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Abstract: Let G = (V,E) be a given graph of order n. A function f : V → {0, 1, 2}
is an independent Roman dominating function (IRDF) on G if for every vertex v ∈ V
with f(v) = 0 there is a vertex u adjacent to v with f(u) = 2 and {v ∈ V : f(v) > 0}
is an independent set. The weight of an IRDF f on G is the value f(V ) =

∑
v∈V f(v).

The minimum weight of an IRDF among all IRDFs on G is called the independent
Roman domination number of G. In this paper, we give algorithms for computing the

independent Roman domination number of G in O(|V |) time when G = (V,E) is a

tree, unicyclic graph or proper interval graph.
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1. Introduction

Let G = (V,E) be a graph with the vertex set V and the edge set E. Throughout

this paper, all graphs that we consider are finite, undirected, and simple. The open

neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V : uv ∈ E} and the closed

neighborhood of v is NG[v] = NG(v) ∪ {v}. For any S ⊆ V the induced subgraph G[S]

is the graph whose vertex set is S and whose edge set consists of all edges in E that

have both endpoints in S. Let u, v ∈ V , let uv ∈ E, and w be a vertex not in V . We

denote the graph obtained from G by adding a new edge between u and w by G+uw,

that is, G+ uw = (V ∪ {w}, E ∪ {uw}) and by removing the edge uv by G− uv, that

is, G − uv = (V,E \ {uv}). A unicyclic graph is a graph obtained from a tree T of

order at least three by joining precisely two non-adjacent vertices of T [11]. A graph

G = (V,E) is an interval graph if there is an interval Iv on the real line one-to-one

correspondence with each vertex v ∈ V such that uv ∈ E if and only if Iv ∩ Iu 6= ∅.
A proper interval graph is an interval graph in which no interval properly contains

another [1]. The following result is clear.
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Proposition 1. Let G = (V,E) be a proper interval graph. For all S ⊆ V , the induced
subgraph G[S] is also a proper interval graph.

For a graph G, an independent Roman dominating function (IRDF) of G is a function

f : V → {0, 1, 2} such that each vertex v ∈ V with f(v) = 0 is adjacent to a vertex

u with f(u) = 2 and also {u ∈ V : f(u) > 0} is an independent set. The weight

of an IRDF f on G is the value f(V ) =
∑

v∈V f(v), denoted by w(f), and the

minimum weight of an IRDF among all IRDFs on G is called the independent Roman

domination number of G, denoted by iR(G).

The independent concept in dominating functions of graphs have been studied ex-

tensively in the literature, for example [2, 4, 6–8, 12, 13]. Liu and Chang [9] have

shown that the decision problem associated with the independent Roman domina-

tion is NP-complete even for bipartite graphs. Furthermore, they have used a linear

programming method to give an algorithm for computing the independent Roman

domination number of a given strongly chordal graph G = (V,E) with a strong elim-

ination ordering provided in O(|V | + |E|) time. Chakradhar and Venkata Subba

Reddy [5] have shown that the decision problem associated with the independent Ro-

man domination is NP-complete even when restricted to star convex bipartite graphs

and comb convex bipartite graphs. Furthermore, they have proven that the problem

of computing the independent Roman domination number is linear time solvable for

bounded tree-width graphs, chain graphs, and threshold graphs.

Let G = (V,E) be a graph. In this paper, we use a dynamic programming approach

to compute iR(G) when G is a tree or unicyclic graph in O(|V |) time. Next, we

propose a dynamic programming algorithm for computing iR(G) for a given proper

interval graph G, a subclass of strongly chordal graphs, with a consecutive ordering

of vertices in G provided in O(|V |) time. If G is a disconnected graph, then clearly

iR(G) is the sum of the independent Roman domination numbers of its components.

So, in the rest of the paper we only consider connected graphs.

2. Trees

In this section we give a linear algorithm (Algorithm 2.1) to compute independent

Roman domination number of a given tree. Before we introduce our algorithm, we

need to define the following notations. Let G = (V,E) be a graph, let v ∈ V , let w

be a vertex not in V and let a ∈ {0, 1, 2}.

• i′R(G, v) = min{w(f) : f is an IRDF on G+ vw with f(v) = 0 and f(w) = 2}.

• iaR(G, v) = min{w(f) : f is an IRDF on G with f(v) = a (if there exists)}.

To prove that Algorithm 2.1 works correctly we need the following lemma.

Lemma 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅, let
v ∈ V1 and u ∈ V2 and let G = (V = V1 ∪ V2, E1 ∪ E2 ∪ {uv}). Then,
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Algorithm 2.1: IRDNT(T)

Input: A tree T = (V,E) with |V | = n.

Output: The independent Roman domination number of T.

