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1. Introduction

Throughout this paper we consider only simple, finite and connected signed graphs.

For standard terminology and notion in graph theory, the reader may refer to Harary

[4]. A signed graph is a graph G = (V,E) with a signature function σ : E → {1,−1}.
We call a signed graph Σ as balanced if every cycle in it has an even number of negative

edges. The sign of a cycle and that of a path in a signed graph is the product of the

sign of the edges in each of them. The notion of signed distances for signed graph

and that of the distance compatibility in signed graphs are adopted as in [3]. For

any two vertices u and v in a signed graph Σ, according to the sign of the uv-path,

there are two types of signed distances dmax(u, v) and dmin(u, v). Using these signed

distances, the signed distance matrices (see [3]) are defined as,

(D1) Dmax(Σ) = (dmax(u, v))n×n.

(D2) Dmin(Σ) = (dmin(u, v))n×n.

We adopt the construction of a signed complete graph described in [3], obtained from

the signed distance matrices Dmax(Σ) and Dmin(Σ), as follows.
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The associated signed complete graph KDmax

(Σ) with respect to Dmax(Σ) is obtained

by joining the non-adjacent vertices of Σ with edges having signs

σ(uv) = σmax(uv).

The associated signed complete graph KDmin

(Σ) with respect to Dmin(Σ) is obtained

by joining the non-adjacent vertices of Σ with edges having signs

σ(uv) = σmin(uv).

Whenever, Dmax = Dmin, the distance matrix of Σ is denoted by D±(Σ) and the

associated signed complete graph of Σ is denoted by KD±(Σ).

A signed graph Σ is said to be distance compatible (briefly compatible) if for any two

vertices u and v, dmin(u, v) = dmax(u, v). For all notations and definitions related to

signed distances in signed graph, that are not defined in this paper, the reader may

refer to [3].

The Cartesian product and lexicographic product of signed graphs are defined as

follows.

The Cartesian product Σ1×Σ2 of two signed graphs Σ1 = (G1, σ1) and Σ2 = (G2, σ2)

is defined in [2] as the signed graph with vertex set and edge set as that of the

Cartesian product of the underlying unsigned graphs and the signature function σ for

the labeling of the edges is defined by

σ((ui, vj)(uk, vl)) =

{
σ1(uiuk) if j = l,

σ2(vjvl) if i = k.

The lexicographic product Σ1[Σ2] (also called composition) of two signed graphs Σ1 =

(V1, E1, σ1) and Σ2 = (V2, E2, σ2) is defined in [5] as the signed graph (V1×V2, E, σ),

where the edge set is that of the lexicographic product of underlying unsigned graphs

and the signature function σ for the labeling of the edges is defined by

σ((ui, vj)(uk, vl)) =

{
σ1(uiuk) if i 6= k,

σ2(vjvl) if i = k.

The distance compatibility criterion for the Cartesian product and lexicographic prod-

uct of signed graphs are discussed in [6].

Theorem 1 ([6]). The Cartesian product Σ1 × Σ2 is compatible if and only if Σ1 and
Σ2 are compatible.

Theorem 2 ([6]). Let Σ1 and Σ2 be two signed graphs. Then, Σ1[Σ2] is compatible if
and only if Σ1 is compatible and Σ2 is either all-positive or all-negative.

For a compatible signed graph, Dmax(Σ) = Dmin(Σ) = D±(Σ). In this paper we

simply denote the distance matrix of a compatible signed graph as D(Σ) and the

corresponding associated signed complete graph is denoted by KD(Σ).
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In this paper, we derive explicit formulae for the distance matrices of the compatible

signed graph products and we obtain the distance spectra of the Cartesian product

of some special classes of signed graphs. Also, we compute the distance spectra

of the lexicographic product Σ1[Σ2], where Σ1 is a compatible signed graph and

Σ2 = (K2, σ).

