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Abstract: A tractable method of solving 3-person games in which players’ pure
strategies are staircase functions is suggested. The solution is meant to be Pareto-

efficient. The method considers any 3-person staircase-function game as a succession

of 3-person games in which strategies are constants. For a finite staircase-function
game, each constant-strategy game is a trimatrix game whose size is likely to be rel-

atively small to solve it in a reasonable time. It is proved that any staircase-function

game has a single Pareto-efficient situation if every constant-strategy game has a sin-
gle Pareto-efficient situation, and vice versa. Besides, it is proved that, whichever

the staircase-function game continuity is, any Pareto-efficient situation of staircase

function-strategies is a stack of successive Pareto-efficient situations in the constant-
strategy games. If a staircase-function game has two or more Pareto-efficient situations,

the best efficient situation is one which is the farthest from the triple of the most un-

profitable payoffs. In terms of 0-1-standardization, the best efficient situation is the
farthest from the triple of zero payoffs.
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1. Introduction

In game theory, a 3-person game is used to model a struggle for rationalizing the

distribution of limited resources (facilities, access, energy, etc.) among three persons

(players) when they cannot be re-personified in two players (or two groups) [1, 2, 4, 19].

Any game is characterized with its qualitative properties and solutions. Qualitative

properties of the 3-person game strongly depend on the sets (e. g., whether they are

finite or not) of the players’ pure strategies [1, 16, 20, 22]. Solution properties are

dependent on the sets finiteness and payoffs [11, 15, 20, 21]. The properties including

payoff attraction are far simpler for the case of when the sets are countable. The
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simplest 3-person game is when the sets are finite. In this case, the game is called

trimatrix [14, 20]. The simplest trimatrix game is a dyadic game [15, 20, 21].

Amazingly enough, bimatrix and trimatrix games are intricate models of the struggle

process. The struggle process is a selection-and-payoff event or a series of such events,

without any differentiation or integration, but the interpretation of the eventual re-

sult sometimes appears uncertain enough. First, the optimality or the best decision

(solution) has multiple types. This is so because the optimality requires equilibrium,

efficiency (profitability), and fairness [5, 12, 20]. These types are often contradictory

in a 2-person game, and they may be far more contradictory in a 3-person game [21].

For instance, an equilibrium situation may be efficient for one or two players while it is

not profitable for the remaining players. Second, a trimatrix game may have multiple

equilibria along with multiple Pareto-efficient situations [7, 15, 19, 20]. This induces

the solution uncertainty. The unfairness of the players’ payoffs worsens the solution

selection. Furthermore, even a trimatrix game may have a continuum of equilibria,

wherein the best decision selection is far more difficult.

Infinite (even when a set of pure strategies is countable) and, moreover, continuous

3-person games are far more complicated than trimatrix (i. e., finite) games. Whereas

the trimatrix game has at least an equilibrium (generally speaking, in mixed strate-

gies), an infinite game may not have an equilibrium, or it may be indeterminable, or

it may be impracticable. The best option, therefore, is to model the struggle process

with a finite 3-person game trivially rendered to a trimatrix game [4, 18, 21].

A special attention is paid to the structure of the player’s pure strategy. As the pure

strategy structure becomes more complex, the practicability of a game solution is

further sophisticated. This becomes more ungainly when there is a mixed strategy to

be used in a game. This is explained by the simplicity of the pure strategy solution

(not requiring repetitions of a game) and the sophistication of the mixed strategy

solution (requiring repetitions of a game for a proper implementation of the solution).

It is worth to note that a 3-person game may have no Nash equilibrium in pure

(stationary) strategies [2]. The most trivial strategy is a decision corresponding to a

one-stage event whose duration through time is (usually, negligibly) short. A strategy

can be also a multi-stage process like a staircase-function defined on a time interval

[6, 7, 9, 12]. In a pure strategy situation, a triple of such staircase-function strategies

(from the players in a 3-person game) is mapped into a real value [8, 9, 17]. When each

of the players possesses a finite set of such function-strategies, the staircase-function

game is finite. It is easily rendered down to a trimatrix game, wherein a pure strategy

is a conditional point (just like it is in ordinary finite games), which in reality is a

staircase function (seen from a “disclosure” of the conditional point).

2. Motivation to the trimatrix game and efficient solution

In real-world practice, the continuity of a process is an ill-posed assumption due

to natural constraints imposed by, generally speaking, corpuscular (discontinuous)

activity. This is why any process through a definite time interval is a finite set of
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elementary actions. If the strategy is a time function defined on a closed (time)

interval, it is staircase as the elementary action of a player is naturally constrained.

Thus, a staircase function during an elementary action must be considered constant.

To make a staircase-function game finite, the set of possible values of the player’s

pure strategy should be finite. In such a staircase-function trimatrix game the player’s

selection of a pure strategy means using a staircase function on a time interval whereon

every pure strategy is defined. The total number of the player’s pure strategies in the

staircase-function trimatrix game is determined by the number of “stair” subintervals

and the number of possible values of the player’s pure strategy (staircase function).

The total number of situations in a finite staircase-function game is immensely gi-

gantic. For example, if the number of subintervals is 4, and the number of possible

values of the player’s pure strategy is just 7, then there are 74 = 2401 possible pure

strategies at this player, where every strategy is a 4-subinterval 7-staircased (time)

function. The respective trimatrix 2401 × 2401 × 2401 game even in this trivialized

case appears to be big enough: there are 13841287201 (over 13.8 billion) situations in

pure strategies, which hardly can be handled in a reasonable amount of computational

time.

In a more real example, when every strategy, say, is a 10-subinterval 12-staircased

function, the respective trimatrix 1210 × 1210 × 1210 game is intractable gigantic: ev-

ery player has 61917364224 (over 61.9 billion) strategies, and thus a solution cannot

be found in a reasonable amount of computational time by using a reasonably expen-

sive hardware. This means that straightforwardly solving staircase-function trimatrix

games is impracticable, whichever practical purposes are.
Another question is what the solution should be. Although the property of solu-
tion stability is considered important, the equilibrium in 3-person games often is
unprofitable for at least one of the players. For example, in a 2 × 3 × 2 game with
payoff matrices (the left and right submatrices correspond to the first and second pure
strategies of the third player)

F =

[ [
1 6 −5
4 −11 −6

] [
3 −1 4
10 7 −6

] ]
(1)

and

G =

[ [
−5 0 −1
4 −4 3

] [
−4 −1 −3
7 11 4

] ]
(2)

and

H =

[ [
−2 −3 3
7 −1 0

] [
2 6 5
4 −1 1

] ]
(3)

of the first, second, and third players, respectively, there are two pure strategy

equilibria with payoffs

{4, 4, 7} (4)

and

{7, 11, −1} . (5)
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By the way, these equilibria are Pareto-efficient. Besides, there is another Pareto-

efficient situation with payoffs

{10, 7, 4} . (6)

Obviously, the situation with payoffs (6) is unprofitable for the third player, whereas

it is absolutely profitable for the first player. Situation with payoffs (5) is absolutely

unprofitable for the third player, whereas it is absolutely profitable for the second

player. Situation with payoffs (4), being worse for the first and second players, is

absolutely profitable for the third player. Therefore, the equilibria with payoffs (4)

and (5) are unstable solutions. Although payoffs (6) are received in a non-equilibrium

situation, the collective payoff here is 21. This is 28.57 % greater than the collective

payoff from (4) and 19.05 % greater than the collective payoff from (5). So, based on

the greater collective utility (which subsequently can be bargained for some compen-

sations to the second and third players), a stability of the Pareto-efficient situation

may be eventually induced. The formal stability of equilibria producing payoffs (4)

and (5) is likely to be shattered contrariwise.

This is a quite illustrative example of that Pareto-efficient strategies in 3-person games

are first to be checked. Although they are not formally stable, their stability will likely

be induced in the way described above. Besides, it is worth noting that sometimes

Pareto-efficient strategies happen to be equilibrium strategies.

3. Objective and tasks to be fulfilled

Whereas it is absolutely impracticable to straightforwardly solve finite 3-person games

played with staircase-function strategies, the objective is to develop a tractable

method of solving such games. The solution is meant to be Pareto-efficient. To

meet the objective, the following seven tasks are to be fulfilled:

1. To formalize a 3-person game, in which the players’ strategies are functions of time.

Such function-strategies are presumed to be bounded and Lebesgue-integrable.

2. To formalize a 3-person game, in which the players’ strategies are staircase func-

tions of time, whereas the time is discrete. In such a game, the set of the player’s

pure strategies is a continuum of staircase functions.