1 Compute a canonical ordering (v1, v2, . . . , vn) of vertices T , where T is a rooted tree of T.
2 for i← 1 to n do

3 i0R(vi)←∞;
4 i1R(vi)← 1;

5 i2R(vi)← 2;

6 i′R(vi)← 2;
7 end for

8 for i← n downto 2 do

9 Let vj be the parent of vi;
10 i0R(vj)← min{i0R(vj) + i0R(vi), i

0
R(vj) + i1R(vi), i

′
R(vj) + i2R(vi)− 2};

11 i1R(vj)← i1R(vj) + i0R(vi),;

12 i2R(vj)← i2R(vj) + i′R(vi)− 2;
13 i′R(vj)← min{i′R(vj) + i0R(vi), i

′
R(vj) + i1R(vi), i

′
R(vj) + i2R(vi)};

14 end for

15 return (i0R(v1), i1R(v1), i2R(v1), i′R(v1));

(i) i0R(G, v) = min{i0R(G1, v)+ i0R(G2, u), i
0
R(G1, v)+ i1R(G2, u), i

′
R(G1, v)+ i2R(G2, u)−2},

(ii) i1R(G, v) = i1R(G1, v) + i0R(G2, u),

(iii) i2R(G, v) = i2R(G1, v) + i′R(G2, u)− 2,

(iv) i′R(G, v) = min{i′R(G1, v) + i0R(G2, u), i
′
R(G1, v) + i1R(G2, u), i

′
R(G1, v) + i2R(G2, u)}.

Proof. Let w,w1, w2 be vertices not in V . Let f1 (resp. f2) be the restriction

of f to G1 (resp. G2) for a given IRDF f on G. Clearly, f = f1 ∪ f2 and so

w(f) = w(f1) + w(f2). Also, assume that ga1 (resp. ga2 ) is an IRDF on G1 (resp.

G2) with minimum weight and ga1 (v) = a (resp. ga2 (u) = a) for each a ∈ {0, 1, 2}
and g′1 (resp. g′2) is an IRDF on G1 + vw1 (resp. G2 + uw2) with minimum weight,

g′1(v) = 0 and g′1(w1) = 2 (resp. g′2(u) = 0 and g′2(w2) = 2). So, w(ga1 ) = iaR(G1, v),

w(ga2 ) = iaR(G2, u), w(g′1) = i′R(G1, v) and w(g′2) = i′R(G2, u) for all a ∈ {0, 1, 2}.
We first prove (i). Let i0R = min{i0R(G1, v) + i0R(G2, u), i0R(G1, v) +

i1R(G2, u), i′R(G1, v) + i2R(G2, u)− 2} and assume that f is an IRDF on G with min-

imum weight and f(v) = 0. So, w(f) = i0R(G, v). Since u is adjacent to v in G,

f(u) ∈ {0, 1, 2}. In the following we consider these cases. If f(u) = 0, then f1 is

an IRDF on G1 with f1(v) = 0 and f2 is an IRDF on G2 with f2(u) = 0 and so

w(f1) ≤ i0R(G1, v) and w(f2) ≤ i0R(G2, u). Thus, i0R(G, v) = w(f) = w(f1) + w(f2) ≤
i0R(G1, v) + i0R(G2, u). If f(u) = 1, then f1 is an IRDF on G1 with f1(v) = 0 and f2
is an IRDF on G2 with f2(u) = 1 and so w(f1) ≤ i0R(G1, v) and w(f2) ≤ i1R(G2, u).

Thus, i0R(G, v) = w(f) = w(f1) + w(f2) ≤ i0R(G1, v) + i1R(G2, u). If f(u) = 2, then

h = f1∪{(w, 2)} is an IRDF on G1+vw with h(v) = 0 and h(w) = 2 and f2 is an IRDF

on G2 with f2(u) = 2 and so w(h) = w(f1) + 2 ≤ i′R(G1, v) and w(f2) ≤ i2R(G2, u).

Thus, i0R(G, v) = w(f) = w(f1) + w(f2) ≤ i′R(G1, v) + i2R(G2, u)− 2. Therefore,

i0R(G, v) ≤ i0R. (1)
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Conversely, h1 = g01 ∪ g02 is an IRDF on G with h1(v) = 0 and so w(h1) = i0R(G1, v) +

i0R(G2, u) ≤ i0R(G, v). Also, h2 = g01 ∪ g12 is an IRDF on G with h2(v) = 0 and so

w(h2) = i0R(G1, v)+ i1R(G2, u) ≤ i0R(G, v). Let h be the restriction of g′1∪g22 to G. We

deduce that h is an IRDF onG with h(v) = 0 and so w(h) = i′R(G1, v)+i2R(G2, u)−2 ≤
i0R(G, v). Therefore,

i0R ≤ i0R(G, v). (2)

The proof of (i) follows from (1) and (2).

Now, we prove (ii). Assume that f is an IRDF on G with minimum weight and

f(v) = 1. So, w(f) = i1R(G, v). Since uv ∈ E, f(u) = 0. We obtain that f1 is

an IRDF on G1 with f1(v) = 1 and f2 is an IRDF on G2 with f2(u) = 0 and so

w(f1) ≤ i1R(G1, v) and w(f2) ≤ i0R(G2, u). Thus, i1R(G, v) = w(f) = w(f1) + w(f2) ≤
i1R(G1, v) + i0R(G2, u). Conversely, h = g11 ∪ g02 is an IRDF on G with h(v) = 1 and so

w(h) = i1R(G1, v) + i0R(G2, u) ≤ i1R(G, v). This completes the proof of (ii). Similarly,

we can prove (iii) and (iv).

