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Abstract: Let D be a simple connected digraph with n vertices and m arcs and

let W (D) = (D , w) be the weighted digraph corresponding to D , where the weights
are taken from the set of non-zero real numbers. Let ν1, ν2, . . . , νn be the eigenvalues

of the skew Laplacian weighted matrix S̃LW (D) of the weighted digraph W (D). In

this paper, we discuss the skew Laplacian energy S̃LEW (D) of weighted digraphs
and obtain the skew Laplacian energy of the weighted star W (K1,n) for some fixed

orientation to the weighted arcs. We obtain lower and upper bounds for S̃LEW (D)

and show the existence of weighted digraphs attaining these bounds.

Keywords: Weighted digraph, skew Laplacian matrix of weighted digraphs, skew
Laplacian energy of weighted digraphs

AMS Subject classification: 05C30, 05C50

1. Introduction

A weighted digraph W (D)(or a weighted network) is defined to be an ordered pair

(Du, w), where Du = (V,A ) is the underlying digraph of W (D) and w : A → R−{0}
is the weight function. Weight of any arc e = (u, v) is denoted by w(e). Every

digraph can be regarded as the weighted digraph with weight of each arc equal to one.

∗ Corresponding Author



380 Skew Laplacian energy of weighted digraphs

Thus weighted digraphs are generalizations of digraphs. The weight w(W (D1)) of a

weighted subdigraph W (D1) of a weighted digraph W (D) is defined as the product of

weights of the arcs of W (D1). Also, W (D1) is said to be positive or negative according

as w(W (D1)) > 0 or w(W (D1)) < 0, that is, it contains an even or odd number of

negative weighted arcs respectively. The all-positive (resp. all- negative) weighted

digraph W (D+) (resp. W (D−)) of W (D) is the weighted digraph obtained from

W (D) by replacing weight w(e) of each arc e of W (D) by |w(e)|(resp.− |w(e)|). Our

weighted digraphs will have simple underlying digraphs. For more about weighted

digraphs, see [3, 9, 10, 19].

In theoretical chemistry, E(G) corresponds to the π-electron energy of a conjugated

molecule, represented by the graph G (see [17] and the references therein). We note

that in chemical graph theory, if the underlying molecule is a hydrocarbon, then G is

a simple, unweighted graph. However, if the conjugated molecule contains atoms dif-

ferent from carbon and hydrogen (in chemistry referred to as ”heteroatoms”) then G

must possess pertinently weighted edges with orientation. These weights are usually

positive valued, but they may be negative also. Chemical theories based on weighted

digraphs and their eigenvalues have been elaborated in detail (see [15] and the ref-

erences therein). Hence the results on the energy of both unweighted and weighted

digraphs are of some chemical significance.

The adjacency matrix of a weighted digraph W (D) with vertex set {v1, v2, . . . , vn} is

the n× n matrix A(W (D)) = (aij), where

aij =

{
w(vi, vj), if there is an arc from vi to vj ,

0, otherwise.

Conversely, given an n × n matrix M = (mij) of real numbers, the weighted di-

graph W (D) of M consists of n vertices with vertex i joined to vertex j by a di-

rected arc of weight wij if and only if wij 6= 0. The characteristic polynomial

|λI − A(W (D))| of the adjacency matrix A(W (D)) of a weighted digraph W (D)

is called the characteristic polynomial of W (D) and is denoted by φW (D)(λ). The

eigenvalues of A(W (D)) are called the eigenvalues of W (D). The set of distinct eigen-

values of W (D) together with their multiplicities is called the spectrum of W (D). If

W (D) is a weighted digraph of order n with distinct eigenvalues λ1, λ2, . . . , λk and if

their respective multiplicities are m1,m2, . . . ,mk, we write the spectrum of W (D) as

spec(W(D)) = (λ
[m1]
1 , λ

[m2]
2 , . . . , λ

[mk]
k ). The following result connects the coefficients

of the characteristic polynomial of a weighted digraph W (D) with the structure and

weights of linear weighted subdigraphs of W (D) and is also known as coefficient theo-

rem for weighted digraphs [1]. Recently, Bhat [4] studied the sign alternating property

of coefficients of characteristic polynomial in some classes of weighted digraphs.