3. To consider the property of Pareto efficiency in a staircase-function game.

4. To suggest a method of solving finite 3-person staircase-function games by using

the Pareto-efficiency criterion.

5. To give an example of how the suggested method is applied.

6. To discuss practical applicability and scientific significance of the method. It should

be emphasized why this method must be important for the game theory and opera-

tions research development.

7. To make an appropriate conclusion on it and make an outlook for furthering the

study.
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4. A 3-person game played with function-strategies

In a 3-person game, in which the player’s pure strategy is a function, let each of the

players use strategies defined almost everywhere on (time) interval [t1; t2] by t2 > t1.

Denote a strategy of the first player by x (t), a strategy of the second player by y (t),

and a strategy of the third player by z (t). Surely, these functions are presumed to be

bounded, i. e.

amin 6 x (t) 6 amax by amin < amax (7)

and

bmin 6 y (t) 6 bmax by bmin < bmax (8)

and

cmin 6 z (t) 6 cmax by cmin < cmax, (9)

and the square of the function-strategy is presumed to be Lebesgue-integrable. Thus,
pure strategies of the player belong to a rectangular functional space (of time func-
tions):

X =
{
x (t) , t ∈ [t1; t2] , t1 < t2 : amin 6 x (t) 6 amax by amin < amax

}
⊂ L2 [t1; t2] (10)

and

Y =
{
y (t) , t ∈ [t1; t2] , t1 < t2 : bmin 6 y (t) 6 bmax by bmin < bmax

}
⊂⊂ L2 [t1; t2] (11)

and

Z =
{
z (t) , t ∈ [t1; t2] , t1 < t2 : cmin 6 z (t) 6 cmax by cmin < cmax

}
⊂⊂ L2 [t1; t2] (12)

are the sets of the players’ pure strategies, respectively.

The player’s payoff in situation

{
x (t) , y (t) , z (t)

}
(13)

is presumed to be an integral functional [17, 20]. Thus, the first, second, and third

players’ payoffs in situation (13) are

F
(
x (t) , y (t) , z (t)

)
=

∫
[t1; t2]

f
(
x (t) , y (t) , z (t) , t

)
dµ (t), (14)

G
(
x (t) , y (t) , z (t)

)
=

∫
[t1; t2]

g
(
x (t) , y (t) , z (t) , t

)
dµ (t), (15)

H
(
x (t) , y (t) , z (t)

)
=

∫
[t1; t2]

h
(
x (t) , y (t) , z (t) , t

)
dµ (t), (16)
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respectively, where

f
(
x (t) , y (t) , z (t) , t

)
, (17)

g
(
x (t) , y (t) , z (t) , t

)
, (18)

h
(
x (t) , y (t) , z (t) , t

)
(19)

are functions of x (t), y (t), z (t), explicitly including time t. Therefore, the continuous

3-person game

〈
{X, Y, Z} ,

{
F
(
x (t) , y (t) , z (t)

)
, G
(
x (t) , y (t) , z (t)

)
, H

(
x (t) , y (t) , z (t)

)}〉
(20)

is played with function-strategies from respective rectangular functional spaces (10) –

(12). Why time t is explicitly included into (17) – (19) will be explained below.

5. A 3-person staircase-function game

A staircase-function game is formed naturally. In practical reality, 3-person game

(20) with strategies as functions is presumed to be played discretely through time

interval [t1; t2]. Then a function-strategy becomes staircase defined by the (physical,

economical, biological, social, etc.) laws of a system modeled by the game. The

number of subintervals at which the player’s pure strategy is constant must be the

same for every player.

Denote by N the number of elementary actions could be made by a player, where

obviously N ∈ N\ {1}. In fact, it is the number of “stair” subintervals at which

the player’s pure strategy is constant. Then the player’s pure strategy is a staircase

function which may have at most N different values.

If
{
τ (i)
}N−1
i=1

are time points at which the staircase-function strategy changes or may

change its value, where

t1 = τ (0) < τ (1) < τ (2) < . . . < τ (N−1) < τ (N) = t2, (21)

then {
x
(
τ (i)
)}N

i=0

,

{
y
(
τ (i)
)}N

i=0

,

{
z
(
τ (i)
)}N

i=0

(22)

are the values of the players’ strategies in a play-off of game (20). Time points{
τ (i)
}N
i=0

are not necessarily to be equidistant.

The staircase-function strategies are right-continuous [3]:

lim
ε>0
ε→0

x
(
τ (i) + ε

)
= x

(
τ (i)
)
, (23)
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lim
ε>0
ε→0

y
(
τ (i) + ε

)
= y

(
τ (i)
)
, (24)

lim
ε>0
ε→0

z
(
τ (i) + ε

)
= z

(
τ (i)
)
, (25)

for i = 1, N − 1, whereas (if the strategy value changes)

lim
ε>0
ε→0

x
(
τ (i) − ε

)
6= x

(
τ (i)
)
, (26)

lim
ε>0
ε→0

y
(
τ (i) − ε

)
6= y

(
τ (i)
)
, (27)

lim
ε>0
ε→0

z
(
τ (i) − ε

)
6= z

(
τ (i)
)
, (28)

for i = 1, N − 1. It is easy to see that a strategy value on subinterval
[
τ (N−1); τ (N)

]
should not change, i. e.

x
(
τ (N−1)

)
= x

(
τ (N)

)
,

y
(
τ (N−1)

)
= y

(
τ (N)

)
,

z
(
τ (N−1)

)
= z

(
τ (N)

)
.

So,

lim
ε>0
ε→0

x
(
τ (N) − ε

)
= x

(
τ (N)

)
, (29)

lim
ε>0
ε→0

y
(
τ (N) − ε

)
= y

(
τ (N)

)
, (30)

lim
ε>0
ε→0

z
(
τ (N) − ε

)
= z

(
τ (N)

)
. (31)

Then constant values (22) by (21) mean that game (20) is a 3-person staircase-function
game

〈
{XN , YN , ZN},

{
F
(
x (t) , y (t) , z (t)

)
, G
(
x (t) , y (t) , z (t)

)
, H

(
x (t) , y (t) , z (t)

)}〉
(32)

where XN ⊂ X, YN ⊂ Y, ZN ⊂ Z are rectangular functional spaces of staircase-

function strategies by (21) – (31). The staircase-function game can be thought of as

it is a succession of N ordinary 3-person continuous games〈{
[amin; amax] , [bmin; bmax] , [cmin; cmax]

}
,{

F (αi, βi, γi) , G (αi, βi, γi) , H (αi, βi, γi)
}〉 (33)
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each defined on parallelepiped

[amin; amax]× [bmin; bmax]× [cmin; cmax] (34)

by

αi = x (t) ∈ [amin; amax] and

βi = y (t) ∈ [bmin; bmax] and

γi = z (t) ∈ [cmin; cmax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = 1, N − 1 and ∀ t ∈

[
τ (N−1); τ (N)

]
, (35)

where the factual players’ payoffs in situation

{αi, βi, γi} (36)

are

F (αi, βi, γi) =

∫
[τ(i−1); τ(i))

f (αi, βi, γi, t) dµ (t) ∀ i = 1, N − 1 (37)

by

F (αN , βN , γN ) =

∫
[τ(N−1); τ(N)]

f (αN , βN , γN , t) dµ (t), (38)

G (αi, βi, γi) =

∫
[τ(i−1); τ(i))

g (αi, βi, γi, t) dµ (t) ∀ i = 1, N − 1 (39)

by

G (αN , βN , γN ) =

∫
[τ(N−1); τ(N)]

g (αN , βN , γN , t) dµ (t), (40)

and

H (αi, βi, γi) =

∫
[τ(i−1); τ(i))

h (αi, βi, γi, t) dµ (t) ∀ i = 1, N − 1 (41)

by

H (αN , βN , γN ) =

∫
[τ(N−1); τ(N)]

h (αN , βN , γN , t) dµ (t). (42)
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The payoff in situation (36) can be thought of as it is the payoff on a “stair” subinterval

i, which is
[
τ (i−1); τ (i)

)
for i = 1, N − 1 and

[
τ (N−1); τ (N)

]
(when i = N). A pure-

strategy situation in the staircase-function game (32) is a succession of N situations

{
{αi, βi, γi}

}N
i=1

(43)

in games (33), where each situation corresponds to its subinterval. The stack of

successive situations (43) is a (staircase) situation in the respective 3-person staircase-

function game (32). The succession allows considering players’ payoffs in situation

(13) of staircase functions in a simpler form.

