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Abstract: Stress is an important centrality measure of graphs applicable to the study

of social and biological networks. We study the stress of paths, cycles, fans and wheels.
We determine the stress of a cut vertex of a graph G, when G has at most two cut

vertices. We have also identified the graphs with minimum stress and maximum stress

in the family of all trees of order n and in the family of all complete bipartite graphs
of order n.
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1. Introduction

By a graph G = (V,E) we mean a finite, undirected and connected graph with neither

loops nor multiple edges. The order |V | and the size |E| are denoted by n and m

respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [2].

∗ Corresponding Author



54 The stress of a graph

Let P = (u = v0, v1, . . . , vk = v) be a u-v path of length k in G with origin u = v0
and terminus v = vk. The vertices vi, 1 ≤ i ≤ k − 1 are called the internal vertices

of the path P . The length of a shortest u-v path, denoted by d(u, v) is called the

distance between u and v. The diameter of G, denoted by diam(G), is given by

max{d(u, v) : u, v ∈ V }. For v ∈ V , e(v) denotes the eccentricity of the vertex v and

is given by max{d(u, v) : u ∈ V }. A vertex with minimum eccentricity is called a

central vertex and the subgraph induced by the set of all central vertices is called the

centre of G. The eccentricity of any vertex in the centre is called the radius of G. A

graph G is called a block graph if every block of G is complete.

A vertex (edge) centrality measure assigns a real number to each vertex (edge) of a

graph and it quantifies the importance or criticality of a vertex (edge) from a particular

perspective. Different centrality measures describe the importance of a vertex from

different perspectives. A few examples of vertex centrality measures are betweenness,

closeness, degree, eigenvector centrality and stress. Centrality measures betweenness

and closeness indicate the efficiency of a given vertex in information flow within the

network. The centrality measures degree and eigen vector centrality are used to

identify highly connected nodes. The stress of a vertex indicates the relevance of a

vertex in holding together communicating vertices. Centrality measures in a graph are

used to rank the vertices, and the vertices with higher rank are considered to be more

important than the others. For further results on centrality measures, readers are

referred to [1, 7, 9] and [8]. Applications of centrality measures include identification

of the most influential person in a social network, proteins which play a significant

role in a biological process, and key infrastructure vertices in an urban network or

internet etc. For a brief survey of centrality measures with emphasis on applications

in the study of biological networks, we refer to [4].

In the present paper, our focus is on the study of stress, which is a vertex centrality

measure studied to some extent in [5, 6] and [10].

Definition 1. Let G be a graph with V (G) = {v1, v2, . . . , vn}. The stress of a vertex vi
is the number of shortest paths in G having vi as an internal vertex and is denoted by st(vi).

Definition 2. If (vi1, vi2, . . . , vin) is an ordering of V (G) such that st(vi1) ≥ st(vi2) ≥
· · · ≥ st(vin), then (st(vi1), st(vi2), . . . , st(vin)) is called the stress sequence of G. The stress

of a graph G is defined by st(G) =
n∑

i=1

st(vi).

We write st(v) instead of stG(v), whenever the graph under discussion is clear by the

context. In the present paper, we determine the stress sequence of standard graphs

such as complete graphs, paths, cycles, complete bipartite graphs and wheels.

We also consider the problem of determining the stress of a cut vertex in any graph

G having at most two cut vertices.

Since the stress of a graph could be interpreted in terms of cost or benefit, observing

the changes in the stress when we remove or add an edge in the graph would be an

interesting constrained optimization problem. Before addressing such a problem, it is
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necessary to understand which graphs in a given family of graphs are with minimum

or maximum stress. For this purpose, we introduce the following notations. Given

a family F of graphs with same number of vertices, we denote Gmax(F) (similarly,

Gmin(F)) to represent the set all graphs in the family F with maximum (minimum)

stress. In other words,

Gmax(F) = {G ∈ F : st(G) ≥ st(F ), ∀F ∈ F},

and

Gmin(F) = {G ∈ F : st(G) ≤ st(F ), ∀F ∈ F}.

In the present paper, we consider the family of trees of order n and the family of

complete bipartite graphs of order n and determine Gmax(F) and Gmin(F) in each of

these families.

2. The stress of graphs with diameter 2 or 3

In this section, we determine the stress of a graph with diameter 2 or 3.

