
CCO
Commun. Comb. Optim.

c© 2023 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 8, No. 1 (2023), pp. 183-191

DOI: 10.22049/CCO.2021.27471.1269

Short Note

Remarks on the restrained Italian domination number in

graphs

Lutz Volkmann

Lehrstuhl II fur Mathematik, RWTH Aachen University, 52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Received: 2 October 2021; Accepted: 10 December 2021

Published Online: 13 December 2021

Abstract: Let G be a graph with vertex set V (G). An Italian dominating function

(IDF) is a function f : V (G) −→ {0, 1, 2} having the property that that f(N(u)) ≥ 2

for every vertex u ∈ V (G) with f(u) = 0, where N(u) is the neighborhood of u. If f is
an IDF on G, then let V0 = {v ∈ V (G) : f(v) = 0}. A restrained Italian dominating

function (RIDF) is an Italian dominating function f having the property that the

subgraph induced by V0 does not have an isolated vertex. The weight of an RIDF
f is the sum

∑
v∈V (G) f(v), and the minimum weight of an RIDF on a graph G is

the restrained Italian domination number. We present sharp bounds for the restrained

Italian domination number, and we determine the restrained Italian domination number
for some families of graphs.
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AMS Subject classification: 05C69

1. Introduction

For definitions and notations not given here we refer to [14]. We consider simple

graphs G with vertex set V = V (G) and edge set E = E(G). The order of G is

n = n(G) = |V |. The open neighborhood of a vertex v is the set N(v) = NG(v) = {u ∈
V (G) | uv ∈ E} and its closed neighborhood is the set N [v] = NG[v] = N(v) ∪ {v}.
The degree of vertex v ∈ V is d(v) = dG(v) = |N(v)|. The maximum degree and

minimum degree of G are denoted by ∆ = ∆(G) and δ = δ(G), respectively. The

complement of a graph G is denoted by G. For a subset D of vertices in a graph G,

we denote by G[D] the subgraph of G induced by D. A leaf is a vertex of degree one,

and its neighbor is called a support vertex. A strong support vertex is a support vertex

adjacent to more than one leaf. A set S ⊆ V (G) is called a dominating set if every

vertex is either an element of S or is adjacent to an element of S. The domination

number γ(G) of a graph G is the minimum cardinality of a dominating set of G. A
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restrained dominating set is a set S ⊆ V (G) where every vertex in V (G)\S is adjacent

to a vertex in S as well as to another vertex in V (G) \ S. The restrained domination

number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating

set of G. Restrained domination was formally defined by Domke, Hattingh, S.T.

Hedetniemi, Laskar and Markus in their 1999 paper [12]. For more information on

this paramter we refer the reader to the survey paper [13]. We write Pn for the path of

order n, Cn for the cycle of length n and Kn for the complete graph of order n. Also,

let Kn1,n2,...,np
denote the complete p-partite graph with vertex set S1 ∪S2 ∪ . . .∪Sp

where |Si| = ni for 1 ≤ i ≤ p. For n ≥ 2, the star K1,n−1 has one vertex of degree

n− 1 and n− 1 leaves. A subdivision of an edge uv is obtained by introducing a new

vertex w and replacing the edge uv with edges uw and wv. A wounded spider is a

tree obtained from K1,r, r ≥ 1, by subdividing at most r− 1 of its edges. By Sp,q we

denote the double star, where one center vertex is adjacent to p leaves and the other

one to q leaves.

Cockayne, Dreyer, S.M. Hedetniemi and S.T. Hedetniemi [11] introduced the concept

of Roman domination in graphs, and since then a lot of related variations and gen-

eralizations have been studied (see [7–10]). A Roman dominating function (RDF)

on a graph G is a function f : V (G) −→ {0, 1, 2} satisfying the condition that each

vertex u with f(u) = 0 has a neighbor v with f(v) = 2. The weight of an RDF f

is the sum w(f) =
∑
v∈V (G) f(v). The Roman domination number γR(G) equals the

minimum weight of a Roman dominating function on G. An RDF of G with weight

γR(G) is called a γR(G)-function. For an RDF f , one can denote f = (V0, V1, V2),

where Vi = {v ∈ V (G) : f(v) = i} for i = 0, 1, 2.