Theorem 1. In a pure-strategy situation of the staircase-function game (32), rep-
resented as a succession of N continuous games (33), functionals (14) – (16) are re-
written as subinterval-wise sums

F
(
x (t) , y (t) , z (t)

)
=

N∑
i=1

F (αi, βi, γi) =

=
N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, γi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , γN , t) dµ (t),(44)

G
(
x (t) , y (t) , z (t)

)
=

N∑
i=1

G (αi, βi, γi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

g (αi, βi, γi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

g (αN , βN , γN , t) dµ (t),(45)

H
(
x (t) , y (t) , z (t)

)
=

N∑
i=1

H (αi, βi, γi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

h (αi, βi, γi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

h (αN , βN , γN , t) dµ (t).(46)

Proof. Situation (36) is tied to half-subinterval
[
τ (i−1); τ (i)

)
by i = 1, N − 1 and

to subinterval
[
τ (N−1); τ (N)

]
by i = N . Each of functions (17) – (19) in this situation

is some function of time t. Denote a function corresponding to (17) by ψi (t). For
situation (36) function

ψi (t) = 0 ∀ t /∈
[
τ (i−1); τ (i)

)
, (47)
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and for situation

{αN , βN , γN} (48)

function

ψN (t) = 0 ∀ t /∈
[
τ (N−1); τ (N)

]
. (49)

Therefore,

f
(
x (t) , y (t) , z (t) , t

)
=

N∑
i=1

ψi (t) (50)

in a pure-strategy situation (13) of the staircase-function game (32), by using (47)
and (49). Consequently,

F
(
x (t) , y (t) , z (t)

)
=

∫
[t1; t2]

f
(
x (t) , y (t) , z (t) , t

)
dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

ψi (t) dµ (t) +

∫
[τ(N−1); τ(N)]

ψN (t) dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, γi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , γN , t) dµ (t) =

=

N∑
i=1

F (αi, βi, γi) (51)

in a pure-strategy situation (13) of the staircase-function game (32). Obviously,
subinterval-wise sums (45) and (46) are proved similarly to (47) – (51).

Along with (37) – (42), Theorem 1 helps in understanding the following. If time t

is not explicitly included into the function under the integrals in (14) – (16), then

the payoff value would depend only on the subinterval length (in the same situation

on different subintervals). If the subinterval length does not change, there are N

identical (ordinary) 3-person continuous games (33). The triviality of the equal-

length-subinterval case is explained by a standstill of the players’ strategies. Time

variable t therefore is explicitly included into (37) – (42) to make the system change

(and make the players modify their actions) as time goes by.

When the staircase-function game (32) is studied, Theorem 1 allows considering each

game (33) separately. Although Theorem 1 does not provide a method of solving

the 3-person staircase-function game, it provides a fundamental decomposition of the

game. By this decomposition each subinterval game (33) can be solved separately,

whereupon the subinterval games solutions are stacked (stitched) together.
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6. When a Pareto-efficient stack is single

The occurrence when every subinterval 3-person game has a single Pareto-efficient sit-

uation is rare. The likelihood of such an occurrence even for finite staircase-function

games is roughly less than 1 %. Nevertheless, there is an interesting assertion ad-

dressed to this case.

Theorem 2. If each of N games (33) by (21) – (31) and (35), (37) – (42) has a
single Pareto-efficient situation, then the respective 3-person staircase-function game
(32) has a single Pareto-efficient situation, which is the stack of successive Pareto-
efficient situations in games (33).

Proof. Let

{α∗i , β∗i , γ∗i } (52)

be the single efficient situation in the game on “stair” subinterval i. This implies that
the triple of simultaneous strict inequalities

F (αi, βi, γi) > F (α∗i , β
∗
i , γ

∗
i ) , (53)

G (αi, βi, γi) > G (α∗i , β
∗
i , γ

∗
i ) , (54)

H (αi, βi, γi) > H (α∗i , β
∗
i , γ

∗
i ) (55)

is impossible for any αi ∈ [amin; amax], βi ∈ [bmin; bmax], γi ∈ [cmin; cmax]. The triple
of simultaneous nonstrict inequalities

F (αi, βi, γi) > F (α∗i , β
∗
i , γ

∗
i ) , (56)

G (αi, βi, γi) > G (α∗i , β
∗
i , γ

∗
i ) , (57)

H (αi, βi, γi) > H (α∗i , β
∗
i , γ

∗
i ) (58)

is impossible due to efficient situation (52) is single. Therefore, the six triples of
simultaneous inequalities (56), (54), (55), inequalities (53), (57), (55), inequalities
(53), (54), (58), inequalities (56), (57), (55), inequalities (56), (54), (58), inequalities

(53), (57), (58) are impossible as well. Without losing generality, suppose that ∃ α(0)
i ∈

[amin; amax], ∃ β(0)
i ∈ [bmin; bmax], ∃ γ(0)i ∈ [cmin; cmax] such that inequality

F
(
α
(0)
i , β

(0)
i , γ

(0)
i

)
> F (α∗i , β

∗
i , γ

∗
i ) (59)

holds. Then one of the four pairs of simultaneous inequalities

G
(
α
(0)
i , β

(0)
i , γ

(0)
i

)
6 G (α∗i , β

∗
i , γ

∗
i ) , (60)

H
(
α
(0)
i , β

(0)
i , γ

(0)
i

)
< H (α∗i , β

∗
i , γ

∗
i ) , (61)
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and

G
(
α
(0)
i , β

(0)
i , γ

(0)
i

)
< G (α∗i , β

∗
i , γ

∗
i ) , (62)

H
(
α
(0)
i , β

(0)
i , γ

(0)
i

)
6 H (α∗i , β

∗
i , γ

∗
i ) , (63)

and

G
(
α
(0)
i , β

(0)
i , γ

(0)
i

)
> G (α∗i , β

∗
i , γ

∗
i ) , (64)

H
(
α
(0)
i , β

(0)
i , γ

(0)
i

)
< H (α∗i , β

∗
i , γ

∗
i ) , (65)

and

G
(
α
(0)
i , β

(0)
i , γ

(0)
i

)
< G (α∗i , β

∗
i , γ

∗
i ) , (66)

H
(
α
(0)
i , β

(0)
i , γ

(0)
i

)
> H (α∗i , β

∗
i , γ

∗
i ) (67)

must hold due to the triple of simultaneous inequalities (53), (57), (58) is impossible.
This means that situation {

α
(0)
i , β

(0)
i , γ

(0)
i

}
(68)

is efficient, which is impossible due to (52) is the single efficient situation. Therefore,
inequality (59) is impossible, and impossibility of the remaining cases of inequali-
ties (64) and (67) is proved symmetrically. Without losing generality, suppose that

∃ α(0)
i ∈ [amin; amax], ∃ β(0)

i ∈ [bmin; bmax], ∃ γ(0)i ∈ [cmin; cmax] such that inequali-
ties (59) and (64) simultaneously hold. Then inequality (65) must hold. This means
that situation (68) is efficient, which is impossible due to (52) is the single efficient
situation. Therefore, simultaneous inequalities (59) and (64) are impossible, and im-
possibility of the remaining cases of inequalities, including (56), (57), (58), is proved
symmetrically. So, any of inequalities (53) – (58) is impossible for every i = 1, N .
As they are impossible then each of the inequalities

N∑
i=1

F (αi, βi, γi) >

N∑
i=1

F (α∗i , β
∗
i , γ

∗
i ), (69)

N∑
i=1

G (αi, βi, γi) >

N∑
i=1

G (α∗i , β
∗
i , γ

∗
i ), (70)

N∑
i=1

H (αi, βi, γi) >

N∑
i=1

H (α∗i , β
∗
i , γ

∗
i ), (71)

N∑
i=1

F (αi, βi, γi) >
N∑
i=1

F (α∗i , β
∗
i , γ

∗
i ), (72)

N∑
i=1

G (αi, βi, γi) >
N∑
i=1

G (α∗i , β
∗
i , γ

∗
i ), (73)
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N∑
i=1

H (αi, βi, γi) >
N∑
i=1

H (α∗i , β
∗
i , γ

∗
i ) (74)

for any αi ∈ [amin; amax] and βi ∈ [bmin; bmax] and γi ∈ [cmin; cmax] is impossible as
well, and any combination of simultaneous inequalities (69) – (74) is impossible. By
the efficiency definition, owing to Theorem 1, this implies that stack

{
{α∗i , β∗i , γ∗i }

}N
i=1

(75)

is a Pareto-efficient situation in the respective 3-person staircase-function game (32).
Suppose that there is another stack which is also Pareto-efficient. Consider the case
when N = 2. First, let stack

