : A simple, undirected graph G and a positive integer k.

Question : Does there exist a vertex cover of size at most k in G?

Definition 3. (GP3 graph). A graph is GP3 graph if it can be constructed from a

connected graph G = (V,E) where V (G) = {v1, v2, . . . , vn}, in the following way :

1. Create three copies of P2 graphs such as ai − bi, ci − di and ei − fi, for each i.
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Figure 5. An illustration to the construction of GP3 graph from G

2. Add edges {(vi, ai), (vi, ci), (vi, ei) : 1 ≤ i ≤ n}.

General GP3 graph construction is shown in Figure 5.

Theorem 13. If G′ is a GP3 graph obtained from a graph G = (V,E) (|V | = n), then
γveR(G

′) = 2n.

Proof. Let G′ = (V ′, E′) be a GP3 graph constructed from G. Also let f : V ′ →
{0, 1, 2} be a function on graph G′, which is defined as follows

f(v) =

{
2, if v ∈ {vi : 1 ≤ i ≤ n}
0, otherwise

(6)

Clearly, f is a ve-RDF and γveR(G′) ≤ 2n. Next, we show that γveR(G′) ≥ 2n. From

the definition of ve-RDF it follows that, g(vi) + g(ai) + g(bi) + g(ci) + g(di) + g(ei) +

g(fi) ≥ 2, where 1 ≤ i ≤ n. Hence g(V ) ≥ 2n. Therefore g(V ) = 2n.

Lemma 1. Let G′ be a GP3 graph constructed from a graph G = (V,E). Then G has a
vertex cover of size at most k if and only if G′ has a vertex cover of size at most k + 3n.

Proof. Suppose C be vertex cover of G of size at most k, then it is clear that

C ∪ {bi, di, fi : 1 ≤ i ≤ n} is a vertex cover of G′ of size at most k + 3n. Conversely,

suppose C ′ is a vertex cover of G′ of size at most k + 3n. Then at least one vertex

from each pair of the vertices {ai, bi}, {ci, di}, {ei, fi} must be included in C ′. Clearly,

C ′ ∩ V is a vertex cover of G of size at most k.

The following result is well known for the VERTEX COVER DECISION problem.

Theorem 14. ([10]) The VERTEX COVER DECISION problem is NP-complete for
general graphs.
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From Lemma 1 and Theorem 14, it follows that VERTEX COVER DECISION prob-

lem is NP-hard for GP3 graphs. Hence the following theorem.

Theorem 15. The VERTEX COVER DECISION problem is NP-complete for GP3
graphs.

7. Integer Linear Programming Formulation

Let G = (V,E) be an undirected graph, with |V | = n, |E| = m and

f : V (G) → {0, 1, 2} be a ve-RDF of G. Here we present an Integer Linear

Program (ILP) model for MVERDP. This model uses two sets of binary variables.

Specifically, for each vertex v ∈ V , we define

xv =

{
1, f(v) = 1

0, otherwise
yv =

{
1, f(v) = 2

0, otherwise

The ILP model of the MVERDP can now be formulated as

Determine :

min
{∑
v∈V

(xv + 2yv)
}

(7)

subject to constraints:

xu + yu + xv + yv +
∑

u′∈N(u)

yu′ +
∑

v′∈N(v)

yv′ ≥ 1, (u, v) ∈ E (8)

xv + yv ≤ 1, v ∈ V (9)

xv, yv ∈ {0, 1} (10)

The objective function given in Equation 7 minimizes the weight of ve-RDF. Con-

straint 8 ensures vertex-edge Roman domination condition i.e., either at least one

end vertex of every edge (u, v) is assigned label 1 or 2, or if the labels assigned to

the end vertices u and v are zero then either u or v is adjacent to a vertex with label

2. Condition 9, guarantees that exactly one label is assigned to every vertex and the

condition 10 ensures that the variables are binary in nature.

In the proposed ILP model, the number of variables is 2n and the constraints is m+n.

8. Conclusion

In this paper, we have shown that the VERDP is NP-complete for star convex bi-

partite graphs, comb convex bipartite graphs, chordal graphs and planar graphs.

Investigating the algorithmic complexity of these problems for other subclasses of

bipartite and split graphs remains open. Next, it is also shown that MVERDP is

solvable in linear time for threshold graphs, chain graphs and bounded tree-width
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graphs. From the approximation point of view, an approximation algorithm is pro-

posed for MVERDP. Approximation hardness of MVERDP problem is still open. We

have shown that the vertex cover and vertex-edge Roman domination problems are

not equivalent in computational complexity aspects by constructing a new class of

graphs called GP3 graphs. Thus, there is a scope to study each of these problems

on its own for particular graph classes. An ILP formulation for MVERDP with 2n

variables and m+n constraints is presented. Finding a better ILP formulation(s) for

MVERDP with fewer variables or constraints remains open.
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