In 2015, Roushini Leely Pushpam and Padmapriea [17] defined the restrained Roman

dominating function (RRDF) as a Roman dominating function f with the property

that G[V0] does not have an isolated vertex. The weight of an RRDF f is the sum

w(f) =
∑
v∈V (G) f(v). The restrained Roman domination number γrR(G) equals the

minimum weight of a restrained Roman dominating function on G. An RRDF of G

with weight γrR(G) is called a γrR(G)-function. The restrained Roman domination

has been studied by several authors (see [3, 19]).

In 2016, Chellali, Haynes, S.T. Hedetniemi and MacRae [6] defined a new variant of

Roman dominating functions, the so called Italian dominating functions. An Italian

dominating function (IDF) on a graph G is a function f : V −→ {0, 1, 2} having the

property that f(N(u)) ≥ 2 for each vertex u with f(u) = 0. The weight of an IDF f

is the sum w(f) =
∑
v∈V (G) f(v), and the minimum weight of an IDF in a graph G is

the Italian domination number, denoted by γI(G). In [1, 2, 4, 5, 15, 20], the authors

consider variants of Italian domination.

In 2021, Samadi, Alishahi, Masoumi and Mojdeh [18] defined the restrained Italian

dominating function (RIDF) as an IDF f having the property that the subgraph

induced by V0 does not have an isolated vertex. The weight of an RIDF f is the sum∑
v∈V (G) f(v), and the minimum weight of an RIDF on a graph G is the restrained

Italian domination number, denoted by γrI(G). An RIDF of G with weight γrI(G)

is called a γrI(G)-function. For an RIDF f , one can denote f = (V0, V1, V2), where

Vi = {v ∈ V (G) : f(v) = i} for i = 0, 1, 2. Clearly, γrI(G) ≤ γrR(G).
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In this paper, we present further bounds and Nordhaus-Gaddum type results for

the restrained Italian domination number. In addition, we determine the restrained

Italian domination number for some families of graphs.

We make use of the following results.

Proposition 1. [12] If n ≥ 2 is an integer, then γr(K1,n−1) = n.

Proposition 2. [12] If T is a tree of order n ≥ 3, then γr(T ) ≥ ∆(T ). Furthermore,
γr(T ) = ∆(T ) if and only if T is a wounded spider which is not a star.

Proposition 3. [17] Let Pn be a path of order n ≥ 4. Then γrR(Pn) = 2n+3+r
3

, where
n ≡ r (mod 3) for r ∈ {1, 2, 3}.

Proposition 4. [17] Let Cn be a cycle of order n ≥ 3. Then γrR(Cn) = 2n+3+r
3

, when
n ≡ r (mod 3) for r ∈ {1, 2} and γrR(Cn) = 2n

3
, when n ≡ 0 (mod 3).

Proposition 5. If n ≥ 1, then γrR(Pn) = γrI(Pn) and γrR(Cn) = γrI(Cn) for n ≥ 3.

Proof. Let G ∈ {Pn, Cn}. If f is an RIDF, then ∆(G) ≤ 2 implies that every vertex

u with f(u) = 0 has a neighbor v with f(v) = 0 and a neighbor w with f(w) = 2.

Therefore f is also an RRDF and thus γrR(G) ≤ γrI(G). Because of γrR(G) ≥ γrI(G),

we obtain γrR(G) = γrI(G).

The following inequality chain is obviously.

Proposition 6. If G is a graph, then γr(G) ≤ γrI(G) ≤ γrR(G) ≤ 2γr(G).

Propositions 1 and 6 lead to the next observation immediately.

Proposition 7. If n ≥ 2, then γrI(K1,n−1) = n.

Proposition 8. [18] If G is a connected graph of order n ≥ 2, then γrI(G) ≤ n with
equality if and only if G is star or G ∈ {C4, C5, P4, P5, P6}.