Let T be a rooted tree of order n. A canonical ordering of vertices of T is an ordering

(v1, v2, . . . , vn) of the vertices of T with the property that the label of parent of vi
is less than i. Therefore, the label of the root of T is 1. Now, we can prove that

Algorithm 2.1 returns the independent Roman domination number of trees in linear

time.

Theorem 1. For a given tree T = (V,E) of order n, let (v1, v2, . . . , vn) be a canonical
ordering of vertices T computed in Algorithm 2.1, where T is a rooted tree of T. Algorithm
2.1 returns (i0R(T, v1), i

1
R(T, v1), i

2
R(T, v1), i

′
R(T, v1)) in O(|V |) time.

Proof. Clearly, i0R(T, v1) = i0R(T, v1), i1R(T, v1) = i1R(T, v1), i2R(T, v1) = i2R(T, v1) and

i′R(T, v1) = i′R(T, v1). We can compute T and (v1, v2, . . . , vn) in O(n) time.

The proof is by induction on n. If n = 1, then it is easy to check that the lemma

is true. Let n > 1 and assume that the lemma holds for any subtree of T . In the

last iteration of the for-loop of Algorithm 2.1 we have i = 2 and therefore j = 1. Let

Ti be the subtree of T with the root vi and let Tj = T − Ti, where T = (V (Ti) ∪
V (Tj), E(Ti) ∪ E(Tj) ∪ {vivj}). By the induction hypothesis, since v1, v2, . . . , vn is a

canonical ordering of vertices of T , the lemma holds for Ti and Tj . By Lemma 1, the

lemma holds for T . This proves the lemma. It is easy to see that the running time of

Algorithm 2.1 is O(n). This completes the proof of the theorem.

Let T be a given tree and let v be a vertex of T . We obtain that iR(T ) =

{i0R(T, v), i1R(T, v), i2R(T, v)}. By Theorem 1, we obtain the following result.

Corollary 1. There is a linear algorithm to compute the independent Roman domination
number of a given tree.
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Algorithm 3.1: IRDNUG(T, u, v)

Input: A rooted tree T = (V,E) with root u and v ∈ V .

Output: (i00R (T, u, v), i10R (T, u, v), i2R(T, u, v)).

1 Let w0(= v), . . . , wk(= u) be the shortest path between u and v in T and let Tw be
2 the subtree of T with the root v for each w ∈ V .

3 T ′ ← Tw1 − Tw0 ;
4 i00R ← i0R(T ′, w1) + i0R(Tw0 , w0);

5 i10R ← i1R(T ′, w1) + i0R(Tw0 , w0);

6 i20R ← i2R(T ′, w1) + i′R(Tw0 , w0)− 2;

7 i00,2R ← i′R(T ′, w1) + i0R(Tw0 , w0);

8 j00,2R ← i0R(T ′, w1) + i′R(Tw0 , w0);

9 j10,2R ← i1R(T ′, w1) + i′R(Tw0 , w0);

10 j20,2R ← i2R(T ′, w1) + i′R(Tw0 , w0);

11 j00,22R ← i′R(T ′, w1) + i′R(Tw0 , w0);
12 for i← 2 to k do

13 T ′ ← Twi − Twi−1 ;

14 i00R ← min{i0R(T ′, wi) + i00R , i0R(T ′, wi) + i10R , i′R(T ′, wi) + i20R − 2};
15 i10R ← i1R(T ′, wi) + i00R ;

16 i20R ← i2R(T ′, wi) + i00,2R − 2;

17 i00,2R ← i′R(T ′, wi) + min{i00R , i10R , i20R };
18 j00,2R ← min{i0R(T ′, wi) + j00,2R , i0R(T ′, wi) + j10,2R , i′R(T ′, wi) + j20,2R − 2};
19 j10,2R ← i1R(T ′, wi) + j00,2R ;

20 j20,2R ← i2R(T ′, wi) + j00,22R − 2;

21 j00,22R ← i′R(T ′, wi) + min{j00,2R , j10,2R , j20,2R };
22 end for

23 return (i00R , i10R , i20R , i00,2R , j00,2R , j10,2R , j20,2R , j00,22R );

3. Unicyclic graphs

In this section we propose a linear algorithm (Algorithm 3.1) to compute the inde-

pendent Roman domination number of a given unicyclic graph. For this purpose we

need the following notations. Let G = (V,E) be a graph with u, v ∈ V , let w, z be

vertices not in V and let a ∈ {0, 1, 2}.

• i′R(G, v) = min{w(f) : f is an IRDF on G+ vw with f(v) = 0 and f(w) = 2}.