Theorem A. If W (D) is a weighted digraph with characteristic polynomial

φW (D)(λ) = λn + a1(W (D))λn−1 + · · ·+ an−1(W (D))λ+ an(W (D)),
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then

ak(W (D)) =
∑

L∈Lk

(−1)P (L)|w(L)||s(L)|,

for all k = 1, 2, . . . , n, where L ∈ Lk is the set of all linear weighted subdigraphs L of W (D)
of order k, P (L) denotes number of components of L and w(L) and s(L) respectively denote
the weight and sign of linear weighted subdigraph L.

The following result is a spectral characterization of balance in weighted digraphs [1].

Theorem B. A weighted digraph W (D) is balanced if and only if it is cospectral with all
its weighted digraph W (D+).

The rest of the paper is organized as follows. In section 2, we obtain the skew

Laplacian energy of a weighted star W (K1,n) for any orientation and with fixed

weight a real number. We also obtain upper and lower bounds for the skew Laplacian

energy S̃LEW (D) in terms of various parameters of the weighted digraph and also

discuss the extremal cases. Finally, we mention some problems for the skew Laplacian

energy of weighted digraphs for future research.

2. Skew Laplacian energy of weighted digraphs

Many results have been obtained on the skew spectra and skew spectral radii of

simple digraphs [2, 6, 8, 13, 18, 20–22]. In [12], the authors obtained that ev-

ery even positive integer is indeed the skew Laplacian energy of a digraph by

taking weight of each edge equal to 1. Now, given a simple weighted digraph

W (D) with vertex set V (W (D)) = {v1, v2, . . . , vn}, let w(di)
+ and w(di)

− de-

note respectively the out weighted degree and in weighted degree of a vertex vi
in W (D). Denote D+W (D) = diag

(
w(d1)+, w(d2)+, . . . , w(dn)+

)
and D−W (D) =

diag
(
w(di)

−, w(d2)−, . . . , w(dn)−
)

and define D̃W (D) = D+W (D) − D−W (D) =

diag(w(d1)+ − w(d1)−, w(d2)+ − w(d2)−, . . . , w(dn)+ − w(dn)−). Also, let A+W (D)

be the n× n matrix, where aij = w if (vi, vj) is a weighted arc of W (D) and 0 other-

wise and A−W (D) be the n× n matrix, where aij = w if (vj , vi) is a weighted arc of

W (D) and 0 otherwise. Clearly, A−W (D) = (A+W (D))T (i,e in-adjacency matrix is

equal to the transpose of the out adjacency matrix of a weighted digraph).

The skew adjacency matrix of a weighted digraph W (D) with vertex set V =

{v1, v2, . . . , vn} is the n× n matrix S(W (D)) = (aij), where

aij =


w(vi, vj), if there is an arc from vi to vj ,

−w(vi, vj), if there is an arc from vj to vi,

0, otherwise.
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We define a new kind of skew Laplacian weighted matrix S̃LW (D) of W (D) in a

similar way as defined in [5] by

S̃LW (D) = (D+W (D)−A+W (D))− (D−W (D))−A−W (D))

= (D+W (D)−D−W (D))− (A+W (D)−A−W (D))

= D̃W (D)− SW (D)

Let ν1, ν2, . . . , νn be the eigenvalues of the skew Laplacian weighted matrix

S̃LW (D) = D̃W (D) − SW (D). Since S̃LW (D) is not symmetric, the eigenval-

ues need not be always real. However, we have the following observations about the

eigenvalues of S̃LW (D).

Lemma 1. The sum of the eigenvalues of S̃LW (D) is zero.

Proof. The proof of the lemma is simple as
n∑
i=1

νi = trace(S̃LW (D)) =
n∑
i=1

(w(di)
+−

w(di)
−) = 0.

Lemma 2. 0 is an eigenvalue of S̃LW (D) with multiplicity at least η, the number of
components of W (D).

Proof. Let Ω(S̃LW (D)) denote the set of all eigenvalues of the skew Laplacian

matrix S̃LW (D). Assume that W (C1),W (C2), . . . ,W (Cη) are the components of

W (D). Clearly, Ω(S̃LW (D)) =
⋃η
i=1Ω(S̃LW (Ci)). To prove the result, it suffices

to show that 0 ∈ Ω(S̃LW (Ci)), for 1 ≤ i ≤ η. Clearly in the induced weighted

subdigraph W (Ci), since sum of the weights in each row of S̃LW (Ci) is zero, therefore

zero is an eigenvalue of S̃LW (Ci) with corresponding eigenvector [1, 1, · · · , 1]T .

Gutman and Shao [15] and Gutman [14] defined energy of a weighted graph and

energy of simple graphs respectively as the sum of absolute values of its eigenvalues.