Let C5,5 be the graph of order 9 consisting of two cycles of length five with one vertex

in common. Let R6 be the graph of order 6 consiting of a cycle C5 = v1v2v3v4v5v1
with a further vertex y and two further edges yv1 and yv3. It is straightforward to

verify that γrI(C5,5) = 8 and γrI(R6) = 5.

Proposition 9. [18] Let G be a connected graph of order n with δ(G) ≥ 2. If G 6∈
{C3, C4, C5, C7, C8,K2,3, R6, C5,5}, then γrI(G) ≤ n− 2.
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Proposition 10. [18] If G is a graph of order n ≥ 2, then γrI(G) ≥ 2, with equality
if and only if ∆(G) = n − 1 and G contains a vertex w of maximum degree such that
δ(G[NG(w)]) ≥ 1 or G contains two vertices u and v such that the remaining n− 2 vertices
are adjacent to u and v and G[V (G) \ {u, v}] has no isolated vertex.

The proof of the next observation is easy and therefore omitted.

Proposition 11. (i) γrI(Kn) = 2 for n ≥ 2,

(ii) γrI(Km,n) = 4 for m,n ≥ 2

(iii) Let Kn1,n2,...,np be the complete p-partite graph such that p ≥ 3 and n1 ≤ n2 ≤
. . . ≤ np. Then γrI(K1,n2,...,np) = γrI(K2,n2,...,np) = 2 and γrI(Kn1,n2,...,np) = 3 for
n1 ≥ 3.

Let p ≥ 1 and 0 ≤ r ≤ 2 be integers, and let G3p+r be the graph obtained from a

cycle C3p+r = v1v2 . . . v3p+rv1 by adding two leaves ai and bi to each vertex vi for

1 ≤ i ≤ 3p+ r. Clearly, γrI(G3p+r) = 6p+ 2r. Now let f be a γrR(G3p+r)-function.

Then we observe that

f(vi) + f(vi+1) + f(vi+2) + f(ai) + f(ai+1) + f(ai+2)

+f(bi) + f(bi+1) + f(bi+2) ≥ 7.

This leads to γrR(G3p+r) ≥ 7p+ 2r. Hence we observe

Proposition 12. There exist graphs G for which γrR(G)−γrI(G) can be made arbitrarily
large.

2. Bounds

The cliqe number c(G) of a graph G is the maximum order among the complete

subgraphs of G.

Observation 1. Let G be a graph of order n.

(i) If δ(G) ≥ 3, then γrI(G) ≤ n+ 1− δ(G).

(ii) If c(G) ≥ 3, then γrI(G) ≤ n+ 2− c(G).

Proof. (i) Let δ = δ(G) ≥ 3, and let z be a vertex of minimum degree with the

neighbors v1, v2, . . . , vδ. Define the function f by f(z) = f(v1) = f(v2) = . . . =

f(vδ−2) = 0 and f(x) = 1 otherwise. Then G[V0] is connected of order at least two,

and every vertex of V0 has at least two neighbors of weight one. Therefore f is an

RIDF on G of weigh n+ 1− δ and thus γrI(G) ≤ n+ 1− δ(G).
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(ii) Let c = c(G) ≥ 3, and let u1, u2, . . . , uc be the vertices of a clique of G. Define

the function f by f(u1) = f(u2) = . . . = f(uc−1) = 0, f(uc) = 2 and f(x) = 1

otherwise. Then it is easy to see that f is an RIDF on G of weigh n+ 2− c and thus

γrI(G) ≤ n+ 2− c(G).

The complete graphs demonstrate that Observation 1 (i) and (ii) are sharp. In ad-

dition, let H be the graph obtained from a complete graph Kn−1 (n ≥ 4) by adding

a leaf w. Then it is straighforward to verify that γrI(H) = n + 2 − c(H). This is a

further example which shows that Observation 1 (ii) is sharp.

Theorem 2. [18] If T is a tree of order n ≥ 3 different from the double star S2,2, then
γrI(T ) ≥ n+3

2
.