We begin with making some interesting observations on the stress of a vertex under

different conditions. The first one in the following provide a lower bound for the stress

of a vertex in terms of its degree and the adjacency among neighboring vertices.

Observation 1. Let deg v ≥ 2. Let m(v) denote the number of edges in the induced
subgraph G[N(v)]. If v1, v2 ∈ N(v) are any two non-adjacent vertices, then P = (v1, v, v2)
is a shortest path having v as an internal vertex. So, it follows that

stG(v) ≥

(
deg v

2

)
−m(v), (1)

If diam(G) = 2 and deg v ≥ 2, then any shortest path P having v as an internal vertex is of
the form P = (u, v, w), where u,w are non-adjacent vertices in N(v). In this case, equality
holds in (1).

Observation 2. If G[N(v)] is complete, then there is no shortest path in G having v as
an internal vertex and hence stG(v) = 0. In particular if G = Kn, then st(v) = 0 for all
v ∈ V and hence st(G) = 0.

Observation 3. Let G be a graph with diameter 2 and radius 1. Consider a vertex v at
the center of G, in which case the eccentricity e(v) of v is one and deg v = n − 1. In this
case,

stG(v) =

(
n− 1

2

)
−m(v).

Also stG(v) =
(
n−1
2

)
if and only if m(v) = 0, in which case G = K1,n−1.
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Observation 4. Let G = Kr,s with 2 ≤ r ≤ s. Let V1, V2 be a bipartition of G with
|V1| = r and |V2| = s. Since diam(G) = 2, we get st(Kr,s) = r

(
s
2

)
+ s
(
r
2

)
.

Observation 5. Let H = G+K1, where G is a simple graph of order n and size m and
V (K1) = {v}. Since diam(H) = 2, it follows from Observation 1 that

stH(v) =

(
n

2

)
−m. (2)

Now let u ∈ V (G). If degG u = 1, then degH u = 2 and the induced subgraph H[NH(u)]
is complete. So from Observation 2 we have stG(u) = stH(u) = 0. If degG u ≥ 2, then any
shortest path having u as an internal vertex is a shortest path of length 2 in G. Therefore

stH(u) =

(
degG u

2

)
−mG(u), (3)

where mG(u) is the number of edges in the subgraph induced by N(u) in G. Since any
shortest path of length two in a graph has unique internal vertex,

∑
u∈V (G)

stH(u) is the

number of shortest paths of length two in G, say s2. Therefore, the stress of the graph H is
given by

st(H) =

(
n

2

)
−m+ s2. (4)

From (3) and (4) of the present observation, we have the following:

• For any u ∈ V (G), we have stH(u) < stG(u) if and only if degG u ≥ 2 and e(u) ≥ 2.

• If our interest is regarding the changes in the value of
∑

u∈V (G)

stH(u), then we observe

that ∑
u∈V (G)

stH(u) =
∑

u∈V (G)

stG(u)⇔ diam(G) ≤ 2.

The following theorem is a generalization of the results given in

Observation 5.

Theorem 6. Let G be a graph of order n and size m. Let H = G + Kl, where l ≥ 2.
Then

st(H) =

[(
n

2

)
−m

]
l +

(
l

2

)
n+ s2, (5)

where s2 is the number of shortest paths of length 2 in G.

Proof. Let V (Kl) = {u1, u2, . . . , ul}. Since diam(H) = 2 and N(ui) = V (G) for all

i, we have

st(ui) =

(
deg ui

2

)
−mH(ui) =

(
n

2

)
−m. (6)
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for all i. Similarly

stH(v) =

(
degH v

2

)
−mH(v) =

(
l

2

)
+

(
degG v

2

)
−mG(v). (7)

for all v ∈ V (G). Now
∑

v∈V (G)

[(
degG v

2

)
−mG(v)

]
is the number of shortest paths of

length 2 in G. Hence
∑

v∈V (G)

stH(b) = n
(
l
2

)
+ s2.

Therefore st(H) =
[(

n
2

)
−m

]
l +
(
l
2

)
n+ s2.

We now proceed to determine the stress of a vertex in a graph G with diam(G) = 3.