We extend the concept of skew Laplacian energy of digraphs to skew Laplacian energy

of weighted digraphs. In [7, 11], the authors have obtained various bounds for the

energy of weighted graphs and bounds for the skew Laplacian energy of weighted

digraphs.

Definition 1. Let W (D) be a simple weighted digraph on n vertices and m weighted
arcs. The skew Laplacian energy of W (D) is defined as

S̃LEW (D) =

n∑
i=1

|νi|,

where ν1, ν2, . . . , νn are the eigenvalues of the skew Laplacian weighted matrix S̃LW (D) =

D̃W (D)− SW (D) of W (D).
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Let D be a digraph and W (D) be the weighted digraph with weight of each arc equal

to one. Then S̃LEW (D) = S̃LE(D). This is one of the motivations that Definition

1 generalizes skew Laplacian energy of digraphs.

Theorem 1. If W (D) is an Eulerian weighted digraph, then S̃LEW (D) = EsW (D),
where EsW (D) is the skew energy of weighted digraph D.

Proof. Since W (D) is Eulerian, the weighted out-degree and the weighted in-degree

are equal for each vertex in W (D), and so D̃W = 0, which implies in S̃LW (D) =

−SW (D) and hence S̃LEW (D) = EsW (D).

We obtain the skew Laplacian energy of a weighted star for any orientation and as a

consequence we show that every even positive integer is indeed the skew Laplacian

energy of some weighted digraph.

Theorem 2. For the weighted star W (K1,n) of order n+1, we have S̃LE(K1,n) = 2(n−
1)w, if all the arcs have same weight w and are oriented towards or away from the center,

and S̃LE(K1,n) = (n−2)w+
√

(nw − 2kw)2 − 4(n− 1), otherwise, where k, 1 ≤ k ≤ n−1,
is the number of weighted arcs oriented towards the center.

Proof. Let V (K1,n) = {v1, v2, . . . , vn+1} be the vertex set of K1,n. If vn+1 is the

center of K1,n, orient all the weighted edges toward vn+1. Then

S(K1,n) =


0 0 · · · 0 w

0 0 · · · 0 w
...

... · · ·
...

...

0 0 · · · 0 w

−w w · · · −w 0

 and D̃W (K1,n) =


w 0 · · · 0 0

0 w · · · 0 0
...

... · · ·
...

...

0 0 · · · w 0

0 0 · · · 0 −nw

 .

Therefore,

S̃LW (K1,n) =


w 0 · · · 0 −w
0 w · · · 0 −w
...

... · · ·
...

...

0 0 · · · w −w
w w · · · w −nw

 .

It is easy to see that the eigenvalues of this weighted matrix are {−(n−1)w, 0, w[n−1]},
and so S̃LEW (K1,n) = 2(n−1)w. On the other hand, if we orient the weighted edges
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away from vn+1, then it can be seen that

S̃LW (K1,n) =


−w 0 · · · 0 w

0 −w · · · 0 w
...

... · · ·
...

...

0 0 · · · −w w

−w −w · · · −w nw

 ,

having eigenvalues {(n− 1)w, 0,−w[n−1]}, so S̃LEW (K1,n) = 2(n− 1)w. Thus, for a

directed weighted star W (K1,n), we have S̃LEW (K1,n) = 2(n− 1)w.

If all the weighted edges of the weighted star W (K1,n) are oriented away from the

center vn+1 except k, 1 ≤ k ≤ n− 1, weighted edges which are oriented towards the

center vn+1, then it can be seen that the skew Laplacian matrix of W (K1,n) is

S̃LW (K1,n) =



w 0 · · · 0 0 · · · 0 −w
0 w · · · 0 0 · · · 0 −w
...

... · · ·
...

... · · ·
...

...

0 0 · · · w 0 · · · 0 −w
0 0 · · · 0 −w · · · 0 w
...

... · · · 0 0 · · ·
...

...

0 0 · · · 0 0 · · · −w w

w w · · · w −w · · · −w (n− 2k)w


.

