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Abstract: The 2S3 transformation, which was first described for positive integers,

has been defined for dyadic rational numbers in the open interval (0, 1) in this study.

The set of dyadic rational numbers is a Prüfer 2-group. For the dyadic 2S3 transforma-
tion Tds(x), the restricted multiplicative and additive properties have been established.

Graph parameters are used to generate more combinatorial outcomes for these prop-

erties. The relationship between the SM dyadic sum graph’s automorphism group and
the symmetric group has been investigated.
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1. Introduction

In group theory, Prüfer p-groups were introduced by Henz Prüfer, a German Math-

ematician of the early 20th century. The Prüfer p-group or the p-quasi cyclic group

for a prime number p is the unique p-group in which every element has p different pth

roots. These are countable abelian groups and are used in the classification of infinite

abelian groups. They form the smallest building blocks of all divisible groups. The

graphs considered here are finite and simple, unless explicitly stated. Let G = (V,E)

be a graph. We denote by V and E the vertex set and the edge set of G, respectively.

A homomorphism from a graph G to a graph H is a mapping f from the vertex set of
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412 2S3 transformation for dyadic fractions

G to that of H such that the mapping preserves edges, that is, if for any edge (u, v)

of G, (f(u), f(v)) is an edge of H. If the mapping f is a bijective, then it is called an

isomorphism. An automorphism [3] of graph G is an isomorphism with itself.

Modern computers use different number systems like binary number systems and bal-

anced ternary number systems. The “Setun computer” built in the year 1958 by a

Soviet university in Russia was based on the balanced ternary number system. The

combinatorial structures of these two number systems were studied [9] using graph-

theoretical methods. These combinatorial structures were established as two families

of SM sum graphs and SM balancing graphs. For a fixed positive integer n, consider

the set Pn = {2m : m is an integer, 0 ≤ m ≤ n− 1}. Let Mn = {1, 2, 3, . . . , 2n − 1},
then Pc

n = Mn−Pn. Any positive integer x < 2n and not in Pn can be expressed as

the sum of two or more distinct elements of Pn. If x =
∑
xi with distinct xi ∈Pn,

then each xi is called an additive component of x. The simple graph SM(
∑

n) [9]

is defined as a graph with vertex set {u1, u2, . . . , u2n−1} and adjacency of vertices

defined by: two distinct vertices ui and uj are adjacent if either i is an additive

component of j or j is an additive component of i. The combinatorial structure of

the binary number system is established distinctively by using the graph SM(
∑

n).

Moreover, the low weight polynomial form [2] of integers that was used in elliptical

curve cryptography is related to the polynomial form of x. The Hamming weight

of a string was defined as the number of 1’s in the string of 0 and 1. The number

of zeros in the binary representation of x ∈ Pc
n = 1 +

⌊
lnx

ln 2

⌋
− degvx∈V vx. Also,

consider the set Tn = {3m : m is an integer, 0 ≤ m ≤ n−1} for a fixed integer n ≥ 2.

Any positive integer y ≤ 1
2 (3n − 1), which is not a power of 3 can be expressed as

a linear combination of two or more distinct elements of the set Tn with coefficients

−1, 0 or 1. The relation between y and the elements of Tn is utilized to form a new

class of graphs called nthSM balancing graphs denoted as SM(Bn) [9].

The discrete 2S3 transformation [8] was defined by using these two graphs. It pos-

sesses typical multiplicative and additive properties. The SM dyadic sum graph

SMF (
∑

n) and the SM dyadic balancing graph SMF (Bn) are defined in the same

way as SM sum graphs and SM balancing graphs in this work, with the goal of merg-

ing these graphs with some graph operations to cover the whole real number system

in future work. The concept of discrete 2S3 transformation is extended for dyadic ra-

tional numbers in (0, 1). In 2011, a study of the Hausdorff dimension of the maximal

run-length in dyadic expansion was done by Ruibiao and Zou [12]. Also, a study on

Null sets for doubling and dyadic doubling measures was done by Jang-Mei and Wu

[11]. A Balanced ternary adder using recharged semi-floating gate devices have been

presented by Henning Gundersen and Yngvar Berg in 2006 [4].