{{
α
(0)
1 , β∗1 , γ

∗
1

}
, {α∗2, β∗2 , γ∗2}

}
(76)

be a Pareto-efficient situation by α
(0)
1 6= α∗1. This implies that a triple of simultaneous

inequalities

F (α1, β1, γ1) + F (α2, β2, γ2) > F
(
α
(0)
1 , β∗1 , γ

∗
1

)
+ F (α∗2, β

∗
2 , γ

∗
2 ) , (77)

G (α1, β1, γ1) +G (α2, β2, γ2) > G
(
α
(0)
1 , β∗1 , γ

∗
1

)
+G (α∗2, β

∗
2 , γ

∗
2 ) , (78)

H (α1, β1, γ1) +H (α2, β2, γ2) > H
(
α
(0)
1 , β∗1 , γ

∗
1

)
+H (α∗2, β

∗
2 , γ

∗
2 ) (79)

is impossible for any

α1 ∈ [amin; amax] , β1 ∈ [bmin; bmax] , γ1 ∈ [cmin; cmax] ,

α2 ∈ [amin; amax] , β2 ∈ [bmin; bmax] , γ2 ∈ [cmin; cmax] . (80)

Plugging α2 = α∗2 and β2 = β∗2 and γ2 = γ∗2 in the left sides of inequalities (77) – (79)
gives a triple of inequalities

F (α1, β1, γ1) > F
(
α
(0)
1 , β∗1 , γ

∗
1

)
, (81)

G (α1, β1, γ1) > G
(
α
(0)
1 , β∗1 , γ

∗
1

)
, (82)

H (α1, β1, γ1) > H
(
α
(0)
1 , β∗1 , γ

∗
1

)
. (83)

If the triple of simultaneous inequalities (81) – (83) is impossible then situation

{
α
(0)
1 , β∗1 , γ

∗
1

}
(84)
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must be efficient. Therefore, the supposition about Pareto-efficiency of situation (76)
is contradictory.
Second, let stack {{

α
(0)
1 , β

(0)
1 , γ∗1

}
, {α∗2, β∗2 , γ∗2}

}
(85)

be a Pareto-efficient situation by α
(0)
1 6= α∗1 and β

(0)
1 6= β∗1 . This implies that a triple

of simultaneous inequalities

F (α1, β1, γ1) + F (α2, β2, γ2) > F
(
α
(0)
1 , β

(0)
1 , γ∗1

)
+ F (α∗2, β

∗
2 , γ

∗
2 ) , (86)

G (α1, β1, γ1) +G (α2, β2, γ2) > G
(
α
(0)
1 , β

(0)
1 , γ∗1

)
+G (α∗2, β

∗
2 , γ

∗
2 ) , (87)

H (α1, β1, γ1) +H (α2, β2, γ2) > H
(
α
(0)
1 , β

(0)
1 , γ∗1

)
+H (α∗2, β

∗
2 , γ

∗
2 ) (88)

is impossible for any (80). Plugging α2 = α∗2 and β2 = β∗2 and γ2 = γ∗2 in the left
sides of inequalities (86) – (88) gives a triple of inequalities

F (α1, β1, γ1) > F
(
α
(0)
1 , β

(0)
1 , γ∗1

)
, (89)

G (α1, β1, γ1) > G
(
α
(0)
1 , β

(0)
1 , γ∗1

)
, (90)

H (α1, β1, γ1) > H
(
α
(0)
1 , β

(0)
1 , γ∗1

)
. (91)

If the triple of simultaneous inequalities (89) – (91) is impossible then situation

{
α
(0)
1 , β

(0)
1 , γ∗1

}
(92)

must be efficient. Therefore, the supposition about Pareto-efficiency of situation (85)
is contradictory.
The Pareto-efficiency impossibility of other versions of 2-subinterval stacks is proved
symmetrically. The Pareto-efficiency impossibility of N -subinterval stacks by N > 3
is proved similarly by ascending induction.

So, if each of the subinterval 3-person games has a single Pareto-efficient solution, The-

orem 2 allows finding the Pareto-efficient solution of the respective 3-person staircase-

function game in a very simple way, just by stacking the subinterval solutions. It is

easy to see that the assertion of Theorem 2 is reversible.

Theorem 3. If a 3-person staircase-function game (32) has a single Pareto-efficient
situation, then each of the respective N games (33) by (21) – (31) and (35), (37) – (42)
has a single Pareto-efficient situation.
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Proof. Let stack (75) be a single Pareto-efficient situation in a 3-person staircase-
function game (32). This implies that the triple of simultaneous inequalities (72) – (74)
is impossible for any

αi ∈
{

[amin; amax]
}
\
{
α∗
i

}
and βi ∈

{
[bmin; bmax]

}
\
{
β∗
i

}
and γi ∈

{
[cmin; cmax]

}
\
{
γ∗i
}
.

Plugging αk = α∗k and βk = β∗k and βk = β∗k ∀ k = 2, N in the left sides of inequalities
(72) – (74) gives a triple of simultaneous inequalities

F (α1, β1, γ1) > F (α∗1, β
∗
1 , γ

∗
1) , (93)

G (α1, β1, γ1) > G (α∗1, β
∗
1 , γ

∗
1) , (94)

H (α1, β1, γ1) > H (α∗1, β
∗
1 , γ

∗
1 ) , (95)

which is impossible as well. Hence, situation

{α∗1, β∗1 , γ∗1} (96)

is efficient. The efficiency of the remaining subinterval situations is proved in the
same way.
Suppose that, along with efficient situation (96), situation{

α
(0)
1 , β

(0)
1 , γ

(0)
1

}
(97)

is efficient also. Thus, a triple of simultaneous inequalities

F (α1, β1, γ1) > F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
, (98)

G (α1, β1, γ1) > G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
, (99)

H (α1, β1, γ1) > H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
(100)

is impossible for any

α1 ∈
{

[amin; amax]
}
\
{
α
(0)
1 , α∗1

}
and β1 ∈

{
[bmin; bmax]

}
\
{
β
(0)
1 , β∗1

}
and

γ1 ∈
{

[cmin; cmax]
}
\
{
γ
(0)
1 , γ∗1

}
.

Stack {{
α
(0)
1 , β

(0)
1 , γ

(0)
1

}
,
{
{α∗i , β∗i , γ∗i }

}N
i=2

}
(101)

must not be efficient. This implies that a triple of simultaneous inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

F (αi, βi, γi) < F (α∗1, β
∗
1 , γ

∗
1 )+

N∑
i=2

F (α∗i , β
∗
i , γ

∗
i ), (102)
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G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

G (αi, βi, γi) 6 G (α∗1, β
∗
1 , γ

∗
1) +

N∑
i=2

G (α∗i , β
∗
i , γ

∗
i ), (103)

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

H (αi, βi, γi) 6 H (α∗1, β
∗
1 , γ

∗
1 ) +

N∑
i=2

H (α∗i , β
∗
i , γ

∗
i ) (104)

holds, or a triple of simultaneous inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

F (αi, βi, γi) 6 F (α∗1, β
∗
1 , γ

∗
1 )+

N∑
i=2

F (α∗i , β
∗
i , γ

∗
i ), (105)

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

G (αi, βi, γi) < G (α∗1, β
∗
1 , γ

∗
1) +

N∑
i=2

G (α∗i , β
∗
i , γ

∗
i ), (106)

(104) holds, or a triple of simultaneous inequalities (105), (103),

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

H (αi, βi, γi) < H (α∗1, β
∗
1 , γ

∗
1 ) +

N∑
i=2

H (α∗i , β
∗
i , γ

∗
i ) (107)

holds, or a triple of simultaneous inequalities (102), (106), (104) holds, or a triple
of simultaneous inequalities (102), (103), (107) holds, or a triple of simultaneous
inequalities (105), (106), (107) holds. Plugging αk = α∗k and βk = β∗k and γk = γ∗k
∀ k = 2, N in the left sides of inequalities (102) – (104), inequalities (105), (106),
(104), inequalities (105), (103), (107), inequalities (102), (106), (104), inequalities
(102), (103), (107), inequalities (105), (106), (107) gives a triple of simultaneous
inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< F (α∗1, β

∗
1 , γ

∗
1 ) ,

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
6 G (α∗1, β

∗
1 , γ

∗
1 ) ,

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
6 H (α∗1, β

∗
1 , γ

∗
1 ) , (108)

or a triple of simultaneous inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
6 F (α∗1, β