If ∆(T ) ≥ n(T )+2
2 , then the next lower bound on γrI(T ) is better than this one in

Theorem 2.

Theorem 3. If T is a tree, then γrI(T ) ≥ ∆(T ) + 1.

Proof. Let n be the order of T . If 1 ≤ n ≤ 3, then γrI(T ) = n = ∆(T ) + 1. Let

now n ≥ 4. If T is a star, then Proposition 7 implies γrI(T ) = n = ∆(T ) + 1. If T is

a wounded spider, which is not a star, then it is easy to verify that γrI(T ) ≥ n− 1 ≥
∆(T ) + 1. If T is not a wounded spider, then it follows from Propositions 2 and 6

that γrI(T ) ≥ γr(T ) ≥ ∆(T ) + 1.

Let S2,q be the double star with q ≥ 1. Then γrI(S2,q) = ∆(S2,q) + 1. These double

stars and the stars demonstsrate that Theorem 3 is sharp.

Theorem 4. Let L be the set of leaves of a connected graph G. If |L| ≥ 1 , then
γrI(G) ≥ |L| with equality if and only if G is not a star and each vertex v ∈ V (G) \ L is a
strong support vertex.

Proof. Let f be an RIDF on G. Then f(u) ≥ 1 for each u ∈ L and so γrI(G) ≥ |L|.
Now let G be not a star, and let each vertex v ∈ V (G)\L be a strong support vertex.

Define the function f by f(x) = 1 for x ∈ L and f(x) = 0 for x ∈ V (G) \ L. Then

f(N(x)) ≥ 2 for each x ∈ V (G) \ L. Since G is connected and not a star, G − L is

connected and |V (G) \ L| ≥ 2. Thus f is an RIDF on G and therefore γrI(G) = |L|.
Conversely, assume that γrI(G) = |L|. Then G is not a star. Let f be a γrI(G)-

function. Since f(u) ≥ 1 for each u ∈ L, we note that f(u) = 1 for each u ∈ L and

f(x) = 0 for each x ∈ V (G) \L. Assume first that there exists a vertex w ∈ V (G) \L
which is not a support vertex. Then N [w] ⊆ V (G) \ L and f(N [w]) ≥ 1. This leads

to the contradiction γrI(G) ≥ |L| + 1. Hence each vertex x ∈ V (G) \ L is a support

vertex. Assume that there exists a vertex u ∈ V (G)\L with exactly one leaf neighbor

v. It follows that N(u) \ {v} ⊆ V (G) \ L. If f(u) = 0, then f(v) = 2 or f(x) = 1

for at least one vertex y ∈ V (G) \ L. In both cases we arrive at the contradiction
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γrI(G) ≥ |L|+ 1. If f(u) ≥ 1, then we also obtain the contradiction γrI(G) ≥ |L|+ 1.

Consequently, each vertex v ∈ V (G) \ L is a strong support vertex.

3. Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or product of

a parameter on a graph and its complement. In their classical paper [16], Nordhaus

and Gaddum discussed this problem for the chromatic number. We present such

inequalities for the restrained Italian domination number

Theorem 5. If G is a graph of order n ≥ 3, then γrI(G) + γrI(G) ≥ 5.

Proof. Assume, without loss of generality, that γrI(G) ≤ γrI(G). According to

Proposition 10 we only need to show that if γrI(G) = 2, then γrI(G) ≥ 3. Assume that

γrI(G) = 2. It follows from Proposition 10 that ∆(G) = n−1 and G contains a vertex

w of maximum degree such that δ(G[NG(w)]) ≥ 1 or G contains two vertices u and v

such that the remaining n− 2 vertices are adjacent to u and v and G[V (G) \ {u, v}]
has no isolated vertex. In the first case, G = H∪{w}, where w is an isolated vertex of

G. Since n(H) ≥ 2, Proposition 10 leads to γrI(G) ≥ γrI(H) + 1 ≥ 3. In the second

case, we can assume, without loss of generality, that u and v are not adjacent in G.