For this purpose we introduce the following notations. For any v ∈ V, let N2(v) =

{u ∈ V : d(u, v) = 2}, S(v) = {xy : xy ∈ E(G), x ∈ N2(v), and y ∈ N(v)},
T (xy) = {z ∈ N(v) : d(x, z) = 3} for xy ∈ S(v), and k(xy) = |T (xy)|.

Theorem 7. For a graph G with diameter 3 and v ∈ V , the stress of v is given by

st(v) =

(
deg v

2

)
−m(v) +

∑
xy∈S

k(xy). (8)

Proof. If e(v) = 1 and deg v 6= 1, then S(v) = ∅ and hence
∑

xy∈S k(xy) = 0 and

the result follows from Observation 1. Now let e(v) ≥ 2 and deg v ≥ 2.

It follows from Observation 1 that the number of shortest paths of length 2 having v as

an internal vertex is
(
deg v

2

)
−m(v). Also, any shortest path P of length 3 having v as

an internal vertex, if exists, is of the form P = (x, y, v, z) where x ∈ N2(v), y, z ∈ N(v)

such that xy ∈ S(v) and z ∈ T (xy). Therefore, the number of shortest paths of length

3 having v as an internal vertex is
∑

xy∈S(v) k(xy). Now, (8) is immediate from the

fact that diam(G) = 3, proving the theorem.

Corollary 1. Let G = B(r, s) be the bistar with V (G) = {u, u1, u2, . . . , ur,
v, v1, v2, . . . , vs}, N(u) = {u1, u2, . . . , ur, v} and N(v) = {v1, v2, . . . , vs, u}. Then

st(u) =

(
r + 1

2

)
+ sr; st(v) =

(
s+ 1

2

)
+ sr, st(w) = 0 for w 6= u, v, (9)

and

st(G) =

(
r + 1

2

)
+

(
s+ 1

2

)
+ 2sr. (10)

Proof. Since diam(G) = 3, deg u = r+1,m(u) = 0, N2(u) = {v1, v2, . . . , vs}, S(u) =

{viu : 1 ≤ i ≤ s} and k(uv) = r, we get st(u) =
(
r+1
2

)
+sr. Similarly st(v) =

(
s+1
2

)
+sr.

Also deg w = 1 for all w ∈ V − {u, v} and hence st(w) = 0. Hence the result

follows.
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3. Stress of some standard graphs

In this section we determine the stress of standard graphs such as paths, fans, cycles

and wheels.

Theorem 8. Let Pn = (v1, v2, . . . , vn) be a path on n vertices. Then

st(vi) = (i− 1)(n− i). (11)

Further, the ranking of the vertices in Pn is given by

st(vk+1) ≥ st(vk+2) ≥ st(vk) ≥ st(vk+3) ≥
st(vk−1) ≥ . . . st(vk+1) ≥ st(v1) if n = 2k + 1 (12)

and

st(vk+1) ≥ st(vk) ≥ st(vk+2) ≥ st(vk−1) ≥
. . . st(v2k) ≥ st(v1) if n = 2k (13)

Proof. If 1 < i < n, then any shortest path having vi as an internal vertex is the

vp-vq section of Pn where 1 ≤ p < i and i < q ≤ n. Hence (11) follows. To obtain the

stress sequence we consider two cases.

Case 1: n = 2k + 1.

Now for 1 ≤ i ≤ k, we have

st(vk+i)− st(vk+i+1) = [(k + i)− 1][n− (k + i)]−
[(k + i+ 1)− 1][n− (k + i+ 1)]

= (2k − n) + 2i = 2i− 1 > 0.

Therefore, st(vk+i) > st(vk+i+1). Now from (11), it is clear that st(vk+1+i) =

st(vk+1−i) and therefore the stress sequence as given in (12) follows.

Case 2 : n = 2k.

Now, for 1 ≤ i ≤ k, we use (11) to observe that st(vk−i+1) = st(vk+i) and st(vk+i)−
st(vk+i+1) = 2i > 0. Therefore, the stress sequence in Pn is as in (13).

Since
n∑

i=1

(i− 1)(n− i) =
(
n
3

)
, we have the following corollary.