∗
1 , γ

∗
1 ) ,

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< G (α∗1, β

∗
1 , γ

∗
1 ) ,

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
6 H (α∗1, β

∗
1 , γ

∗
1 ) , (109)
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or a triple of simultaneous inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
6 F (α∗1, β

∗
1 , γ

∗
1 ) ,

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
6 G (α∗1, β

∗
1 , γ

∗
1 ) ,

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< H (α∗1, β

∗
1 , γ

∗
1 ) , (110)

or a triple of simultaneous inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< F (α∗1, β

∗
1 , γ

∗
1 ) ,

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< G (α∗1, β

∗
1 , γ

∗
1 ) ,

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
6 H (α∗1, β

∗
1 , γ

∗
1 ) , (111)

or a triple of simultaneous inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< F (α∗1, β

∗
1 , γ

∗
1 ) ,

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
6 G (α∗1, β

∗
1 , γ

∗
1 ) ,

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< H (α∗1, β

∗
1 , γ

∗
1 ) , (112)

or a triple of simultaneous inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
6 F (α∗1, β

∗
1 , γ

∗
1 ) ,

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< G (α∗1, β

∗
1 , γ

∗
1 ) ,

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< H (α∗1, β

∗
1 , γ

∗
1 ) . (113)

The possibility of inequality triples (108) – (113) means that situation (97) is not
efficient. Such a contradiction is similarly proved for any other subinterval situation.
Without losing generality, suppose that, along with efficient situations (96) and

{α∗k, β∗k , γ∗k} by k ∈
{

2, N
}
,

situations (97) and {
α
(0)
k , β

(0)
k , γ

(0)
k

}
are efficient also. Then, anyway, stack (101) must not be efficient, which is the
contradiction due to (102) – (113). Such a contradiction is similarly proved for any
other combinations of subinterval situations.

So, Theorem 3 asserts that when a Pareto-efficient stack is single, it does directly mean

that every subinterval 3-person game must have a single Pareto-efficient situation.

The question about multiple Pareto-efficient stacks is cleared right below.
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7. What a Pareto-efficient stack consists of

The player in a finite 3-person staircase-function game (32) may have multiple Pareto-

efficient strategies. For example, a game with 2-subinterval 2-staircased function-

strategies at the first player, 2-subinterval 3-staircased function-strategies at the sec-

ond player, and 2-subinterval 2-staircased function-strategies at the third player rep-

resented with respective matrices

F1 =

[ [
1 6 −5

4 −11 −6

] [
3 −1 4

10 7 −6

] ]
,

F2 =

[ [
1 6 −5

4 −11 −6

] [
3 −1 4

10 7 −6

] ]
(114)

and

G1 =

[ [
−5 0 −1

4 −4 3

] [
−4 −1 −3

7 11 4

] ]
,

G2 =

[ [
−5 0 −1

4 −4 3

] [
−4 −1 −3

7 11 4

] ]
(115)

and

H1 =

[ [
−2 −3 3

7 −1 0

] [
2 6 5

4 −1 1

] ]
,

H2 =

[ [
−2 −3 3

7 −1 0

] [
2 6 5

4 −1 1

] ]
(116)

has 5 Pareto-efficient situations. They are the stack of efficient situations with payoffs

{1, 3, 2} and {5, 3, 3}, the stack of efficient situations with payoffs {1, 3, 2} and

{0, 5, −1}, the stack of efficient situations with payoffs {1, 4, 1} and {5, 3, 3}, the

stack of efficient situations with payoffs {1, 4, 1} and {0, 5, −1}, and the stack of

efficient situations with payoffs {5, 2, 4} and {5, 3, 3}. By the way, the stack of

efficient situations with payoffs {5, 2, 4} and {0, 5, −1} is not an efficient situation.

Indeed, whereas the efficient (stacked) situations produce payoffs {6, 6, 5}, {1, 8, 1},
{6, 7, 4}, {1, 9, 0}, {10, 5, 7}, respectively (in the order of listing them), the non-

efficient stack produce payoffs {5, 7, 3}. Obviously, a continuous 3-person staircase-

function game may have multiple Pareto-efficient situations as well.

Theorem 4. Any Pareto-efficient situation in a 3-person staircase-function game
(32) is a stack of successive Pareto-efficient situations in games (33) by (21) – (31)
and (35), (37) – (42).
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Proof. Let stack (75) be a Pareto-efficient situation in the respective 3-person
staircase-function game (32), where (52) is a Pareto-efficient situation in the game on
“stair” subinterval i. Suppose that situation (97) is not efficient in game (33) on the
first “stair” subinterval, but stack (101) is an efficient situation in staircase-function
game (32). Then at least one inequality of inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

F (α∗i , β
∗
i , γ

∗
i ) > F (α∗1, β

∗
1 , γ

∗
1 ) +

N∑
i=2

F (α∗i , β
∗
i , γ

∗
i ), (117)

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

G (α∗i , β
∗
i , γ

∗
i ) > G (α∗1, β

∗
1 , γ

∗
1 ) +

N∑
i=2

G (α∗i , β
∗
i , γ

∗
i ), (118)

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

H (α∗i , β
∗
i , γ

∗
i ) > H (α∗1, β

∗
1 , γ

∗
1 ) +

N∑
i=2

H (α∗i , β
∗
i , γ

∗
i ) (119)

must hold. Without losing generality, suppose that inequality (117) holds. Then
inequality

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
> F (α∗1, β

∗
1 , γ

∗
1 ) (120)

holds. The pair of simultaneous inequalities

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
> G (α∗1, β

∗
1 , γ

∗
1 ) , (121)

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
> H (α∗1, β

∗
1 , γ

∗
1) (122)

here is impossible due to situation (96) is efficient and situation (97) is not efficient.
So, there must be a pair of simultaneous inequalities

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< G (α∗1, β

∗
1 , γ

∗
1 ) (123)

and (122), or a pair of simultaneous inequalities (121) and

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
< H (α∗1, β

∗
1 , γ

∗
1 ) , (124)

or a pair of simultaneous inequalities (123) and (124). As situation (97) is not efficient,
the triple of simultaneous inequalities (120), (123), (122) is possible only by

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
= F (α∗1, β

∗
1 , γ

∗
1 ) , H

(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
= H (α∗1, β

∗
1 , γ

∗
1) , (125)

which is followed by

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

F (α∗i , β
∗
i , γ

∗
i ) = F (α∗1, β

∗
1 , γ

∗
1 ) +

N∑
i=2

F (α∗i , β
∗
i , γ

∗
i ), (126)
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G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

G (α∗i , β
∗
i , γ

∗
i ) < G (α∗1, β

∗
1 , γ

∗
1 ) +

N∑
i=2

G (α∗i , β
∗
i , γ

∗
i ), (127)

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

H (α∗i , β
∗
i , γ

∗
i ) = H (α∗1, β

∗
1 , γ

∗
1 ) +

N∑
i=2

H (α∗i , β
∗
i , γ

∗
i ). (128)

The triple of simultaneous relationships (126) – (128) means that stack (101) is not
an efficient situation. As situation (97) is not efficient, the triple of simultaneous
inequalities (120), (121), (124) is possible only by

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
= F (α∗1, β

∗
1 , γ

∗
1 ) , G

(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
= G (α∗1, β

∗
1 , γ

∗
1 ) , (129)

which is followed by (126),

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

G (α∗i , β
∗
i , γ

∗
i ) = G (α∗1, β

∗
1 , γ

∗
1 ) +

N∑
i=2

G (α∗i , β
∗
i , γ

∗
i ), (130)

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+

N∑
i=2

H (α∗i , β
∗
i , γ

∗
i ) < H (α∗1, β

∗
1 , γ

∗
1 ) +

N∑
i=2

H (α∗i , β
∗
i , γ

∗
i ). (131)

The triple of simultaneous relationships (126), (130), (131) means that stack (101) is
not an efficient situation. As situation (97) is not efficient, the triple of simultaneous
inequalities (120), (123), (124) is possible only by

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
= F (α∗1, β

∗
1 , γ

∗
1 ) , (132)

which is followed by (126), (127), (131). The triple of simultaneous relationships
(126), (127), (131) means that stack (101) is not an efficient situation. Such con-
tradictions implying that stack (101) cannot be efficient are similarly proved for any
other subinterval situation and inequalities (118), (119).
Suppose now that situations (97) and{

α
(0)
2 , β

(0)
2 , γ

(0)
2

}
(133)

are not efficient in the first two subinterval games, but stack{{
α
(0)
1 , β

(0)
1 , γ

(0)
1

}
,
{
α
(0)
2 , β

(0)
2 , γ

(0)
2

}
,
{
{α∗i , β∗i , γ∗i }

}N
i=3

}
(134)

is an efficient situation in staircase-function game (32). Then at least one inequality
of inequalities