2. Distance matrices of compatible product of signed graphs

To deal with the distance matrices of compatible product of signed graphs, we use

the Kronecker product of a m × n matrix A = (aij) and a p × q matrix B, which is

defined to be the mp× nq matrix A⊗B = (aijB).

Let Σ1 = (G1, σ) and Σ2 = (G2, σ
′) be two compatible signed graphs with |V (Σ1)| =

m and |V (Σ2)| = n. Let σij and σ′kl be defined in Σ1 and Σ2 respectively, as follows.

σij =

{
σ(P(ui,uj)) if i 6= j,

1 if i = j.

σ′kl =

{
σ′(P(vk,vl)) if k 6= l,

1 if k = l.

Then,

KD(Σ1) + Im =



1 σ12 . . . σ1m

σ21 1 . . . σ2m

...
...

...
...

...
...

...
...

σm1 σm2 . . . 1

 =



σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

...
...

...
...

...
...

σm1 σm2 . . . σmm

 .

Similarly,

KD(Σ2) + In =



1 σ′12 . . . σ′1n
σ′21 1 . . . σ′2n

...
...

...
...

...
...

...
...

σ′n1 σ′n2 . . . 1

 =



σ′11 σ′12 . . . σ′1n
σ′21 σ′22 . . . σ′2n

...
...

...
...

...
...

...
...

σ′n1 σ′n2 . . . σ′nn

 .

Theorem 3. Let Σ1 = (G1, σ) and Σ2 = (G2, σ
′) be two compatible signed graphs, where

|V (Σ1)| = m and |V (Σ2)| = n. Then, the distance matrix of the Cartesian product Σ1 × Σ2

is given by,

D(Σ1 × Σ2) = D(Σ1)⊗ (KD(Σ2) + In) + (KD(Σ1) + Im)⊗D(Σ2).
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Proof. Let D(Σ1) and D(Σ2) be the distance matrices of Σ1 and Σ2 respectively.

Let V (Σ1) = {u1, u2, . . . , um} and V (Σ2) = {v1, v2, . . . , vn}. Suppose that Σ1×Σ2 is

compatible. Let σij and σ′kl be defined in Σ1 and Σ2 respectively, as follows.

σij =

{
σ(P(ui,uj)) if i 6= j,

1 if i = j

and

σ′kl =

{
σ′(P(vk,vl)) if k 6= l,

1 if k = l.

Also, the shortest path between two vertices ui and uj in Σ1 and vk and vl in Σ2 are

denoted by dΣ1
(i, j) and dΣ2

(k, l) respectively. Let u = (ui, uj) and v = (vk, vl) be

two vertices in Σ1 × Σ2. Then,

dΣ1×Σ2(u, v) = σij .σ
′
kl(d(ui, uj) + d(vk, vl)) = σ′kldΣ1(i, j) + σijdΣ2(k, l).

Then, the distance matrix of Σ1 × Σ2 can be written in the form

D(Σ1 × Σ2) =



B1,1 B1,2 B1,3 . . . B1,m

B2,1 B2,2 B2,3 . . . B2,m

...
...

...
...

...
...

...
...

...
...

Bm,1 Bm,2 Bm,3 . . . Bm,m


where each block Bi,j is given by,

Bi,j =



σ′11dΣ1 (i, j) + σijdΣ2 (1, 1) σ′12dΣ1 (i, j) + σijdΣ2 (1, 2) . . . σ′1ndΣ1 (i, j) + σijdΣ2 (1, n)
σ′21dΣ1

(i, j) + σijdΣ2
(2, 1) σ′22dΣ1

(i, j) + σijdΣ2
(2, 2) . . . σ′2ndΣ1

(i, j) + σijdΣ2
(2, n)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

σ′n1dΣ1
(i, j) + σijdΣ2

(n, 1) σ′n2dΣ1
(i, j) + σijdΣ2

(n, 2) . . . σ′nndΣ1
(i, j) + σijdΣ2

(n, n)


.