Corollary 2. For a path graph Pn,

st(Pn) =

(
n

3

)
. (14)
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The following result for the fan Fn+1 = Pn +K1 follows immediately from Corollary 2

and Observation 5

Theorem 9. For the fan graph Fn+1 = Pn +K1, we have stFn+1(v1) = stFn+1(vn) = 0,

stFn+1(vi) = 1 for 2 ≤ i ≤ n− 1 and stFn+1(v) =
(
n−1
2

)
. Further,

st(Fn+1) =
(n− 2)(n+ 1)

2
. (15)

Corollary 3. Let Fn+1 = Pn +K1. Then the following statements hold.

(i) stFn+1(vi) ≤ stPn(vi), for all vi ∈ V (Pn).

(ii) st(Fn+1) < st(Pn), for n ≥ 5.

Observation 10. Suppose there exists an automorphism α of G such that α(v) = w.
Then P is a shortest path with v as an internal vertex if and only if α(P ) is a shortest path
with w as an internal vertex. Hence st(v) = st(w). In particular, if G is vertex transitive,
then all the vertices of G have the same stress.

Theorem 11. For the cycle Cn = (v1, v2, . . . , vn, v1),

st(vi) =
d(d− 1)

2
, for all 1 ≤ i ≤ n, (16)

where d = diam(Cn) = bn
2
c. Further,

st(Cn) = n

(
d(d− 1)

2

)
. (17)

Proof. Since Cn is vertex transitive, it follows from Observation 10 that all the ver-

tices of Cn have the same stress. Hence it is enough to determine st(v1). Any shortest

path having v1 as an internal vertex, is of the form (vj , vj+1, . . . , vn, v1, v2, . . . , vi),

where 2 ≤ i ≤ d and j ≥ n− d+ i. So, for each i ≤ d, the number of choices for j is

d− i+ 1. Hence st(v1) =
∑d

i=2(d− i+ 1) = d(d−1)
2 . Since all the vertices of Cn have

the same stress, (17) follows.

Since the wheel Wn+1 is the graph Cn +K1, Theorem 11 and Observation 5 lead to

the following corollary.

Corollary 4. For the wheel Wn+1 = Cn + K1, we have stWn+1(v) =
n(n− 3)

2
and

stWn+1(vi) = 1 for all 1 ≤ i ≤ n. Also

st(Wn+1) =

(
n

2

)
. (18)

Corollary 5. Let Wn+1 = Cn +K1. Then the following statements hold.

(i) stWn+1(vi) ≤ stCn(vi), for all vi ∈ V (Cn).

(ii) st(Wn+1) < st(Cn), for n ≥ 6.
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4. Stress of a cut vertex

Since the removal of a cut vertex v in a connected graph results in a disconnected

graph, it is an important vertex which holds together several blocks of G. In this

section we determine the stress of a cut vertex. To start with we consider a graph

with a unique cutvertex.

Theorem 12. Let G be a connected graph with a unique cut vertex v. Let B1, B2, . . . , Bk

be the blocks of G. Let ti denote the number of shortest path in Bi having v as origin. Then

stG(v) =

k∑
i=1

stBi(v) +

k∑
i,j=1
i6=j

titj . (19)

Proof. Let P be any shortest u-w path having v as an internal vertex. If u,w ∈
V (Bi) for some i, then the number of such paths is given by stBi(v). If u ∈ V (Bi), w ∈
V (Bj) and i 6= j, then the u-v section of P is a shortest path in Bi and the w-v

section of P is a shortest path in Bj . The number of such shortest paths is titj .

Hence stG(v) =
∑k

i=1 stBi
(v) +

∑k
i,j=1
i6=j

titj .

Now, we shall consider graphs G with two cut vertices and determine the stress of

those cut vertices.

Theorem 13. Let G be a connected graph with exactly two cut vertices v and w. Let
B1, B2, . . . , Br, D1, D2, . . . , Ds and H be the blocks in G such that

(a) v ∈ V (Bi) and w /∈ V (Bi), 1 ≤ i ≤ r

(b) w ∈ V (Dj) and v /∈ V (Dj), 1 ≤ j ≤ s

(c) v, w ∈ V (H).