• iaR(G, v) = min{w(f) : f is an IRDF on G with f(v) = a (if there exists)}.

• ia0R (G, u, v) = min{w(f) : f is an IRDF on G with f(u) = 0 and f(v) = a}.

• ia0,2R (G, u, v) = min{w(f) : f is an IRDF on G+ vw with f(v) = 0 and f(u) =

f(w) = 2}.

• i00,22R (G, u, v) = min{w(f) : f is an IRDF on G+{uw, vz} with f(u) = f(v) = 0

and f(w) = f(z) = 2}.

Note that two notations i′R(G, v) and iaR(G, v) are also defined in the previous section.

Through this section assume that U = (V,E) is a unicyclic graph with the unique
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cycle v0, . . . , vk−1, v0 (k ≥ 3) and let T = U − v0v1. Clearly, T is a tree with the

vertex set V and the edge set E \ {v0v1}.

Lemma 2. iR(U) = min{i00R (T, v0, v1), i
01
R (T, v0, v1), i

01
R (T, v1, v0), i

20,2
R (T, v0, v1) −

2, i20,2R (T, v1, v0)− 2}.

Proof. Let iR = min{i00R (T, v0, v1), i01R (T, v0, v1), i01R (T, v1, v0), i20,2R (T, v0, v1) −
2, i20,2R (T, v1, v0)− 2}. We first prove that iR ≤ iR(U). Let f be an IRDF on U with

minimum weight. So, w(f) = iR(U). Because f is an IRDF on U and v0v1 ∈ E(U),

(f(v0), f(v1) ∈ {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)}. In the following we consider these

cases. If (f(v0), f(v1)) = (0, 0), then f is an IRDF on T with f(v0) = f(v1) = 0

and so i00R (T, v0, v1) ≤ w(f). If (f(v0), f(v1)) = (0, 1), then f is an IRDF on T with

f(v0) = 0 and f(v1) = 1 and so i01R (T, v0, v1) ≤ w(f). If (f(v0), f(v1)) = (1, 0), then f

is an IRDF on T with f(v0) = 1 and f(v1) = 0 and so i01R (T, v1, v0) ≤ w(f). Let w be a

vertex not in V . If (f(v0), f(v1)) = (0, 2), then h = f∪{(w, 2)} is an IRDF on T+v0w

with f(v0) = 0 and f(v1) = f(w) = 2 and so i20,2R (T, v1, v0) ≤ w(h) = w(f) + 2. If

(f(v0), f(v1)) = (2, 0), then h = f ∪ {(w, 2)} is an IRDF on T + v1w with f(v1) = 0

and f(v0) = f(w) = 2 and so i20,2R (T, v0, v1) ≤ w(h) = w(f) + 2. So, iR ≤ iR(U).

Now, we prove that iR(U) ≤ iR. Assume that g is a minimum IRDF on T with

g(v0) = g(v1) = 0. So, w(g) = i00R (T, v0, v1). We deduce that g is an IRDF on U and

so iR(U) ≤ i00R (T, v0, v1). Assume that g is a minimum IRDF on T with g(v0) = 0

and g(v1) = 1. So, w(g) = i01R (T, v0, v1). We deduce that g is an IRDF on U and

so iR(U) ≤ i01R (T, v0, v1). Assume that g is a minimum IRDF on T with g(v0) = 1

and g(v1) = 0. So, w(g) = i01R (T, v1, v0). We deduce that g is an IRDF on U and so

iR(U) ≤ i01R (T, v1, v0). Assume that g is a minimum IRDF on T +v0w with g(v0) = 0

and g(v1) = g(w) = 2. So, w(g) = i20,2R (T, v1, v0). Let h be the restriction of g to

T . We deduce that h is an IRDF on U and so iR(U) ≤ w(h) = i20,2R (T, v1, v0) − 2.

Assume that g is a minimum IRDF on T + v1w with g(v1) = 0 and g(v0) = g(w) = 2.

So, w(g) = i20,2R (T, v0, v1). Let h be the restriction of g to T . We deduce that h is

an IRDF on U and so iR(U) ≤ w(h) = i20,2R (T, v0, v1) − 2. So, iR(U) ≤ iR. This

completes the proof of the lemma.

Lemma 3. Let T = (V,E) be a rooted tree with root u and v ∈ V . Let
(i00R , i10R , i20R , i00,2R , j00,2R , j10,2R , j20,2R , j00,22R ) be the output of Algorithm 3.1. Then,

(i) i00R = i00R (T, u, v).

(ii) i10R = i10R (T, u, v).

(iii) i20R = i20R (T, u, v).

(iv) i00,2R = i00,2R (T, v, u).

(v) j00,2R = i00,2R (T, u, v).

(vi) j10,2R = i10,2R (T, u, v).

(vii) j20,2R = i20,2R (T, u, v).
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(viii) j00,22R = i00,22R (T, u, v).