2. Basic definitions and results

A dyadic fraction or dyadic rational number in a real number system whose denom-

inator is a power of two when the ratio is in minimum (co-prime) terms. That is, a
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number of the form
x

y
, where x is an integer and y is a natural number of the form

2n for some positive integer n. Examples are 1
22 or 3

24 , but not 1
3×23 . These dyadic

numbers are precisely the numbers possessing a finite binary representation. Their

binary expansions are not unique; each has a finite and infinite representation. How-

ever, only their finite binary representations are considered here. A study on integer

partitions and Bell number was done by Kok et. al [5]. Now let us see the definition

of the 2S3 transformation.

Definition 1 ([8]). Let Pn = {2m : m is an integer, 0 ≤ m ≤ n − 1} for

a fixed integer n ≥ 2. Let x < 2n be a positive integer. Then x =
n∑
1

xi , with

xi = 0 or 2m, for some integer m, 0 ≤ m ≤ n − 1 and xi’s are distinct. Each xi 6= 0
and xi ∈ Pn is an additive component of x. Let N be the set of all natural numbers. We
define a transformation Ts : N ′ → N such that

Ts(x) =

n∑
1

x∗i , (1)

where N ′ = {1, 2, 3, 4, ..., n} and each x∗i is obtained by converting xi from the base 2 to
base 3. This transformation is called 2S3 transformation.

Some examples of the 2S3 transformation are given below.

Example 1. Let x = 6 = 21 + 22. Then Ts(x) = 31 + 32 = 12. Also, when x = 35 =
20 + 21 + 25, then Ts(x) = 30 + 31 + 35 = 247.

Definition 2. [8] Let xi, xj 6= 0 and xi, xj ∈Pn be additive components. Let a =
t∑

i=1

aixi

and b =
r∑

j=1

bjxj be two positive integers with ai, bj ∈ {0, 1}, for some positive integers t and

r. The two integers a and b are called component independent numbers if aibj 6= akbs for all
i 6= k , j 6= s. Otherwise, they are called component dependent numbers.

Two integers a and b are component independent numbers if there is no term with

coefficient 2(ajbk−j) in the multiplied form of a× b.

Definition 3. Let S = {x ∈ R : 0 ≤ x < 1}. Let ◦ : S × S → S be the operation defined
as x ◦ y = x+ y − bx+ yc. The operation ◦ is the binary operation addition modulo 1.

Let Sn = {1, 2, · · · , n}, for an integer n > 1. For any two integers k ≥ 1 and

n ≥ 2k + 1, the bipartite Kneser graph [6] H(n, k) has all the k-element subsets and

all the (n− k)-element subsets of Sn as vertices, and two vertices are adjacent if and

only if one of them is a subset of the other. Here we define the bipartite Kneser type-1

graph as follows.
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Definition 4. [10] Let Sn = {1, 2, 3, . . . , n} for a fixed integer n > 1. Let φ(Sn) be
the set of all non-empty subsets of Sn. Let V1 be the set of 1- element subsets of Sn and
V2 = φ(Sn)− V1. Define a bipartite graph with adjacency of vertices as: a vertex A ∈ V1 is
adjacent to a vertex B ∈ V2 if and only if A ⊂ B. This graph is called a bipartite Kneser
type-1 graph.

3. SM Dyadic sum graph and SM Dyadic balancing graph

We define the SM dyadic sum graph and SM dyadic balancing graph for dyadic

fractions and some other rational numbers in the interval (0, 1). The concept can

then be applied to all real numbers with a finite binary representation. Also, we

consider rational fractions in their simplest form in (0,1), where the numerator can

be written as a sum or difference of powers of 3.

Definition 5. If x ∈ (0, 1) is a dyadic fraction of the form
r

2n
(when the ratio is in minimal

terms) where the numerator is a positive integer which is not a power of 2 and r < 2n, n is a

positive integer, then x =
n∑
1

xi , with xi = 0 or 1
2m
, for some integer m, 1 ≤ m ≤ n and

xi’s are distinct. Here we call each xi 6= 0 as a dyadic additive component (Dac) of x.