Let li and l denote respectively the number of shortest path in Bi and in H having v as origin.
Let ki and k denote respectively the number of shortest paths in Dj having w as origin. Let
t denote the number of shortest v-w path in H. Then

stG(v) = stH(v) +

r∑
i=1

stBi(v) +

r∑
i,j=1
i6=j

lilj + l

r∑
i=1

li + t

r∑
i=1

s∑
j=1

likj (20)

and

stG(w) = stH(w) +

s∑
j=1

stDj (w) +

s∑
i,j=1
i6=j

kikj + k

s∑
j=1

kj + t

r∑
i=1

s∑
j=1

likj . (21)
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Proof. Let P be any shortest x-y path in G having v as an internal vertex. Then

|{P : x, y ∈ V (Bi)}| = stBi
(v),

|{P : x ∈ V (Bi), y ∈ V (Bj) and i 6= j}| = lilj ,

|{P : x ∈ V (Bi), y ∈ V (H)}| = lil,

|{P : x ∈ V (Bi), y ∈ V (Dj)}| = tlikj ,

|{P : x, y ∈ V (H)}| = stH(v),

|{P : x ∈ V (H) and y ∈ V (Dj)}| = 0 and

|{P : x ∈ Di and y ∈ Dj}| = 0.

Hence (20) follows. Proof of (21) is similar.

In Observation 3, we have observed that the only vertex in K1,n−1 with nonzero stress

is the central vertex, which is the unique cut vertex in the graph. The next theorem

characterizes all connected graphs in which a vertex with nonzero stress is unique.

Surprisingly, such a graph has unique cut vertex.

Theorem 14. Let G be a connected graph of order n. Then there exists a vertex v ∈ V
such that st(v) > 0 and st(w) = 0 for all w ∈ V − {v} if and only if G is a block graph with
v as its unique cut vertex.

Proof. Let G be any graph such that there exists a vertex v with st(v) > 0 and

st(w) = 0 for all w ∈ V − {v}. If there exists a vertex u which is not adjacent to

v, then st(w) > 0 for any internal vertex w of a shortest u-v path in G, which is a

contradiction. Hence deg v = n− 1. Since v is the unique vertex with st(v) > 0, any

shortest path in G is of the form (u, v, w) where u and w are nonadjacent vertices in

G. This implies that v is the unique cut vertex of G, v and w are in different blocks

of G and each block of G is complete. The converse is obvious.

5. Graphs with maximum and minimum stress in a given fam-
ily of graphs

Let F be a family of graphs in the collection of all connected graphs of order n.

For any graph parameter β(G), determining the members of F for which β(G) is

maximum or minimum is a significant problem. Entringer et al. [3] have proved that

among all trees on n vertices, star K1,n−1 has minimum Wiener index and the path

Pn has maximum Wiener index.

In this section, with stress being the parameter of our interest, we shall consider F
to be the family of trees and the family of complete bipartite graphs of order n to

determine the corresponding Gmax(F) and Gmin(F).
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Observation 15. Let T be a tree of order n. Note that any vertex v of T with deg v = k ≥
2 is a cut vertex of T . Let T1, T2, . . . , Tk be the components of T −{v} and let |V (Ti)| = ni.
Any shortest path in T having v as an internal vertex is the unique u-w path for some
u ∈ V (Ti), w ∈ V (Tj) and i 6= j. Therefore,

st(v) =

k∑
i,j=1
i<j

ninj .

Theorem 16. Let F be the family of all trees of order n, where n ≥ 4. Then Gmax(F) =
{Pn}.

Proof. Let T ∈ Gmax(F). Suppose that T 6= Pn, in which case, the set S = {v ∈
V (T ) : deg v ≥ 3} 6= ∅. Let v ∈ S be such that e(v) ≥ e(x) for all x ∈ S. Let

e(v) = k and u be the eccentric vertex of v. Let deg v = r and let T1, T2, . . . , Tr be

the components of T−{v}. Without loss of generality we assume that u ∈ V (T1). Now

if there exists a vertex w ∈ S∩V (Ti) for some i 6= 1, then d(u,w) = d(v, w)+d(v, u) >

e(v), which is a contradiction. Hence S ⊂ V (T1). This implies that Ti is a path for

i 6= 1 and v is adjacent to one of the pendent vertices of Ti. Let Ti = (vi1, vi2, . . . , vini
)

and let v be adjacent to vi1. Now let T 1 = (T − vv21) + v3n3
v21. Clearly T 1 is a tree

and sT 1(w) = sT (w) for all w ∈ V (T ) − ({v} ∪ V (T3)). It follows from Observation

15 that

stT (v) =

r∑
i,j=1
i<j

ninj

=
∑

i,j∈{1,4,...,r}
i<j

ninj +
∑

i∈{1,4,...,r}

(n2 + n3)ni + n2n3

and

stT 1(v) =
∑

i,j∈{1,4,...,r}
i<j

ninj +
∑

i∈{1,4,...,r}

(n2 + n3)ni.