Proof. Let P (T, v, u) = w0(= v), . . . , wk(= u) (k > 0) be the shortest path between

v and u in T . The proof is by induction on k = |P (T, v, u)|. Let k = 1. So, u is the

parent of v. Let T ′ = Tu − Tv. Similar to Lemma 2, we can prove that

• i00R (T, u, v) = i0R(T ′, u) + i0R(Tv, v).

• i10R (T, u, v) = i1R(T ′, u) + i0R(Tv, v).

• i20R (T, u, v) = i2R(T ′, u) + i′R(Tv, v)− 2.

• i00,2R (T, v, u) = i′R(T ′, u) + i0R(Tv, v).

• i00,2R (T, u, v) = i0R(T ′, u) + i′R(Tv, v).

• i10,2R (T, u, v) = i1R(T ′, u) + i′R(Tv, v).

• i20,2R (T, u, v) = i2R(T ′, u) + i′R(Tv, v).

• i00,22R (T, u, v) = i′R(T ′, u) + i′R(Tv, v).

This proves the base case of the induction. Assume that the result is true for

all rooted trees T ′ with the root u, v ∈ V (T ′) and |P (T ′, v, u)| ≤ m, where

m ≥ 1. Let T be a rooted tree with the root u, v ∈ V (T ), and P (T, v, u) = w0(=

v), . . . , wm, wm+1(= u). Let (i00tR, i
10
tR, i

20
tR, i

00,2
tR , j00,2tR , j10,2tR , j20,2tR , j00,22tR ) be values of

variables (i00R , i
10
R , i

20
R , i

00,2
R , j00,2R , j10,2R , j20,2R , j00,22R ) of Algorithm 3.1, respectively, af-

ter the t-th iteration of the for-loop for each 2 ≤ t ≤ m + 1. By the induction

hypothesis, we have

• i00R (Twm , wm, v) = i00mR.

• i10R (Twm
, wm, v) = i10mR.

• i20R (Twm , wm, v) = i20mR.

• i00,2R (Twm
, v, wm) = i00,2mR .

• i00,2R (Twm , wm, v) = j00,2mR .

• i10,2R (Twm
, wm, v) = j10,2mR .

• i20,2R (Twm
, wm, v) = j20,2mR .

• i00,22R (Twm
, wm, v) = j00,22mR .

Let T ′ = T − Twm
. Since u(= wm+1) is the parent of wm( 6= v) (i.e., u is adjacent to

wm) in T , similar to Lemma 2, we can prove that

• i00R (T, u, v) = {i0R(T ′, u) + i00mR, i
0
R(T ′, u) + i10mR, i

′
R(T ′, u) + i20mR − 2}.
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• i10R (T, u, v) = i1R(T ′, u) + i00mR.

• i20R (T, u, v) = i2R(T ′, u) + i00,2mR − 2.

• i00,2R (T, v, u) = i′R(T ′, u) + min{i00mR, i
10
mR, i

20
mR}.

• i00,2R (T, u, v) = min{i0R(T ′, u) + j00,2mR , i
0
R(T ′, u) + j10,2mR , i

′
R(T ′, u) + j20,2mR − 2}.

• i10,2R (T, u, v) = i1R(T ′, u) + j00,2mR .

• i20,2R (T, u, v) = i2R(T ′, u) + j00,22mR − 2.

• i00,22R (T, u, v) = i′R(T ′, u) + min{j00,2mR , j
10,2
mR , j

20,2
mR }.

This completes the proof of the lemma.

Theorem 2. There is a linear algorithm for computing the independent Roman domina-
tion number of a given unicyclic graph.

Proof. Let U be a unicyclic graph with the unique cycle

v0, . . . , vk−1, v0 and let T = U − v0v1. By Lemma 2, iR(U) =

min{i00R (T, v0, v1), i01R (T, v0, v1), i01R (T, v1, v0), i20,2R (T, v0, v1) − 2, i20,2R (T, v1, v0) − 2}.
It follows from Lemma 3 that we can compute iR(U) using the output of Algorithm

3.1 on inputs (T, u, v) and (T, v, u).

Let T be a tree with u, v ∈ V (T ) and let w0(= v), . . . , wk(= u) (k > 0) be the shortest

path between u and v in T . We can compute the rooted tree Tu with the root u for

T and P (T, v, u) in linear time. Let 2 ≤ m ≤ k and let Tm be the value of variable T ′

of Algorithm 3.1 after the m-th iteration of the for-loop. Clearly, Tm is a subtree of

Tu with the root wm. By Theorem 1, the running time of lines 2-10 of Algorithm 3.1

is O(V (T1)) and the running time of the m-th iteration of the for-loop of Algorithm

3.1 is O(V (Tm)). Clearly, V (Ti) ∩ V (Tj) = ∅ for each 2 ≤ i < j ≤ k. So, the running

time of Algorithm 3.1 is O(V (T1))+
∑k

i=2O(V (Tm)) = O(V (T )). This completes the

proof of the theorem.