By direct calculation, it can be seen that the skew Laplacian weighted characteristic

polynomial of this matrix is

x(x− w)k−1(x+ w)n−k−1 ×
(
x2 − (nw − 2kw)x+ n− 1

)
and so its eigenvalues are

{0, w[k−1],−w[n−k−1],
nw−2kw+

√
(nw−2kw)2−4(n−1)

2 ,
nw−2kw−

√
(nw−2kw)2−4(n−1)

2 }.
Therefore, S̃LEW (K1,n) = (n − 2)w +

√
(nw − 2kw)2 − 4(n− 1). Thus, we have

S̃LEW (K1,n) = 2(n − 1)w, if all the weighted edges are oriented towards or

away from the center, and S̃LEW (K1,n) = nw − 2w +
√

(nw − 2kw)2 − 4(n− 1),

otherwise, where k, 1 ≤ k ≤ n − 1 is the number of edges oriented towards the

center. This completes the proof.

For a weighted digraph with n vertices, m weighted arcs with weights ω1, ω2, . . . , ωm
having vertex out-degrees w(di)

+ and vertex in-degrees w(di)
−, i = 1, 2, . . . , n, let

M = −
m∑
i=1

ω2
i +

1

2

n∑
i=1

(
w(di)

+ − w(di)
−)2 and M1 = M + 2

m∑
i=1

ω2
i =

m∑
i=1

ω2
i +
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1

2

n∑
i=1

(
w(di)

+ − w(di)
−)2. Clearly, M1 ≥

m∑
i=1

ω2
i , with equality if and only if W (D) is

Eulerian.

We now obtain the lower and upper bounds for skew Laplacian energy of weighted

digraphs S̃LEW (D) in terms of the number of vertices n, the number of components

P, M and M1 and also show that the left and right inequality holds for some family

of graphs.

Theorem 3. Let W (D) be a simple weighted digraph with n vertices, m weighted arcs
and P components. Assume that w(di)

+ and w(di)
− respectively are the weighted out-degree

and the weighted in-degree of the vertex vi, i = 1, 2, . . . , n and ν1, ν2, . . . , νn are the skew
Laplacian weighted eigenvalues of W (D). Then

2
√
|M | ≤ S̃LEW (D) ≤

√
2M1(n−P).

Moreover the inequality on the left holds if and only if for each pair of νi1νj1 and νi2νj2 (i1 6=
j1, i2 6= j2), there exists a non-negative real number z such that νi1νj1 = zνi2νj2 ; and for
each pair of ν2i1 and ν2i2 , there exists a non-negative real number l such that ν2i1 = lν2i2 . Also
the inequality on the right holds if and only if D is 0-regular or for each vi ∈ V (D), w(di)

+ =

w(di)
−, and the eigenvalues of S̃LW (D) are 0[p], (αi)[

n−p
2

], (−αi)[
n−p

2
] (α > 0).

Proof. Let ν1, ν2, . . . , νn be the eigenvalues of the skew Laplacian weighted matrix

S̃LW (D) = D̃W (D) − SW (D), where D̃W (D) = diag(w(d1)+ − w(d1)−, w(d2)+ −
w(d2)−, . . . , w(dn)+ − w(dn)−) and SW (D) = [swij ] (where [swij ] are the entries of

the matrix SW (D)) is the skew adjacency weighted matrix of D . Therefore, from

Lemma 1, we have

n∑
i=1

νi =

n∑
i=1

[w(di)
+ − w(di)

−] = 0 (1)

Also, note that

∑
i<j

νiνj =
∑
i<j

det

(
w(di)

+ − w(di)
− swij

−swji w(dj)
+ − w(dj)

−

)

=
∑
i<j

[
[w̃(di)w̃(dj)] + [swij ]

2
]
, where w̃(di) = w(di)

+ − w(di)
−

=
∑
i<j

[w̃(di)w̃(dj)] +

m∑
i=1

ω2
i .

Therefore, ∑
i 6=j

νiνj = 2
∑
i<j

νiνj = 2
[∑
i<j

[w̃(di)w̃(dj)]
]

+ 2

m∑
i=1

ω2
i

=
∑
i 6=j

[w̃(di)w̃(dj)]
]

+ 2

m∑
i=1

ω2
i . (2)
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Hence, from (1) and (2), we get

n∑
i=1

ν2i =
( n∑
i=1

νi
)2 −∑

i6=j

νiνj

=
[ n∑
i=1

w̃(di)
]2 − [∑

i6=j

[w̃(di)w̃(dj)] + 2

m∑
i=1

ω2
i

]
=

n∑
i=1

[
w̃(di)

]2 − 2

m∑
i=1

ω2
i = 2M . (3)

Let S̃LW (D) = (wsij). By Schur’s Unitary triangularization theorem [16], there

exists a unitary matrix U such that U∗S̃LW (D)U = T, where T = (tij) is an upper

triangular matrix with diagonal entries tii = νi, i = 1, 2, . . . , n.