Thus G = H ∪ {uv}, where uv is an isolated edge of G. Since n(H) ≥ 1, we deduce

that γrI(G) ≥ γrI(H) + 2 ≥ 3. This completes the proof.

Example 1. Let Wd(2, p) be the windmill graph consiting of a center vertex z which
is adjacent to the vertices of p copies of the complete graph K2. If p ≥ 3, then Wd(2, p)
consists of an isolated vertex z and a complete p-partite graph Kn1,n2,...,np such that n1 =

n2 = . . . = np = 2. Hence it follows from Proposition 11 (iii) that γrI(Wd(2, p)) = 3. Thus
we obtain γrI(Wd(2, p)) + γrI(Wd(2, p)) = 5.

Example 1 shows that Theorem 5 is sharp.

Theorem 6. If G is a graph G of order n ≥ 6, then γrI(G) + γrI(G) ≤ 2n− 2.

Proof. If G or G is neither a star nor the path P6, then it follows from Proposition

8 that γrI(G) + γrI(G) ≤ (n − 1) + (n − 1) = 2n − 2. Assume next, without loss of

generality, that G is a star. Then G is the union of an isolated vertex and a complete

graph Kn−1. Thus Propositions 7 and 11 (i) imply γrI(G) +γrI(G) ≤ n+ 3 ≤ 2n−2.

Finally, if, without loss of generality, G = P6, then it is easy to see that γrI(P6) = 3

and so γrI(G) + γrI(G) ≤ 6 + 3 = 9 ≤ 2n− 2.

If G ∈ {P1, P2, P3, P4, C5}, then we observe that γrI(G) + γrI(G) = 2n. Therefore

the condition n ≥ 6 in Theorem 6 is necessary.
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Theorem 7. If G is a graph of order n ≥ 7, then γrI(G) + γrI(G) ≤ 2n− 4.

Proof. Assume, without loss of generality, that δ(G) ≤ δ(G). We distinguish four

case.

Case 1. Assume that δ(G) = 0. Let u be a vertex such that dG(u) = 0. Let

x1, x2, . . . , xn−1 be the vertices of G − u such that dG(x1), dG(x2), . . . , dG(xk) ≥ 2

and dG(xk+1) = dG(xk+2) = . . . = dG(xn−1) = 1. If k ≥ 2, then the function f

with f(u) = 2, f(x1) = f(x2) = . . . = f(xk) = 0 and f(xk+1) = f(xk+2) = . . . =

f(xn−1) = 1 is an RIDF on G of weight n − k + 1. If k ≥ 5, then it follows that

γrI(G) + γrI(G) ≤ n + (n − k + 1) ≤ 2n − 4. If 2 ≤ k ≤ 4, then γrI(G − u) = 2

according to Proposition 10. This leads to γrI(G) + γrI(G) ≤ 3 + n− k+ 1 ≤ 2n− 4.

If dG(x1) = dG(x2) = . . . = dG(xn−1) = 1, then G− u is the complete graph, and we

deduce from Proposition 11 (i) that γrI(G) + γrI(G) ≤ 3 + n ≤ 2n− 4.

Case 2 Assume that δ(G) = 1. Let u be a vertex such that dG(u) = 1, and let v

be adjacent to u in G. Let H = G − v, and let x1, x2, . . . , xn−2 be the vertices of

G − {u, v} such that dH(x1), dH(x2), . . . , dH(xk) ≥ 2 and dH(xk+1) = dH(xk+2) =

. . . = dH(xn−1) = 1. If k ≥ 2, then the function f with f(u) = 2, f(x1) = f(x2) =

. . . = f(xk) = 0 and f(v) = f(xk+1) = f(xk+2) = . . . = f(xn−1) = 1 is an RIDF on

G of weight n−k+1. If k ≥ 5, then it follows that γrI(G)+γrI(G) ≤ n+(n−k+1) ≤
2n − 4. If 2 ≤ k ≤ 4 and n ≥ 8, then γrI(G) = 4 according to Proposition 10. This

leads to γrI(G) + γrI(G) ≤ 4 + n− k + 1 ≤ 2n− 4.