4. Proper interval graphs

In this section we propose a linear algorithm (Algorithm 4.1) for computing the in-

dependent Roman domination number of a given proper interval graph. An order-

ing (v1, v2, . . . , vn) of vertices of G is a consecutive ordering if vivk ∈ E for some

1 ≤ i < k ≤ n implies both vivj ∈ E and vjvk ∈ E for every i < j < k.

Theorem 3 (Looges and Olariu [10]). A graph G is a proper interval graph if and
only if G has a consecutive ordering of its vertices.
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Algorithm 4.1: IRDNPIG(G, v1, . . . , vn)

Input: A proper interval graph G of order n and a consecutive ordering (v1, . . . , vn) of vertices

of G.
Output: The independent Roman domination number of G.

1 Compute MIN(v1), . . . , MIN(vn);

2 i0R(v1)←∞; i1R(v1)← 1; i2R(v1)← 2; x← v1;
3 while x < vn do

4 x← x+;

5 u← MIN(x);
6 i0R(x)← i2R(u);

7 if u = x− then i1R(x)← i0R(x−) + 1;

8 if MIN(x−) < u < x− then i1R(x)← i2R(MIN(x−)) + 1;
9 if (u < x−) ∧ (u ≤ MIN(x−)) then i1R(x)←∞;

10 i2R(x)← min{i0R(u−), i1R(u−), i2R(u−)}+ 2;

11 end while
12 return min{i0R(vn), i1R(vn), i2R(vn)};

Booth and Lueker [3] have proposed a linear-time algorithm for testing whether a

graph is a proper interval graph, and give a consecutive ordering if the answer is

positive. In the rest of this paper, for a given proper interval G of order n, we

assume that a consecutive ordering (v1, v2, . . . , vn) of vertices of G is given. Let

i ∈ {1, 2, . . . , n}, let j and k be positive integers such that 1 ≤ j ≤ k ≤ n, let

a ∈ {0, 1, 2}, b ∈ {1, 2} and let v0 and vn+1 be vertices not in V .

• v+i = vi+1,

• v−i = vi−1,

• vj ≤ vk,

• vj < vk if j 6= k,

• [vj , vk] = {u ∈ V : vj ≤ u ≤ vk},

• G[vj , vk] = G[{u ∈ V : vj ≤ u ≤ vk}],

• MIN(vi) = min{u ∈ NG[vi]},

• C(vi) = max{MIN(u) : u ∈ [MIN(vi), vi]},

• γatR(vi) = min{w(f) : f is an TRDF on G[v1, vi] with f(vi) = a},

• γbptR(vi) = min{w(f) : f is an PTRDF on G[v1, vi] with f(vi) = b},

• iaR(vi) = min{w(f) : f is an IRDF on G[v1, vi] with f(vi) = a (if there exists)}.

To prove that Algorithm 4.1 works correctly we need the following results. The

following result is clear.

Proposition 2. Let G = (V,E) be a proper interval graph of order n with a consecutive
ordering (v1, . . . , vn) of vertices of G and let 1 ≤ i ≤ j ≤ n.
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(i) If vivj ∈ E, then {vi, . . . , vj} is a clique of G.

(ii) MIN(vi) ≤ MIN(vj).

(iii) (v1, . . . , vn) is also an IG ordering of vertices of G.

Lemma 4. i2R(v1) ≤ i2R(v2) ≤ · · · ≤ i2R(vn).

Proof. The proof is by induction on n. If n = 2, then clearly the claim holds. This

proves the base case of the induction. Assume that the lemma is true for all proper

interval graphs of order n ≥ 2. Let H be a proper interval graph of order n+ 1 with

a consecutive ordering (v1, . . . , vn+1) of vertices of H. By Proposition 1, the induced

subgraph H[v1, vn] is a proper interval graph of order n and so

i2R(v1) ≤ · · · ≤ i2R(vn). (3)

Let g be a minimum IRDF on H with g(vn+1) = 2 and so w(g) = i2R(vn+1).

Since g is an IRDF on H, g(u) = 0 for each vertex u adjacent to vn+1, that

is, u ∈ [MIN(vn+1), vn], see Fig. 1. By Proposition 2 and since H is connected,

MIN(vn) ≤ MIN(vn+1) ≤ vn and the induced subgraph H[MIN(vn), vn] is a complete

graph. So, each vertex adjacent to vn+1 is also adjacent to vn. We distinguish two

cases depending on MIN(vn) = MIN(vn+1) or MIN(vn) < MIN(vn+1). In the following

we consider these cases.

Case 1. Assume MIN(vn) = MIN(vn+1). Let f be a function from [v1, vn] to

{0, 1, 2} as follows: f(v) = g(v) for all v ∈ [v1, vn−1] and f(vn) = 2. So,

w(f) = w(g). We obtain that f is an IRDF on H[v1, vn] with f(vn) = 2 and so

i2R(vn) ≤ w(f) = i2R(vn+1). This, together with Inequality (3), proves that in Case 1

we have i2R(v1) ≤ · · · ≤ i2R(vn+1).