Therefore,

n∑
i,j=1

|swij |2 =

n∑
i,j=1

|tij |2 ≥
n∑
i=1

|νi|2. (4)

This implies that

n∑
i=1

|νi|2 ≤
n∑

i,j=1

|swij |2 =

n∑
i=1

(w̃(di))
2 + 2

m∑
i=1

ω2
i = 2M1.

Without loss of generality, assume that |ν1| ≥ |ν2| ≥ . . . |νn|. As νn−i = 0, for

i = 1, 2, . . . ,P − 1, by Cauchy-Schwarz Inequality, we get

S̃LEW (D) =

n∑
i=1

|νi| ≤

√√√√(n−P)

n−P∑
i=1

|µi|2 =

√√√√(n−P)

n∑
i=1

|µi|2

≤
√

2M1(n−P), (5)

which proves the right inequality.

Now we prove the left-hand inequality. Since
n∑
i=1

νi = 0,
n∑
i=1

ν2i +2
∑
i<j

νiνj = 0, using

(3), we have 2
∑
i<j

νiνj = −2M , and so

2|M | = 2|
∑
i<j

νiνj | ≤ 2
∑
i<j

|νi||νj |. (6)

Using (3), we get

2|M | = |
n∑
i=1

ν2i | ≤
n∑
i=1

|νi|2. (7)
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Hence,

(S̃LEW (D))2 =(

n∑
i=1

|νi|)2 =

n∑
i=1

|νi|2 + 2
∑
i<j

|νi||νj | ≥ 4|M |,

so that

S̃LEW (D) ≥ 2
√
|M |.

To see that the left and the right inequalities of the above theorem are sharp, we

proceed as follows.

Let W (D) = W (K2n,2n) be a weighted digraph with weight of each edge ω. We

assume that {A,B} is the partite set of W (D). We divide A into two disjoint sets

A1, A2 such that |A1| = |A2| = n and similarly B into B1, B2 such that |B1| = |B2| =
n. The weighted arc set is {(x1, y1) : x1 ∈ A1, y1 ∈ B1, w(x1, y1) = ω}∪{(x2, y2) : x2 ∈
A2, y2 ∈ B2, w(x2, y2) = ω} ∪ {(y1, x2) : y1 ∈ B1, x2 ∈ A2, w(y1, x2) = ω} ∪ {(y2, x1) :

x1 ∈ A1, y2 ∈ B2, w(y2, x1) = ω}. It can be easily seen that w(di)
+ = w(di)

− for

each vertex vi in W (D). So we get 2
√
|M | = 2

√
mω = 4nω, and the skew Laplacian

weighted matrix of W (D1) is

S̃LW (D1) =


0 0 −Jω Jω

0 0 Jω −Jω
Jω −Jω 0 0

−Jω Jω 0 0

 ,

where J is the n× n matrix in which each entry is 1. Therefore, the skew Laplacian

weighted characteristic polynomial W (P )
S̃L

(W (D1;λ)) = det(λI − S̃LW (D1)) =

λ4n−2(λ2 +4n2ω2) and the eigenvalues of S̃LW (D1) are 2nωi,−2nωi, [0]4n−2. Hence,

the skew Laplacian weighted energy of W (D1) is 4nω, which shows that the lower

bound is sharp.

From Schur’s unitary triangularization theorem [16], we know that T = (tij) is a diag-

onal matrix if and only if S̃LW (D) is a normal matrix. That is, S̃LW (D)S̃L
∗
W (D) =

S̃L
∗
W (D)S̃LW (D). Since S̃LW (D) = D̃W (D) − SW (D) and S̃L

∗
W (D) =

D̃W (D) + SW (D),

(D̃W (D)− SW (D))(D̃W (D) + SW (D))

= (D̃W (D) + SW (D))(D̃W (D)− SW (D)).

This implies that SW (D)D̃W (D) = D̃W (D)SW (D).

Comparing the element on the ith row and the jth column of the matrices on both

sides, we arrive at

swij(w(dj)
+ − w(dj)

−) = (w(di)
+ − w(di)

−)swij . (8)
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If vi and vj are not adjacent, then swij = 0 and so (8) always holds. Assume that vi
and vj are adjacent, then swij 6= 0 and so (8) gives

w(di)
+ − w(di)

− = w(dj)
+ − w(dj)

−.