Definition 6. For a fixed integer n ≥ 2, define a simple graph SMF (
∑

n), called the SM
dyadic sum graph, with vertex set {vi : i = k

2n
, k = 1, 2, 3, . . . , 2n − 1} and adjacency of

vertices defined by: two distinct vertices vi and vj are adjacent if either i is a dyadic additive
component of j, or j is a dyadic additive component of i.

We can see that the graph SMF (
∑

n) is a connected bipartite graph. The graph

SMF (
∑

n) is isomorphic to the bipartite Kneser type-1 graph for each n. The chro-

matic number [7] of this graph is 2. Let V n = {i : i = k
2n , k = 1, 2, 3, . . . , 2n − 1}

be the vertex set(on relabelling) of the graph SMF (
∑

n). Then V n
⋃
{0} is a Prüfer

2-group for each n > 2 under the operation addition modulo 1. The independence

number of the graph SMF (
∑

n) is 2n − n− 1 for all n ≥ 2.

Definition 7. Let Wn = { 1

3m
: m is an integer, 1 ≤ m ≤ n} for a fixed integer n ≥ 2.

Let S = {−1, 0, 1}. Let x be any number in (0, 1), x ≤ 1

2× 3n
(3n−1), of the form

f

3n
(when

the ratio is in minimal terms) in which numerator f is an integer and is not a power of 3.
Then x can be expressed as

x =

n∑
j=1

βjyj , (2)

where βj ∈ S and yj ∈ Wn , yj ’s are distinct. Each yj such that βj 6= 0 is called a
dyadic balancing component of x. Let Θn = {x : equation (2) holds} and Θ+

n = {x :

equation (2) holds and βj ∈ {0, 1}}. If W 0
n = { 1

3m
: m is an integer, 0 ≤ m ≤ n}, then

equation (2) holds for more numbers in (0,1).
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Definition 8. For a fixed integer n ≥ 2, let Wn = { 1

3m
: m is an integer, 1 ≤ m ≤

n}. Consider the simple digraph G = (V,E), where the vertex set V = {vi : i = k
3n

,
k = 1, 2, 3, . . . , 1

2
(3n − 1)} and adjacency of vertices defined by: for two distinct vertices vx

and vyj , (vx, vyj ) ∈ E if equation (2) holds, βj = −1, and (vyj , vx) ∈ E if equation (2)
holds, βj = 1. This digraph G is called the SM dyadic balancing digraph, SMFD(Bn). Its
underlying undirected graph is called the SM dyadic balancing graph, SMF (Bn).

Definition 9. Let Wn = { 1
3m

: m is an integer, 1 ≤ m ≤ n} for a fixed integer n ≥ 2.
Consider the simple digraph G=(V,E), where the vertex set V = {vi : i ∈ Θ+

n }
⋃

Wn and
adjacency of vertices defined by, for two distinct vertices vx and vyj , vx is adjacent to vyj
if equation (2) holds and βj = 1. This directed graph is called the SM dyadic P balancing
digraph, SMFD(B+

n ). The underlying undirected graph is called SM dyadic P balancing
graph, SMF (B+

n ).

Lemma 1. If G = SMF (
∑

n), Dn = { 1
2m

: m is an integer, 1 ≤ m ≤ n}, then

d(vi, vj) =


1 , if i is a Dac of j or j is a Dac of i.

2 , if i, j ∈ Dn or i, j 6∈ Dn, i and j have at least one common Dac.

3 , if neither i nor j is a Dac but exactly one of them belongs to Dn.

4 , if i, j 6∈ Dn, i and j have no common Dac.

Proof. It is easy to see that the graphs SMF (
∑

n) and SM(
∑

n) are isomorphic for

each n ≥ 2. Since the isomorphism preserves the distances in the graphs, the lemma

is proved.

Theorem 1. Suppose G = SMF (
∑

n) for all n ≥ 2, then the diameter of G is n when
n = 2 or 3 and the diameter of G is 4 when n ≥ 4.

Proof. The proof follows from Lemma 1.