Bi,j can be split into two matrices as B′i,j and B′′i,j , given as

B′i,j =



σ′11dΣ1
(i, j) σ′12dΣ1

(i, j) . . . σ′1ndΣ1
(i, j)

σ′21dΣ1(i, j) σ′22dΣ1(i, j) . . . σ′2ndΣ1(i, j)
...

...
...

...
...

...
...

...

σ′n1dΣ1
(i, j) σ′n2dΣ1

(i, j) . . . σ′nndΣ1
(i, j),


that is, B′i,j = dΣ1

(i, j)(KD(Σ2) + In), and
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B′′i,j =



σijdΣ2(1, 1) σijdΣ2(1, 2) . . . σijdΣ2(1, n)

σijdΣ2
(2, 1) σijdΣ2

(2, 2) . . . σijdΣ2
(2, n)

...
...

...
...

...
...

...
...

σijdΣ2
(n, 1) σijdΣ2

(n, 2) . . . σijdΣ2
(n, n),


that is, B′′i,j = σij(D(Σ2)).

Then, D(Σ1 × Σ2) =



dΣ1
(1, 1)(KD(Σ2) + In) . . . dΣ1

(1,m)(KD(Σ2) + In)

dΣ1
(2, 1)(KD(Σ2) + In) . . . dΣ1

(2,m)(KD(Σ2) + In)

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

dΣ1 (m, 1)(KD(Σ2) + In) . . . dΣ1 (m,m)(KD(Σ2) + In)


+



σ11D(Σ2) σ12D(Σ2) . . . σ1nD(Σ2)
σ21D(Σ2) σ22D(Σ2) . . . σ2nD(Σ2)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

σn1D(Σ2) σn2D(Σ2) . . . σnnD(Σ2)


.

Thus, D(Σ1 × Σ2) = D(Σ1)⊗ (KD(Σ2) + In) + (KD(Σ1) + Im)⊗D(Σ2).

Theorem 4. The distance matrix of the compatible lexicographic product of two signed
graphs Σ1 and Σ2 is,

D(Σ1[Σ2]) = D(Σ1)⊗ Jn + Im ⊗ (2KD(Σ2) −A(Σ2)).

Proof. Let Σ1 and Σ2 be two signed graphs with |V (Σ1)| = m and |V (Σ2)| = n.

Suppose that Σ1[Σ2] is compatible. Then, the distance between two vertices u =

(ui, vk) and v = (uj , vl) in Σ1[Σ2] will be as follows.

dΣ1[Σ2](u, v) =


dΣ1

(ui, uj) if ui 6= uj ,

1σ(vkvl) if ui = uj and vk ∼ vl,
2σ(P(vk,vl)) if ui = uj and vk � vl.

The distance matrix of Σ1[Σ2] can be written in the form

D(Σ1[Σ2]) =



B1,1 B1,2 B1,3 . . . B1,m

B2,1 B2,2 B2,3 . . . B2,m

...
...

...
...

...
...

...
...

...
...

Bm,1 Bm,2 Bm,3 . . . Bm,m


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with,

Bi,j =



d((ui, v1), (uj , v1)) d((ui, v1), (uj , v2)) . . . d((ui, v1), (uj , vn))

d((ui, v2), (uj , v1)) d((ui, v2), (uj , v2)) . . . d((ui, v2), (uj , vn))
...

...
...

...
...

...

d((ui, vn), (uj , v1)) d((ui, vn), (uj , v2)) . . . d((ui, vn), (uj , vn))

 .

Whenever ui = uj ,

d((ui, vk), (ui, vl)) =


1σ(vkvl) if vk ∼ vl,
2σ(P(vk,vl)) if vk � vl,

0 if vk = vl.

That implies, when ui = uj , Bi,j is nothing but 2KD(Σ2)−A(Σ2). Thus, the diagonal

blocks of D will be 2KD(Σ2) −A(Σ2).