Case 2. Assume MIN(vn) < MIN(vn+1). We distinguish two cases depending on

g(x) = 0 for all vertices x ∈ [MIN(vn), MIN(vn+1)−] or g(x) 6= 0 for some vertex

x ∈ [MIN(vn), MIN(vn+1)−]. In the following we consider these cases.

• Assume that g(x) = 0 for all vertices x ∈ [MIN(vn), MIN(vn+1)−], see Fig. 1(a).

Let f be a function from [v1, vn] to {0, 1, 2} as follows: f(vn) = 2 and f(v) =

g(v) for all v ∈ [v1, vn−1]. So, w(g) = w(f). We deduce that f is an IRDF on

H[v1, vn] with f(vn) = 2 and so

i2R(vn) ≤ w(f) = w(g) = i2R(vn+1) (4)

• Assume that g(x) 6= 0 for some x ∈ [MIN(vn), MIN(vn+1)−]. Because the

set [MIN(vn), vn] is a clique of H[v1, vn], there is exactly one vertex x ∈
[MIN(vn), MIN(vn+1)−] with g(x) 6= 0. Clearly, g(x) ∈ {1, 2}. If g(x) = 1,
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vn+1vn

MIN(vn) MIN(vn+1)

200000

vn+1vn

MIN(vn) MIN(vn+1)

200000

vn+1vn

MIN(vn) MIN(vn+1)

200000g : g : g :000

x

0 01 200

x

(a) (b) (c)

y

Figure 1. Illustrating a minimum IRDF g on H with g(vn+1) = 2 such that (a) g(x) = 0 for all x ∈
[MIN(vn), MIN(vn+1)

−] and (b)–(c) g(x) 6= 0 for some x ∈ [MIN(vn), MIN(vn+1)
−]; note that both

sets [MIN(vn), vn] and [MIN(vn+1), vn+1] are cliques of H.

see Fig. 1(b), then assume that f is a function from [v1, vn] to {0, 1, 2} as fol-

lows: f(vn) = 2, f(x) = 0, and f(v) = g(v) for all v ∈ [v1, vn] \ {x, vn}. So,

w(f) = w(g) − 1. We deduce that f is an IRDF on H[v1, vn] with f(vn) = 2

and so

i2R(vn) ≤ w(f) < w(g) = i2R(vn+1). (5)

Assume g(x) = 2, see Fig. 1(c). Let g′ be the restriction of g to H[v1, x]. We

deduce that g′ is an IRDF on H[v1, x] with g′(vn) = 2 and so i2R(x) ≤ w(g′) =

w(g)−2 = i2R(vn+1)−2. Let y = MIN(vn)− and clearly y < x. By Inequality (3),

we have i2R(y) ≤ i2R(x). Let f be a minimum IRDF on H[v1, y] with f(y) = 2.

So, w(f) = i2R(y). Let f ′ be a function from [v1, vn] to {0, 1, 2} as follows:

f ′(v) = f(v) for all vertices v ∈ [v1, y], f ′(v) = 0 for all vertices v ∈ [y+, vn−1]

and f ′(vn) = 2. So, w(f ′) = i2R(y) + 2. We deduce that f ′ is an IRDF on

H[v1, vn] with f ′(vn) = 2 and so

i2R(vn) ≤ w(f ′) = i2R(y) + 2 ≤ i2R(x) + 2 ≤ i2R(vn+1). (6)

Inequalities (4)–(6), together with Inequality (3), proves that in Case 2 we have

i2R(v1) ≤ · · · ≤ i2R(vn+1). This completes the proof of the lemma.

Lemma 5. Let x ∈ {v2, . . . , vn}. Then i0R(x) = i2R(MIN(x)).

Proof. We first prove that i2R(MIN(x)) ≤ i0R(x). Let f be a minimum IRDF on

G[v1, x] with f(x) = 0 and so w(f) = i0R(x). Clearly, MIN(x) < x. Since NG[v1,x][x] =

[MIN(x), x], we have f(z) = 2 for some z ∈ [MIN(x), x−]. By Lemma 4, i2R(MIN(x)) ≤
i2R(z). Because f is an IRDF on G[v1, x], we have f(u) = 0 for all u ∈ NG[v1,x](z).

By Proposition 2, [MIN(x), x] is a clique of G and so f(u) = 0 for all u ∈ [z+, x]. Let

f ′ be the restriction of f to G[v1, z]. We deduce that f ′ is an IRDF on G[v1, z] with

f ′(z) = 2 and so i2R(z) ≤ w(f ′) = w(f) = i0R(x). Therefore, i2R(MIN(x)) ≤ i0R(x).

Now, we prove that i0R(x) ≤ i2R(MIN(x)). Assume that g is an IRDF on G[v1, MIN(x)]

with minimum weight and g(MIN(x)) = 2 and so w(g) = i2R(MIN(x)). We construct
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xx−

MIN(x−) MIN(x)

100000

xx−

MIN(x) = MIN(x−)

100000 f :f : 0 02

(b)(a)

y

Figure 2. Illustrating a minimum IRDF f on G[v1, x] with f(x) = 1 such that MIN(x) < x−; note that
both sets [MIN(x), x] and [MIN(x−), x−] are cliques of G.

a function h on G[v1, x] using g as follows: h(v) = g(v) for all v ∈ [v1, MIN(x)] and

h(v) = 0 for all v ∈ [MIN(x)+, x]. We obtain that h is an IRDF on G[v1, x] with

h(x) = 0 and so i0R(x) ≤ w(h) = w(g) = i2R(MIN(x)). This completes the proof of the

lemma.