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+ F

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
+

N∑
i=3

F (α∗i , β
∗
i , γ

∗
i ) >

> F (α∗1, β
∗
1 , γ

∗
1 ) + F (α∗2, β

∗
2 , γ

∗
2) +

N∑
i=3

F (α∗i , β
∗
i , γ

∗
i ), (135)
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G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+G

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
+

N∑
i=3

G (α∗i , β
∗
i , γ

∗
i ) >

> G (α∗1, β
∗
1 , γ

∗
1) +G (α∗2, β

∗
2 , γ

∗
2 ) +

N∑
i=3

G (α∗i , β
∗
i , γ

∗
i ), (136)

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+H

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
+

N∑
i=3

H (α∗i , β
∗
i , γ

∗
i ) >

> H (α∗1, β
∗
1 , γ

∗
1) +H (α∗2, β

∗
2 , γ

∗
2) +

N∑
i=3

H (α∗i , β
∗
i , γ

∗
i ) (137)

must hold. Without losing generality, suppose that inequality (135) holds. Then
inequality

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+F

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
> F (α∗1, β

∗
1 , γ

∗
1) +F (α∗2, β

∗
2 , γ

∗
2) (138)

holds. Consider a pair of simultaneous inequalities

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+G

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
> G (α∗1, β

∗
1 , γ

∗
1 )+G (α∗2, β

∗
2 , γ

∗
2 ) , (139)

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+H

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
> H (α∗1, β

∗
1 , γ

∗
1) +H (α∗2, β

∗
2 , γ

∗
2) , (140)

a pair of simultaneous inequalities

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+G

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< G (α∗1, β

∗
1 , γ

∗
1 ) +G (α∗2, β

∗
2 , γ

∗
2) (141)

and (140), a pair of simultaneous inequalities (139) and

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+H

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< H (α∗1, β

∗
1 , γ

∗
1) +H (α∗2, β

∗
2 , γ

∗
2) , (142)

a pair of simultaneous inequalities (141) and (142). One of these four pairs must
follow inequality (138). As either of situations (97) and (133) is not efficient, then
one of the six triples of simultaneous inequalities (108) – (113) is true, and one of the
six triples of simultaneous inequalities

F
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< F (α∗2, β

∗
2 , γ

∗
2 ) ,

G
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 G (α∗2, β

∗
2 , γ

∗
2 ) ,

H
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 H (α∗2, β

∗
2 , γ

∗
2 ) , (143)
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F
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 F (α∗2, β

∗
2 , γ

∗
2 ) ,

G
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< G (α∗2, β

∗
2 , γ

∗
2 ) ,

H
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 H (α∗2, β

∗
2 , γ

∗
2 ) , (144)

F
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 F (α∗2, β

∗
2 , γ

∗
2 ) ,

G
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 G (α∗2, β

∗
2 , γ

∗
2 ) ,

H
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< H (α∗2, β

∗
2 , γ

∗
2 ) , (145)

F
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< F (α∗2, β

∗
2 , γ

∗
2 ) ,

G
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< G (α∗2, β

∗
2 , γ

∗
2 ) ,

H
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 H (α∗2, β

∗
2 , γ

∗
2 ) , (146)

F
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< F (α∗2, β

∗
2 , γ

∗
2 ) ,

G
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 G (α∗2, β

∗
2 , γ

∗
2 ) ,

H
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< H (α∗2, β

∗
2 , γ

∗
2 ) , (147)

F
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 F (α∗2, β

∗
2 , γ

∗
2 ) ,

G
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< G (α∗2, β

∗
2 , γ

∗
2 ) ,

H
(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
< H (α∗2, β

∗
2 , γ

∗
2 ) (148)

is true as well. After summing up inequalities (108) – (113) and (143) – (148) sidewise,
where 36 inequality triples are obtained, there may be possible only inequality

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+F

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 F (α∗1, β

∗
1 , γ

∗
1) +F (α∗2, β

∗
2 , γ

∗
2) (149)

along with a pair of simultaneous inequalities (141) and (142), or with a pair of
simultaneous inequalities (141) and

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+H

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 H (α∗1, β

∗
1 , γ

∗
1) +H (α∗2, β

∗
2 , γ

∗
2) , (150)
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or with a pair of simultaneous inequalities

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+G

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
6 G (α∗1, β

∗
1 , γ

∗
1 ) +G (α∗2, β

∗
2 , γ

∗
2) (151)

and (142). The triple of simultaneous inequalities (149), (141), (142) implies that

F
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+ F

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
+

N∑
i=3

F (α∗i , β
∗
i , γ

∗
i ) 6

6 F (α∗1, β
∗
1 , γ

∗
1 ) + F (α∗2, β

∗
2 , γ

∗
2) +

N∑
i=3

F (α∗i , β
∗
i , γ

∗
i ), (152)

G
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+G

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
+

N∑
i=3

G (α∗i , β
∗
i , γ

∗
i ) <

< G (α∗1, β
∗
1 , γ

∗
1 ) +G (α∗2, β

∗
2 , γ

∗
2) +

N∑
i=3

G (α∗i , β
∗
i , γ

∗
i ), (153)

H
(
α
(0)
1 , β

(0)
1 , γ

(0)
1

)
+H

(
α
(0)
2 , β

(0)
2 , γ

(0)
2

)
+

N∑
i=3

H (α∗i , β
∗
i , γ

∗
i ) <

< H (α∗1, β
∗
1 , γ

∗
1 ) +H (α∗2, β

∗
2 , γ

∗
2) +

N∑
i=3

H (α∗i , β
∗
i , γ

∗
i ), (154)

i. e. stack (134) is not an efficient situation in staircase-function game (32). Both
the triples of simultaneous inequalities (149), (141), (150), and (149), (151), (142)
imply the same. Such contradictions implying that stack (134) cannot be efficient
are similarly proved for any other two subinterval situations and inequalities (136),
(137). Furthermore, by using the considered ascending induction, such contradictions
implying that a stack including non-efficient subinterval situations cannot be efficient
are similarly proved for any number of situations.

So, Theorem 4 directly answers the question of what a Pareto-efficient stack consists

of. Every efficient situation in a 3-person staircase-function game (32) is built out

of Pareto-efficient situations in “stair” subinterval games. Theorem 4 does not mean

that any stack of successive efficient situations will be efficient. However, Theorem 4

does mean that if every subinterval (continuous) game has a finite number of Pareto-

efficient situations, then all the Pareto-efficient situations in the respective 3-person

staircase-function game (32) can be determined by just running over all possible stacks

(whose number is finite) and selecting such stacks (75) for which none of triples of the

following simultaneous inequalities is possible: (69), (73), (74), and (72), (70), (74),

and (72), (73), (71), and (69), (70), (74), and (69), (73), (71), and (72), (70), (71).
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8. Solving a finite 3-person staircase-function game

In a finite 3-person staircase-function game, players (forcedly or deliberately) act

within a finite subset of possible values of their pure strategies. That is, these values

are

amin = a(0) < a(1) < a(2) < . . . < a(M−1) < a(M) = amax (155)

and

bmin = b(0) < b(1) < b(2) < . . . < b(Q−1) < b(Q) = bmax (156)

and

cmin = c(0) < c(1) < c(2) < . . . < c(S−1) < c(S) = cmax (157)

for the first, second, and third players, respectively, where M ∈ N, Q ∈ N, S ∈ N
(i. e., the player’s function-strategy must have at least two different values). Then the

pure strategy sets of the players in finite 3-person staircase-function game (32) are

XN ={
x (t) : x (t) ∈

{
a(m−1)

}M+1

m=1
∀ t ∈

[
τ (i−1); τ (i)

)
for i = 1, N − 1 and ∀ t ∈

[
τ (N−1); τ (N)

]}
⊂ X (158)

and

YN ={
y (t) : y (t) ∈

{
b(q−1)

}Q+1

q=1
∀ t ∈

[
τ (i−1); τ (i)

)
for i = 1, N − 1 and ∀ t ∈

[
τ (N−1); τ (N)

]}
⊂ Y (159)

and

ZN ={
z (t) : z (t) ∈

{
c(s−1)

}S+1

s=1
∀ t ∈

[
τ (i−1); τ (i)

)
for i = 1, N − 1 and ∀ t ∈

[
τ (N−1); τ (N)

]}
⊂ Z. (160)