Let W (C1),W (C2), . . . ,W (CP) be the components of the weighted digraph W (D).

As W (Ck), 1 ≤ k ≤ P, is connected, there is a weighted path between any two

vertices. Let W (P) : u = v0, v1, . . . , vt = y be a weighted path between u and w in

W (Ck). Since for any two connected vertices in W (D), the difference between the

weighted out-degree and the weighted in-degree is same, it follows that w(d)+(u) −
w(d)−(u) = w(d)+(y)−w(d)−(y), for all u, y ∈W (Ck). Therefore, using the fact that∑
v∈W (Ck)

(w(d)+(v)−w(d)−(v)) = 0, it follows that w(d)+(v)−w(d)−(v) = 0, for all

v ∈W (Ck). That is, wd+i = wd−i , for all vi ∈W (D), giving that D̃W (D) = 0 and so

S̃LW (D) = −SW (D). From Lemma 2, we know that 0 is an eigenvalues of S̃LW (D)

with multiplicity at least P and 0 is also an eigenvalue of S̃LW (Ck), k = 1, 2, . . . ,P,

with multiplicity at least 1.

If t = |ν1| and |ν2| = · · · = |νn−P | = 0, then we must have t = 0. For if t > 0, using

the fact that the eigenvalues of S̃LW (D) are either zero or purely imaginary, it follows

that the spectrum of S̃LW (D) is {itω,−itω, 0[n−1]}, which is not possible as order of

WD is n. Therefore, we must have t = 0 and so the spectrum of S̃LW (D) contains

0 with multiplicity n. Since w(di)
+ = w(di)

−, for all vi, it follows that W (D) is a

0-regular weighted digraph.

If t = |ν1| and |ν2| = · · · = |νn−P | = α, α > 0, then we must have

t = α. For if t > α > 0, using the fact that the eigenvalues of S̃LW (D)

are either zero or purely imaginary, it follows that the spectrum of S̃LW (D) is

{itω,−itω, (iαω)[
n−P−1

2 ], (−iαω)[
n−P−1

2 ], 0[P]}, which is not possible as order of

W (D) is n. Therefore, we must have t = α and so the eigenvalues of S̃LW (D) are

{(iαω)[
n−P

2 ], (−iαω)[
n−P

2 ], 0[P]}. Now we show the existence of weighted digraphs

in which the right inequality holds.

Let W (D2) = W (K3) ∪ W (K3) ∪ W (K3) ∪ W (K1) ∪ W (K1), where W (K3) is a

weighted oriented graph with the weighted arc set {(1 → 2), (2 → 3), (3 → 1)}
and weight of each arc equal to 5. The eigenvalues of the skew Laplacian weighted

matrix S̃LW (D2) are [8.6603i]3, [−8.6603i]2, [0]5. Hence S̃LW (D2) = 51.9618 and√
2M1(11− 5) =

√
2× 9× 52(11− 5) = 51.9618, which implies that the right in-

equality is also sharp for such types of weighted digraph. This completes the proof.

Corollary 1. Let W (D) be a simple weighted digraph with P components

W (C1),W (C2), . . . ,W (CP). If S̃LEW (D) =
√

2M1(n−P), then each component W (Ci)
is Eulerian (weighted oriented degree at each vertex is same) with odd number of vertices.

Proof. If W (D) is 0-regular, then each weighted component of the weighted digraph

W (D) is an isolated vertex with total weight equal to zero, which automatically

satisfies the given condition.
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Case 2. Now, if w(di)
+ = w(di)

−, for each vertex vi ∈ V (W (Ck)) and hence W (Ck) is

Eulerian. Also, the eigenvalues of S̃LW (D) are [0]P , [αi]
n−P

2 , [−αi]n−P
2 (α > 0). It

shows that for each component W (Ck), [0]1 is an eigenvalue of S̃LW (Ck) and all the

other eigenvalues are αi and −αi which appear in pairs. It follows that the number

of vertices in W (Ck) is odd. Hence the result.

We conclude this paper with the following problems which will be of interest for the

future research.

Problem 1. Interpret the coefficients of the weighted characteristic polynomial of
S̃LW (D) in terms of structure of the weighted digraph W (D).

Problem 2. Establish possible relations between the largest and smallest skew Laplacian
eigenvalue of a weighted digraph W (D) with the parameters associated with the weighted
digraph.

Problem 3. For any orientation and giving any weight to the arcs of W (D) give the
complete description for the skew Laplacian weighted energy of the weighted cycle W (Cn).
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