Proposition 1. Let G = SMF (
∑

n) be an nth SM dyadic sum graph. Then the number

of unordered pairs of vertices for which d(vi, vj) = 4 is given by δn =
1

2

n−2∑
r=2

[(
n
r

) n−2∑
k=2

(
n−r
k

)]
.

Proof. From Lemma 1, we have that d(vi, vj) = 4 when i, j 6∈ Dn, i and j have

no common dyadic additive components. The number of such unordered pairs is the

same as the number of pairs of pairwise disjoint subsets of Dn excluding the empty

set and singleton sets. Hence the result.

Theorem 2. The automorphism group of SMF (
∑

n) is isomorphic to the symmetric
group Sn for all n ≥ 3.
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Proof. Let G = SMF (
∑

n), n ≥ 3. Let Q = {i : vi ∈ V (G)}. The graph G

has bipartite partition sets V1 = {vi : i ∈ Dn} and V2 = {vj : j ∈ Dc
n}, where

Dn = { 1
2m

: m is an integer, 1 ≤ m ≤ n} and Dc
n = Q − Dn. All the vertices

of V1 are of the same degree 2n−1 − 1 and the vertices of V2 are not of the same

degree and has a degree sequence {2((n
2))
, 3((n

3))
, . . . , n((n

n))}, for n > 2. There are(
n
2

)
vertices of degree 2 and

(
n
3

)
vertices of degree 3 and so on. Also, each vertex in

V1 has a neighbourhood with degree sequence {2((n−1
1 )), 3((n−1

2 )), . . . , n((n−1
n−1))

}. Here

Dn = { 1
2m

: m is an integer, 1 ≤ m ≤ n} is one of the orbits. If we fix any permutation

of the vertices of V1, this fixes how the vertices from V2 must be permuted to give an

automorphism. So we get as many automorphisms as the number of permutations of

elements of V1 which results in n! automorphisms including the trivial automorphism.

On the other hand, no automorphisms can result from swapping the vertex from the

first bipartite set and second bipartite set because unless such a swap is done in its

entirety, the adjacency will be lost. A swap can be done in entirety only if |V1| = |V2|
which is not the case here as G is not a complete bipartite graph as well. Therefore

we get that the number of automorphisms is n!.

But for n = 2, Aut(G) is an abelian group.

Claim. The automorphism group of G is non-abelian for all n > 2.

Now we have to prove that Aut(G) is a non-abelian group for all n > 2. Let

α and β be any two non-trivial distinct automorphisms of G as follows: α =(
1 2 3 4 · · · n
3 2 1 4 · · · n

)
, β =

(
1 2 3 4 · · · n
2 1 3 4 · · · n

)
, then αβ =

(
1 2 3 4 · · · n
2 3 1 4 · · · n

)

and βα =

(
1 2 3 4 · · · n
3 1 2 4 · · · n

)
. Therefore Aut(G) is non-abelian. So we get that

the automorphism group of SMF (
∑

n) is isomorphic to Sn for all n ≥ 3. Hence the

theorem.

4. Dyadic 2S3 transformations and their properties

Only positive integers were used to define the 2S3 transformation. We are now

extending the idea of this discrete transformation for all dyadic fractions in the interval

(0,1). For the dyadic 2S3 transformation Tds(x), the restricted multiplicative and

additive properties have been determined. To generate more combinatorial outcomes

for these features, graph parameters are used. The automorphism group of the SM

dyadic sum graph and the symmetric group have previously been explored in the

preceding section.

Definition 10. Let Dn = { 1
2m

: m is an integer, 1 ≤ m ≤ n} for a fixed integer n ≥ 2.
Let Nd be a set of all dyadic rational numbers in the open interval (0, 1). Then for each

x ∈ Nd , x =
n∑
1

xi , with xi = 0 or 1
2m
, for some integer m, 1 ≤ m ≤ n and xi’s are

distinct. Each xi 6= 0 and xi ∈ Dn is a dyadic additive component of x. We define a
transformation Tds : Nd → (0, 1) such that Tds(x) =

∑n
1 x
∗
i , where each x∗i is obtained
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by changing the base 1
2

of xi to base 1
3
. This transformation function is called dyadic 2S3

transformation .