Also, whenever ui 6= uj , d((ui, vk), (uj , vl)) = dΣ1
(ui, uj). Then,

Bi,j =



dΣ1(ui, uj) dΣ1(ui, uj) . . . dΣ1(ui, uj)

dΣ1
(ui, uj) dΣ1

(ui, uj) . . . dΣ1
(ui, uj)

...
...

...
...

...
...

...
...

dΣ1
(ui, uj) dΣ1

(ui, uj) . . . dΣ1
(ui, uj)

 .

Thus, the distance matrix of the compatible lexicographic product Σ1[Σ2] is

D(Σ1[Σ2]) = D(Σ1)⊗ Jn + Im ⊗ (2KD(Σ2) −A(Σ2)).

3. Distance spectra of some compatible signed graphs and
their products

In this section, we discuss the distance spectra of signed Petersen graphs and some

product of signed graphs.

Definition 1. Let Σ be a compatible signed graph and D(Σ) = (dij)n×n be the distance
matrix of Σ, then the distance characteristic polynomial of Σ is defined as, f(D(Σ), λ) =
det(λI −D(Σ)), where I is the identity matrix of order n.
The roots of the characteristic equation f(D(Σ), λ) = 0, denoted by λ1, λ2, . . . , λn are called
the distance eigenvalues of Σ. Let λ1 ≥ λ2 ≥ · · · ≥ λk be the distinct eigenvalues of D(Σ)
with multiplicities m1,m2, . . . ,mk, respectively, then the distance spectrum of Σ is denoted

by

(
λ1 λ2 . . . λk

m1 m2 . . . mk

)
.

The collection of all distance eigenvalues of Σ is denoted by specD(Σ) and
specD(Σ) = {λ1, λ2, . . . , λn}.
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The net-degree of a vertex v in Σ is d±Σ(v) = d+
Σ(v)−d−Σ(v), where d+

Σ(v) is the number

of positive edges and d−Σ(v) is the number of negative edges incident with the vertex

v. A signed graph Σ is said to be net-regular, if every vertex has constant net-degree.

The Petersen graph +P is net-regular with net-degree 3.

The distance-regular graphs with diameter 2 are very special and form a subject of

their own. The well-known Petersen graph is a distance-regular graph with diameter

2. While studying the balance on signed Petersen graphs, T. Zaslavsky [7] proved

that though there are 215 ways to put signs on the edges of the Petersen graph P , in

many respects only six of them are essentially different. He proved the following.

Theorem 5 ([7]). There are precisely six isomorphism types of minimal signed Petersen
graph: +P, P1, P2,2, P3,2, P2,3, and P3,3 . Each one is the unique minimal isomorphism type
in its switching isomorphism class.

Since, the shortest path between any two pair of vertices is unique (such graphs are

called geodetic), signed Petersen graphs are always compatible. As Petersen graph

is an important object in graph theory, we study the distance spectrum of these six

signed Petersen graphs. Listed below are the distance characteristic polynomial of

the six isomorphism types of minimal signed Petersen graphs.

1. f(D(+P ), λ) = λ10 − 135λ8 − 1080λ7 − 3645λ6 − 5832λ5 − 3645λ4.

2. f(D(P1), λ) = λ10 − 135λ8 − 504λ7 + 2851λ6 + 15688λ5 − 5229λ4 − 122256λ3 −
157680λ2.

3. f(D(P2,2), λ) = λ10−135λ8−216λ7 +5587λ6 +13648λ5−77957λ4−220888λ3 +

243912λ2 + 645984λ− 308880.

4. f(D(P2,3), λ) = λ10−135λ8−184λ7+6211λ6+13720λ5−111981λ4−295840λ3+

690800λ2 + 196800λ.

5. f(D(P3,2), λ) = λ10−135λ8 + 40λ7 + 6675λ6−4848λ5−140725λ4 + 195240λ3 +

986040λ2 − 2613600λ+ 1724976.