Further, for any v3j ∈ T3, 1 ≤ j ≤ n3, we have

stT (v3j) = (n3 − j) [n− (n3 − j + 1)]

and

stT 1(v3j) = (n2 + n3 − j) [n− (n2 + n3 − j + 1)] .
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Hence it follows that

st(T 1)− st(T ) = stT 1(v)− stT (v) +

n3∑
j=1

[stT 1(v3j)− stT (v3j)]

= −n2n3 +

n3∑
j=1

[−n2(n3 − j) + n2 (n− n2 − n3 + j − 1)]

= n2n3 [(n− 1)− (n3 + n2)] > 0,

proving that T /∈ Gmax(F), which is a contradiction. Therefore, Gmax(F) = {Pn}.

Theorem 17. Let F be the family of all trees of order n, where n ≥ 4. Then, Gmin(F) =
{K1,n−1}.

Proof. Let T ∈ Gmin(F). Suppose T 6= K1,n−1. Let S = {v ∈ V (T ) : deg v ≥ 2}.
Then |S| ≥ 2. Let v ∈ S be such that e(v) ≥ e(x) for all x ∈ S. Let u be an

eccentric vertex of v. Let deg v = r, T1, T2, . . . , Tr be the components of T − {v}
and u ∈ V (T1). Now if |V (Ti)| ≥ 2 for some i 6= 1 then S ∩ V (Ti) 6= ∅. Let w ∈
S ∩ V (Ti). Then d(w, u) = d(w, v) + d(v, u) > e(u), which is a contradiction to the

fact then e(v) is a vertex of maximum eccentricity in S. Hence |V (Ti)| = 1 for all

i 6= 1. Let V (Ti) = {wi}. Let v′ be a vertex in T1 which is adjacent to v. Then

T 1 = T − {vw2, vw3, . . . , vwr} ∪ {v′w2, v
′w3, . . . , v

′wr} is a tree, sT 1(w) = stT (w) for

all w 6= v, v′ and sT ′(v′) = sT (v′) +
(
r
2

)
. Hence

st(T )− st(T ′) = stT (v)− stT ′(v) + stT (u′)− stT ′(u′)

=

(
r − 1

2

)
+ (n− r)(r − 1)−

(
r

2

)
= (r − 1) [(n− r)− 1] > 0.

Thus st(T ) > st(T ′), proving that T /∈ Gmin(F), a contradiction. Therefore

Gmin(F) = {K1,n−1}.

We now proceed to determine Gmin(F) and Gmax(F), where F is the family of all

complete bipartite graphs Kr,s of order n.

Theorem 18. Let F be the family of all complete bipartite graphs of order n. Then

(i) Gmax(F) = {Kr,s} where |r − s| = 0 or 1

(ii) Gmin(F) = {Kn−1,1}.

Proof. Let G = Kr,s and r ≥ s.
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Now, from the Observation 4, we have that st(Kr,s) = rs(r+s−2)
2 and st(Kr−1,s+1) =

(r−1)(s+1)(r+s−2)
2 . Therefore,

st(Kr,s)− st(Kr−1,s+1) =

(
r + s− 2

2

)
(s− r + 1) < 0. (22)

Now, substituting different values for r, starting from r = n− 1 we get that

st(Kn−1,1) < st(Kn−2,2) < . . . < st(Kr0,s0),

where r0 =
n

2
, if n is even and r0 =

n+ 1

2
, if n is odd. Hence the result follows.

6. Conclusion and Scope

In this paper we have determined the stress of graphs with diameter two or three.

The problem remains open for graphs with diameter greater than or equal to four.

Investigation of stress of various graph products is a significant direction for further

research. Also, determination of Gmin(F) and Gmax(F) for other families of graphs

such as unicyclic graphs and split graphs of order n is open.
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