Lemma 6. Let x ∈ {v2, . . . , vn}.

(i) If MIN(x) = x−, then i1R(x) = i0R(x
−) + 1.

(ii) If MIN(x) < x− and MIN(x) ≤ MIN(x−), then i1R(x) is not defined.

(iii) If MIN(x−) < MIN(x) < x−, then i1R(x) = i2R(MIN(x
−) + 1.

Proof. Let f be a minimum IRDF on G[v1, x] with f(x) = 1. So, w(f) = i1R(x).

We first prove (i). Let MIN(x) = x−. So, x is adjacent only to x−. Since f is

an IRDF on G[v1, x] with f(x) = 1, f(x−) = 0. Let f ′ be the restriction of f to

G[v1, x
−]. Thus, w(f) = w(f ′) + 1. We deduce that f ′ is an IRDF on G[v1, x

−]

with f ′(x−) = 0 and so i0R(x−) ≤ w(f ′) = w(f) − 1 = i1R(x) − 1. Conversely, let g

be a minimum IRDF on G[v1, x
−] with g(x−) = 0. Thus, w(g) = i0R(x−). Assume

h = g ∪ {(x, 1)}. We obtain that w(h) = w(g) + 1 and h is an IRDF on G[v1, x] with

h(x) = 1 and so i1R(x) ≤ w(h) = i0R(x−) + 1. This, together with i0R(x−) ≤ i1R(x)− 1,

completes the proof of (ii). In the rest of the proof we assume that MIN(x) < x−. So,

|[MIN(x), x]| > 2.

Now, we prove (ii). Let MIN(x) ≤ MIN(x−). By Proposition 2, [MIN(x), x] is a clique

of G. See Fig. 2(a). Since f is an IRDF on G[v1, x] with f(x) = 1, f(v) = 0 for all

v ∈ [MIN(x), x−]. It obtains that f(x−) = 0 and so there is a vertex y with f(y) = 2

adjacent to x− that is not adjacent to x, a contradiction. So, f is not defined. This

completes the proof of (iii). In the rest of the proof we assume that MIN(x−) < MIN(x).

See Fig. 2(b). The proof of (iii) is similar to the proof of Lemma 5.
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Lemma 7. Let x ∈ {v2, . . . , vn}. Then, i2R(x) = iR(MIN(x)
−) + 2.

Proof. We first prove that iR(MIN(x)−) + 2 ≤ i2R(x). Let f be a minimum IRDF on

G[v1, x] with f(x) = 2. Hence, w(f) = i2R(x). Because NG[v1,x][x] = [MIN(x), x],

f(v) = 0 for all vertices v ∈ [MIN(x), x−]. Let f ′ be the restriction of f to

G[v1, MIN(x)−] and so w(f ′) = w(f) − 2 = i2R(x) − 2. We deduce that f ′ is an

IRDF on G[v1, MIN(x)−] and so iR(MIN(x)−) ≤ w(f ′) = i2R(x)− 2.

Now, we prove that i2R(x) ≤ iR(MIN(x)−) + 2. Let f be a minimum IRDF on

G[v1, MIN(x)−] and so w(f) = iR(MIN(x)−). We construct a function g from [v1, x]

to {0, 1, 2} as follows: g(v) = f(v) for all v ∈ [v1, MIN(x)−], g(v) = 0 for all

v ∈ [MIN(x), x−] and g(x) = 2. Hence, w(g) = w(f) + 2. We deduce that g is

an IRDF on G[v1, x] with g(x) = 2 and so i2R(x) ≤ w(g) = iR(MIN(x)−) + 2. This

completes the proof of the lemma.

Now, we prove that Algorithm 4.1 works correctly.

Theorem 4. Let G = (V,E) be a proper interval graph of order n with a consecutive
ordering (v1, . . . , vn) of vertices of G. Then, Algorithm 4.1 on input (G, v1, . . . , vn) returns
iR(G) in O(n) time.

Proof. Clearly, iR(G) = iR(vn) = min{i0R(vn), i1R(vn), i2R(vn)}. It obtains that

i0R(v1) is not defined, i1R(v1) = 1 and i2R(v1) = 2. Thus, by Lemmas 5, 6 and 7,

the output of Algorithm 4.1 on input (G, v1, . . . , vn) is iR(G). It remains to compute

the time complexity of Algorithm 4.1. By (Algorithm 2 of) [1], we can compute all

values MIN(v1), . . . , MIN(vn) in O(n) time. So, the running time of Algorithm 4.1 is

O(n). This completes the proof of the theorem.
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