Let next k = 4 and n = 7. If v is adjacent to x5 in G, then the function f with

f(u) = 2, f(v) = f(x5) = 0 and f(x1) = f(x2) = f(x3) = f(x4) = 1 is an RIDF

of G and therefore γrI(G) + γrI(G) ≤ 6 + n − k + 1 = n + 3 = 10 = 2n − 4. If

v is adjacent to xi in G for one i ∈ {1, 2, 3, 4}, say to x4, then the function f with

f(v) = 2, f(x4) = f(x5) = 0 and f(x1) = f(x2) = f(x3) = f(u) = 1 is an RIDF

of G and so γrI(G) + γrI(G) ≤ 6 + n − k + 1 = n + 3 = 10 = 2n − 4. It remains

the case that v is adjacent to x1, x2, x3, x4 and x5 in G. Then the function f with

f(u) = f(v) = f(x5) = 1 and f(x1) = f(x2) = f(x3) = f(x4) = 0 is an RIDF of G

and so γrI(G)+γrI(G) ≤ 7+3 = 10 = 2n−4. Let next 2 ≤ k ≤ 3 and n = 7. Then it

easy to see that γrI(G) ≤ 4 and hence γrI(G) +γrI(G) ≤ 4 +n−k+ 1 ≤ 10 = 2n−4.

If dH(x1) = dH(x2) = . . . = dH(xn−2) = 1, then G − {u, v} is the complete graph.

If n ≥ 8, then we have γrI(G) + γrI(G) ≤ 4 + n ≤ 2n − 4 immediately. Let now

n = 7. If v has at least two neighbors in G−u, say x4 and x5, then the fuction f with

f(x5) = 2, f(u) = 1 and f(v) = f(x1) = f(x2) = f(x3) = f(x4) = 0 is an RIDF of G

and thus γrI(G) + γrI(G) ≤ 3 + 7 = 10 = 2n − 4. It remains the case that v has at

least 4 neighbors in G−u, say x1, x2, x3 and x4 are neighbors of v in G−u. Then the

function f with f(u) = f(x1) = 2, f(x5) = 1 and f(v) = f(x2) = f(x3) = f(x4) = 0

is an RIDF of G, and we obtain γrI(G) + γrI(G) ≤ 4 + 5 ≤ 2n− 4.

Case 3 Assume that δ(G) ≥ 2. Then the assumption δ(G) ≤ δ(G) leads to δ(G) ≥ 2.

Assume first that G is not connected. Let H1 be a component of G and let H2 =

G −H1. Since δ(G) ≥ 2, we note that |H1|, |H2| ≥ 3. If u ∈ V (H1) and v ∈ V (H2),

then the function f with f(u) = f(v) = 2 and f(x) = 0 otherwise is an RIDF of
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weight 4 on G and therefore γrI(G) + γrI(G) ≤ n + 4 ≤ 2n − 4 when n ≥ 8. If

n = 7, then let, without loss of generality, |H1| = 3. Then γrI(H1) = 2 and so

γrI(G) + γrI(G) ≤ 6 + 4 = 10 = 2n − 4. The same holds when G is not connected.

Assume next that G and G are connected. If G,G 6∈ {C7, C8, C5,5}, then Proposition

9 leads to γrI(G)+γrI(G) ≤ 2n−4. If G ∈ {C7, C8, C5,5} or G ∈ {C7, C8, C5,5}, then

it is straightforward to verify that γrI(G) + γrI(G) ≤ 2n− 4.

Case 4 Assume that δ(G) ≥ 3. Then δ(G) ≥ 3. Now Observation 1 (i) leads to

γrI(G) + γrI(G) ≤ 2n− 4.

By Proposition 7, we have γrI(K1,5) = 6. Hence it follows that γrI(K1,5)+γrI(K1,5) =

6+3 = 2n−3 for n = 6. In addition, we note that γrI(R6)+γrI(R6) = 6+3 = 2n−3

for n = 6. Consequently, the condition n ≥ 7 in Theorem 7 is necessary.
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