Subsequently, the succession of N continuous games (33) by (21) – (31) and (35),

(37) – (42) becomes a succession of N trimatrix games〈{{
a(m−1)

}M+1

m=1
,
{
b(q−1)

}Q+1

q=1
,
{
c(s−1)

}S+1

s=1

}
, {Fi, Gi, Hi}

〉
(161)

with first player’s payoff matrices

Fi =
[
ϕimqs

]
(M+1)×(Q+1)×(S+1)
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whose elements are

ϕimqs = F
(
a(m−1), b(q−1), c(s−1)

)
=

=

∫
[τ(i−1); τ(i))

f
(
a(m−1), b(q−1), c(s−1), t

)
dµ (t) for i = 1, N − 1 (162)

and

ϕNmqs = F
(
a(m−1), b(q−1), c(s−1)

)
=

=

∫
[τ(N−1); τ(N)]

f
(
a(m−1), b(q−1), c(s−1), t

)
dµ (t), (163)

with second player’s payoff matrices

Gi =
[
ρimqs

]
(M+1)×(Q+1)×(S+1)

whose elements are

ρimqs = G
(
a(m−1), b(q−1), c(s−1)

)
=

=

∫
[τ(i−1); τ(i))

g
(
a(m−1), b(q−1), c(s−1), t

)
dµ (t) for i = 1, N − 1 (164)

and

ρNmqs = G
(
a(m−1), b(q−1), c(s−1)

)
=

=

∫
[τ(N−1); τ(N)]

g
(
a(m−1), b(q−1), c(s−1), t

)
dµ (t), (165)

and with third player’s payoff matrices

Hi =
[
θimqs

]
(M+1)×(Q+1)×(S+1)

whose elements are

θimqs = H
(
a(m−1), b(q−1), c(s−1)

)
=

=

∫
[τ(i−1); τ(i))

h
(
a(m−1), b(q−1), c(s−1), t

)
dµ (t) for i = 1, N − 1 (166)
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and

θNmqs = H
(
a(m−1), b(q−1), c(s−1)

)
=

=

∫
[τ(N−1); τ(N)]

h
(
a(m−1), b(q−1), c(s−1), t

)
dµ (t), (167)

for m = 1, M + 1 and q = 1, Q+ 1 and s = 1, S + 1.

Let {
α∗iji , β

∗
iji , γ

∗
iji

}
(168)

be an efficient situation in trimatrix game (161), where ji ∈
{

1, Ji

}
and Ji ∈ N. So,

trimatrix game (161) has Ji efficient situations. It is unknown whether “participation”

of situation (168) in a stack makes the stack efficient or not. Let

{{
α∗iji , β

∗
iji , γ

∗
iji

}}N
i=1

(169)

be a stack in a 3-person staircase-function game, which is the succession of N trimatrix

games (161), where

α∗iji ∈
{
a(m−1)

}M+1

m=1
, β∗iji ∈

{
b(q−1)

}Q+1

q=1
, γ∗iji ∈

{
c(s−1)

}S+1

s=1
.

Thus, stack (169) produces payoffs

{
u∗l , v

∗
l , w

∗
l

}
=

=


N∑
i=1

F
(
α∗iji , β

∗
iji , γ

∗
iji

)
,

N∑
i=1

G
(
α∗iji , β

∗
iji , γ

∗
iji

)
,

N∑
i=1

H
(
α∗iji , β

∗
iji , γ

∗
iji

)
by l = 1,

N∏
i=1

Ji. (170)

Let L be the number of efficient stacks, where L ∈

{
1,

N∏
i=1

Ji

}
.

It is worth to remember that the case of when L = 1 is only possible if Ji = 1

∀ i = 1, N (see Theorem 3). Without losing generality, presume that namely the

first L payoffs in (170) are produced by the efficient stacks (for instance, this can

be done after sorting all the possible stacks just by separating the efficient from the

non-efficient stacks). The best efficient stack can be found by a method suggested

in [14]. Payoffs (170) are 0-1-standardized and an l∗-th stack is found at which the

respective efficient payoffs {
u∗l∗ , v

∗
l∗ , w

∗
l∗

}
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are the farthest from the zero payoffs {0, 0, 0} (the most unprofitable payoffs):

l∗ ∈ arg max
l=1, L√√√√( u∗
l− min

k=1, L
u∗
k

max
k=1, L

u∗
k− min

k=1, L
u∗
k

)2

+

(
v∗l − min

k=1, L
v∗k

max
k=1, L

v∗k− min
k=1, L

v∗k

)2

+

(
w∗

l − min
k=1, L

w∗
k

max
k=1, L

w∗
k− min

k=1, L
w∗

k

)2

.

(171)

Thus, (171) provides the l∗-th stack to be the best.

Consider an example case in which t ∈ [0.5π; 0.9π],

{
τ (i)
}4

i=0
= {0.5π, 0.6π, 0.7π, 0.8π, 0.9π} , (172)

the set of pure strategies of the first player is

X4 ={
x (t) : x (t) ∈ {0.7 + 0.1m}5m=1 ∀ t ∈

[
τ (i−1); τ (i)

)
for i = 1, 3 and ∀ t ∈

[
τ (3); τ (4)

]}
⊂ X =

{
x (t) , t ∈ [0.5π; 0.9π] : 0.8 6 x (t) 6 1.2

}
⊂ L2 [0.5π; 0.9π] , (173)

the set of pure strategies of the second player is

Y4 ={
y (t) : y (t) ∈ {1 + 0.5q}4q=1 ∀ t ∈

[
τ (i−1); τ (i)

)
for i = 1, 3 and ∀ t ∈

[
τ (3); τ (4)

]}
⊂ Y =

{
y (t) , t ∈ [0.5π; 0.9π] : 1.5 6 y (t) 6 3

}
⊂ L2 [0.5π; 0.9π] , (174)

and the set of pure strategies of the third player is

Z4 ={
z (t) : z (t) ∈ {3.3 + 0.2s}7s=1 ∀ t ∈

[
τ (i−1); τ (i)

)
for i = 1, 3 and ∀ t ∈

[
τ (3); τ (4)

]}
⊂ Z =

{
z (t) , t ∈ [0.5π; 0.9π] : 3.5 6 z (t) 6 4.7

}
⊂ L2 [0.5π; 0.9π] , (175)

where values of the pure strategies can change only at time points

{
τ (i)
}3

i=1
= {0.6π, 0.7π, 0.8π} . (176)

The first player’s payoff functional is

F
(
x (t) , y (t) , z (t)

)
=

∫
[0.5π; 0.9π]

sin

(
0.85xyt− 2π

9

)
dµ (t), (177)



298 Pareto-efficient strategies in 3-person games

the second player’s payoff functional is

G
(
x (t) , y (t) , z (t)

)
=

∫
[0.5π; 0.9π]

sin

(
1.4t (y + zt)− 3π

7

)
dµ (t), (178)

and the third player’s payoff functional is

H
(
x (t) , y (t) , z (t)

)
=

∫
[0.5π; 0.9π]

sin

(
0.5zt

x
− π

4

)
dµ (t). (179)

Consequently, this game can be thought of as it is defined on parallelepipedal lattice

{0.7 + 0.1m}5m=1 × {1 + 0.5q}4q=1 × {3.3 + 0.2s}7s=1 ⊂
⊂ [0.8; 1.2]× [1.5; 3]× [3.5; 4.7] , (180)

that is this game is a succession of four finite 5× 4× 7 (trimatrix) games (161):〈{
{0.7 + 0.1m}5m=1 , {1 + 0.5q}4q=1 , {3.3 + 0.2s}7s=1

}
, {Fi, Gi, Hi}

〉
(181)

with first player’s payoff matrices
{
Fi =

[
ϕimqs

]
5×4×7

}4

i=1
whose elements are

ϕimqs =

=

∫
[0.5π+0.1·(i−1)π; 0.5π+0.1iπ)

sin

(
0.85 · (0.7 + 0.1m) (1 + 0.5q) t− 2π

9

)
dµ (t)

for i = 1, 3 (182)

and

ϕ4mqs =

=

∫
[0.8π; 0.9π]

sin

(
0.85 · (0.7 + 0.1m) (1 + 0.5q) t− 2π

9

)
dµ (t), (183)

with second player’s payoff matrices
{
Gi =

[
ρimqs

]
5×4×7

}4

i=1
whose elements are

ρimqs =

=

∫
[0.5π+0.1·(i−1)π; 0.5π+0.1iπ)

sin

(
1.4t · (1 + 0.5q + 3.3t+ 0.2st)− 3π

7

)
dµ (t)

for i = 1, 3 (184)
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and

ρ4mqs =

=

∫
[0.8π; 0.9π]

sin

(
1.4t · (1 + 0.5q + 3.3t+ 0.2st)− 3π

7

)
dµ (t), (185)

and with third player’s payoff matrices
{
Hi =

[
θimqs

]
5×4×7

}4

i=1
whose elements are

θimqs =

=

∫
[0.5π+0.1·(i−1)π; 0.5π+0.1iπ)

sin

(
0.5t (3.3 + 0.2s)

0.7 + 0.1m
− π

4

)
dµ (t)

for i = 1, 3 (186)

and

θ4mqs =

=

∫
[0.8π; 0.9π]

sin

(
0.5t (3.3 + 0.2s)

0.7 + 0.1m
− π

4

)
dµ (t). (187)

It is worth noting that this finite 3-person game is rendered to a trimatrix 625 ×
256× 2401 game. Such a trimatrix game cannot be solved in a reasonable amount of

computational time because there are 384160000 pure-strategy situations (searching

for efficient situations through this number of situations would take too long).