6. f(D(P3,3), λ) = λ10−135λ8−120λ7 +6435λ6 +6696λ5−145725λ4−126000λ3 +

1620000λ2 + 800000λ− 7200000.

The graph with integral spectrum is of special interest in literature, as such, it is

noticed that among the six signed Petersen graphs, only the all-positive Petersen

graph +P and P3,3 ' −P have integral distance spectrum. Also, the eigenspace of P

and −P corresponding to its distance eigenvalues are the same. The spectral values

of these two signed Petersen graphs are discussed below.

The distance matrix of the Petersen graph +P can be represented as D(+P ) =

2J10−2I10−A(+P ), where the adjacency spectrum of +P is

(
3 1 −2

1 5 4

)
. Hence, the

distance spectrum of +P is

(
15 0 −3

1 4 5

)
.
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Also, the distance matrix of the Petersen graph −P can be represented as

D(−P ) = 2J10 − 2I10 + 3A(−P ), where the adjacency spectrum of −P is(
2 −1 −3

4 5 1

)
. The distance spectrum of −P is

(
9 4 −5

1 4 5

)
.

Now, we compute the distance spectrum of the Cartesian product of some classes of

signed graphs. First we require a preliminary lemma which is given below.

Lemma 1 ([8]). If A and B are square matrices of order m and n respectively, then
A ⊗ B is a square matrix of order mn. Also, (A ⊗ B)(C ⊗D) = AC ⊗ BD, if the products
AC and BD exists.

Theorem 6. Let Σ1 = (Km, σ1) and Σ2 = (Kn, σ2) be two signed complete graphs. Let
λ1 ≥ λ2 ≥ · · · ≥ λm and β1 ≥ β2 ≥ · · · ≥ βn be the distance eigenvalues of Σ1 and Σ2

respectively. Then,

specD(Σ1 × Σ2) = {2λiβj + λi + βj ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Proof. Let Pi and Qj be the eigenvectors corresponding to the eigenvalues λi and

βj of D(Σ1) and D(Σ2), for 1 ≤ i ≤ m, 1 ≤ j ≤ n. By Theorem 3, the distance matrix

of D(Σ1×Σ2) can be expressed as D(Σ1×Σ2) = D(Σ1)⊗ (KD(Σ2) + In)+(KD(Σ1) +

Im) ⊗ D(Σ2). Since, Σ1 = (Km, σ1) and Σ2 = (Kn, σ2) are signed complete graphs,

implies D(Σ1) = KD(Σ1) and D(Σ2) = KD(Σ2). Then,

D(Σ1 × Σ2)(Pi ⊗Qj) = (D(Σ1)⊗ (D(Σ2) + In) + (D(Σ1) + Im)⊗D(Σ2))(Pi ⊗Qj)

= (2D(Σ1)⊗D(Σ2) +D(Σ1)⊗ In + Im ⊗D(Σ2))(Pi ⊗Qj)

= 2D(Σ1)Pi ⊗D(Σ2)Qj +D(Σ1)Pi ⊗ InQj + ImPi ⊗D(Σ2)Qj

=2λiPi ⊗ βjQj + λiPi ⊗Qj + Pi ⊗ βjQj

=(2λiβj + λi + βj)(Pi ⊗Qj)

That is, 2λiβj + λi + βj are the eigenvalues of D(Σ1 ×Σ2), for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Lemma 2 ([1]). Let

A =

(
A0 A1

A1 A0

)
be a 2× 2 block symmetric matrix. Then, the eigenvalues of A are those of A0 +A1 together
with those of A0 −A1.