The four trimatrix 5× 4× 7 games (181) with (182) – (187) have 30, 21, 14, 8 Pareto-

efficient situations, respectively. Therefore, there are
4∏
i=1

Ji = 30 · 21 · 14 · 8 = 70560

stacks of such situations. The respective 3-person staircase-function game by (172) –

(179) has 736 Pareto-efficient stacks (which are a subset of those 70560 ones due to

Theorem 4) presented in Figure 1, wherein a three-dimensional scatter cloud of 70560

stack payoffs {
u∗l , v

∗
l , w

∗
l

}
=

=


4∑
i=1

F
(
α∗iji , β

∗
iji , γ

∗
iji

)
,

4∑
i=1

G
(
α∗iji , β

∗
iji , γ

∗
iji

)
,

4∑
i=1

H
(
α∗iji , β

∗
iji , γ

∗
iji

)
by l = 1, 70560

can be seen as well. The single best efficient payoffs point calculated by (171) as

l∗ ∈ arg max
l=1, 736√√√√( u∗
l− min

k=1, 736
u∗
k

max
k=1, 736

u∗
k− min

k=1, 736
u∗
k

)2

+

(
v∗l − min

k=1, 736
v∗k

max
k=1, 736

v∗k− min
k=1, 736

v∗k

)2

+

(
w∗

l − min
k=1, 736

w∗
k

max
k=1, 736

w∗
k− min

k=1, 736
w∗

k

)2 (188)
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Figure 1. A three-dimensional scatter cloud of 70560 stack payoffs in the finite 3-person
staircase-function game and 736 payoffs (circles) by the efficient stacks (the best
efficient payoffs point is squared).

corresponds to the best Pareto-efficient situation, whose first, second, and third play-

ers’ strategies x∗ (t), y∗ (t), and z∗ (t), respectively, are shown in Figure 2. The best

efficient payoffs are

{
u∗l∗ , v

∗
l∗ , w

∗
l∗

}
= {u∗17, v∗17, w∗17} = {1.2129, 0.2298, −0.9461} . (189)

Note that those 736 Pareto-efficient situations are not sorted in any order, so index

l∗ = 17 does not relate to anything.

One may notice also that the third player’s best efficient payoff is negative, whereas

the payoff ranges from −1.0033 to 0.9194 and its negativity seems to be weird. The

second player’s efficient payoff ranges from −0.0308 to 0.2443, whose best efficient

payoff is only 5.949 % less than the maximum. Moreover, the first player’s efficient

payoff ranges from −0.7309 to 1.214, whose best efficient payoff is only 0.09 % less

than the maximum. So, why is the third player’s best efficient payoff so close to

its minimum rather than maximum? The explanation lies in the relative collective

utility, which after 0-1-standardization by (188) appears to be the largest just for

payoffs (189).
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Figure 2. The best efficient staircase-function strategies producing payoffs (189).

In the considered example, the first player has 625 staircase-function strategies (one

of which is shown in Figure 2). The second and third players have 256 and 2401

staircase-function strategies (see Figure 2), respectively. Even in this not-a-big exam-

ple, the total number of stacks of subinterval Pareto-efficient situations (“made” of

staircase-function strategies triples) is indeed that large (it is 70560 which is less than

0.019 % of all possible pure-strategy situations). The number of “real” Pareto-efficient

situations (it is 736) is slightly greater than 1.04 % of the total number of stacks of

subinterval Pareto-efficient situations. Therefore, the example shows that seeking for

the efficiency in a finite 3-person staircase-function game is an extremely hard com-

putational task. This task, however, is dramatically simplified by considering the

respective succession of trimatrix games. Another, concomitant, task (existing when

the conditions of Theorem 2 do not hold) is the selection of the best Pareto-efficient

situation among L (“real”) Pareto-efficient situations.

9. Discussion

The core of the method of solving 3-person games played with staircase-function

strategies consists in finding all Pareto-efficient situations in every subinterval 3-

person game. The computation time depends on the number of subintervals, i. e.,

on the “length” of the staircase-function game. Nevertheless, too lengthy staircase-

function games are rare in practice.

If a subinterval game has a single efficient situation, this helps much in solving the

staircase-function game. An efficient situation in the staircase-function game will

definitely have the single efficient situation on the given subinterval. This directly

follows from Theorem 4. The size of a finite subinterval game is defined by the sets of

possible values of players’ pure strategies. The size influences the computation time

also. In particular cases, solving a continuous subinterval game may cause consider-

able delay or be just intractable itself. Then the continuous subinterval game must be

approximated with a finite (i. e., trimatrix) game using the known techniques [16, 18].

Usually, an ordinary 3-person game has multiple Pareto-efficient situations. A 3-
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person game having a single Pareto-efficient situation is a great rarity (unless it is

a 2 × 2 × 2 game). However, this does not diminish the value of Theorem 2 whose

proof directly follows from Theorem 4. The reversibility of Theorem 2 gives a definite

practical impact. If it is known that a staircase-function game has a single Pareto-

efficient situation then, according to Theorem 3, its search is organized by the principle

of the early stop – once an efficient situation in a subinterval 3-person game is found,

the next subinterval game is solved.

It is clear that staircase-function trimatrix games are solved easier. Moreover, there is

no universal method to finding all Pareto-efficient situations in an infinite or contin-

uous 3-person game. The finite approximation may become a necessary intermediate

in solving a staircase-function game.

10. Conclusion

A finite 3-person game whose players use staircase function-strategies is rendered to

a trimatrix game owing to the finiteness of the pure strategy sets. However, a finite

3-person staircase-function game can hardly be solved as the trimatrix game because

there commonly is a gigantic and intractable number of pure-strategy situations. The

best way is to consider any 3-person staircase-function game as a succession of 3-

person games in which the players’ strategies are constants.

For a continuous (infinite) staircase-function game, where the player has a continuum

(infinite, countable or uncountable set) of staircase function-strategies, each constant-

strategy game is a classical continuous (infinite) 3-person game. For a finite staircase-

function game, each constant-strategy game is a trimatrix game whose size is likely

to be relatively small to solve it in a reasonable time.

Whichever the staircase-function game continuity is, any Pareto-efficient situation

of staircase function-strategies is a stack of successive Pareto-efficient situations in

the constant-strategy games (Theorem 4). If every constant-strategy game has a

single Pareto-efficient situation, then the staircase-function game has a single Pareto-

efficient situation (Theorem 2). The inverse assertion is correct as well (Theorem

3). If a staircase-function game has two or more Pareto-efficient situations, the best

efficient situation is one which is the farthest from the triple of the most unprofitable

payoffs. In terms of 0-1-standardization, the best efficient situation is the farthest

from the triple of zero payoffs.

The suggested method is a significant contribution to the mathematical 3-person

game theory and practice. It significantly simplifies a 3-person game played with

staircase-function strategies by just “deeinstellungizing” them [10, 16, 17, 22] (in fact,

both the game and such strategies). Thus, too complicated solutions resulting from

game continuities, pure strategy structure complexity, and equilibrium, profitability,

fairness uncertainty are avoided. The method is practically applicable owing to its

tractability and simplicity, although the efficient situations search may be optimized

for particular game classes. As pure strategies are only considered, the method fits

nonrepeatable games as well [8, 9, 13].
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The case when staircase function-strategies constitute an efficient Nash equilibrium

should be considered separately. Then it is quite interesting whether the core of

the presented assertions and conclusions changes. For their extension to a general

consideration, the case of four players and more will be studied also.
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