Theorem 7. Let Σ1 = (G, σ) be an all negative signed graph of order n, where G is
distance regular with d(G) ≤ 2 and Σ2 = (K2, σ

′). Let λ1, λ2, . . . , λn and β1, β2, . . . , βn be
the distance eigenvalues of Σ1 and KD(Σ1) respectively. Then, the distance spectra of Σ1×Σ2

is

specD(Σ1 × Σ2) =

(
−(βi + 1) 2λi + βi + 1

1 1

)
, i = 1, 2, . . . , n.
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Proof. Let Σ1 = (G, σ) be an all negative signed graph of order n. If d(G) = 1,

then by Theorem 6 we done. Assume that d(G) = 2 and Σ2 = (K2, σ
′) is negative.

Then, the distance matrix of Σ1 × Σ2 has the form,

D(Σ1 × Σ2) =

(
D(Σ1) −(D(Σ1) +KD(Σ1) + I)

−(D(Σ1) +KD(Σ1) + I) D(Σ1)

)
.

Consider the product D(Σ1)KD(Σ1), where D(Σ1) = (dij)n×n and KD(Σ1) =

(
dij
|dij | )n×n. Then, D(Σ1)KD(Σ1) = (aij)n×n, where aij = di1

d1j

|d1j | + di2
d2j

|d2j | + · · · +
din

dnj

|dnj | . Since, D(Σ1) is symmetric and for all i, j = 1, 2, . . . , n, the (i, j)th entry

of D(Σ1) and KD(Σ1) are having the same sign, we get dik
dkj

|dkj | and dkj
dik
|dik| , k =

1, 2, . . . , n will be of same sign.

Therefore, if dik
dkj

|dkj | is positive then, dik = 2 (or− 1) and dkj = 2 (or− 1). If dik
dkj

|dkj |
is negative then, dik = 2 (or − 1) and dkj = −1 (or 2). The same property holds

for all dik
dkj

|dkj | , i, j, k = 1, 2, . . . , n. Since, G is distance regular with d(G) ≤ 2 and

Σ1 is an all negative signed graph, 2 and −1 are the only entries of D(Σ1). Thus,

aij = aji for i, j = 1, 2, . . . , n. That is, D(Σ1)KD(Σ1) is symmetric, which implies

D(Σ1)KD(Σ1) = KD(Σ1)D(Σ1). Now, by Lemma 2 we get the proof.

In a similar way, we can prove the case when Σ2 = (K2, σ
′) is positive. In this case

the distance matrix of Σ1 × Σ2 has the form,

D(Σ1 × Σ2) =

(
D(Σ1) D(Σ1) +KD(Σ1) + I

D(Σ1) +KD(Σ1) + I D(Σ1)

)
.

We end our discussion with a special case of lexicographic product Σ[K±2 ] and compute

its distance eigenvalues.

Theorem 8. Let Σ1 = (G, σ1) be a compatible signed graph and Σ2 = (K2, σ2). If the
distance eigenvalues of Σ1 are λ1 ≥ λ2 ≥ · · · ≥ λm. Then, D(Σ1[Σ2]) has eigenvalues,
(1) 2λi + 1, for 1 ≤ i ≤ m (each of multiplicity one) and −1 (of multiplicity m), if K2 is
positive.
(2) 2λi − 1, for 1 ≤ i ≤ m (each of multiplicity one) and 1 (of multiplicity m), if K2 is
negative.

Proof. Suppose that K2 is positive. Then, the distance matrix of Σ1[Σ2] has the

form,

D(Σ1[Σ2]) =

(
D(Σ1) D(Σ1) + I

D(Σ1) + I D(Σ1)

)
.

Then, by using Lemma 2 we get, the spectrum of D(Σ1[Σ2]) are those of 2D(Σ1) + I

together with those of −I.
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If K2 is negative, the distance matrix of Σ1[Σ2] has the form,

D(Σ1[Σ2]) =

(
D(Σ1) D(Σ1)− I

D(Σ1)− I D(Σ1)

)
.

Again by using Lemma 2, the spectrum of D(Σ1[Σ2]) are those of 2D(Σ1)−I together

with those of I.
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