The following example describes the dyadic 2S3 transformation.

Example 2. Let x = 0.75 = 1
2

+ 1
22

. Then Tds(x) = 1
3

+ 1
32

= 4
9
.

If x =
7

8
= 1

2
+ 1

22
+ 1

23
, then Tds(x) = 1

3
+ 1

32
+ 1

33
= 13

27
.

Definition 11. Let x, y ∈ (0, 1) be two dyadic fractions, then for some positive integers

k and r, x =
k∑
1

xi and y =
r∑
1

xi with xi = 0 or 1
2m
, for some 1 ≤ m ≤ n, for a fixed integer

n ≥ 2 and xi’s are distinct. Here we call each xi 6= 0 as a dyadic additive component of x
or y accordingly. If the terms in the dyadic additive component expansion of x are different
from that of y, then x and y are called additive distinct dyadic fractions.

Definition 12. Let xi, xj 6= 0 and xi, xj ∈ Dn be the dyadic additive components.

Let χ1 =
t∑

i=1

αixi and χ2 =
r∑

j=1

βjxj be two dyadic fractions in (0, 1) with αi = 0 or 1 and

βj = 0 or 1 , for some positive integers t and r. Two numbers χ1 and χ2 are called component
independent dyadic rational numbers if αiβj 6= αkβs for all i 6= k , j 6= s. Otherwise, they
are called component dependent dyadic rational numbers.

Example 3. Consider two numbers 0.75 = 1
2

+ 1
22

and 0.5 = 1
2
.

When we multiply component-wise, 0.75 × 0.5 = ( 1
2

+ 1
22

). 1
2

= 1
22

+ 1
23

. Since there is no
term of the form 2(αjβk−j), the dyadic fractions 0.75 and 0.5 are component independent
dyadic rational numbers.
Now consider another two numbers 0.75 and 0.375. Then 0.75 = 1

2
+ 1

22
and 0.375 = 1

22
+ 1

23
.

On multiplying component-wise, we get, 0.75× 0.375 = ( 1
2

+ 1
22

).( 1
22

+ 1
23

) = 1
23

+ 2. 1
24

+ 1
32

.
Since there exists a term (second term) of the form 2(αjβk−j), the dyadic numbers 0.75 and
0.375 are component dependent dyadic rational numbers.

Dyadic fractions have two different binary expansions. It would be more precise to say

that these dyadic fractions have binary representations which are eventually constant

[1]. The set of all dyadic fractions is dense in the real line. Now let us discuss some

properties of the dyadic 2S3 transformation. We establish that Tds has a restricted

multiplicative property and additive property. The following theorem gives some of

the properties of the dyadic 2S3 transformation.

Theorem 3. Let Tds(x) be a dyadic 2S3 transformation. Then the following holds.

(i) Tds is a strictly increasing function.

(ii) If Ts(x) = a, x < 2n, then Tds( x
2n

) = a
3n

, for all positive integers n.

(iii) (Product rule). If x and y are component independent dyadic rational numbers, then
Tds(xy) = Tds(x).Tds(y) .
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(iv) Tds(x+ y) = Tds(x) + Tds(y) only when x and y are additive distinct dyadic fractions.

Proof. Let us consider the set Dn = { 1
2m

: m is an integer, 1 ≤ m ≤ n} for a fixed

positive integer n ≥ 2. LetNd be set of all dyadic rational numbers in the open interval

(0, 1). Then for each x ∈ Nd , x =
n∑
1
xi , with xi = 0 or 1

2m , for some integer m, 1 ≤

m ≤ n and xi’s are distinct. Each xi 6= 0 and xi ∈ Dn is a dyadic additive component

of x.

We have Tds(x) =
n∑
1
x∗i , where each x∗i is obtained by changing the base 1

2 of xi to

base 1
3 . Suppose, x > y and x, y ∈ Nd. By definition, we get Tds(x) > Tds(y) for all

x, y ∈ Nd. This gives that Tds(x) is a strictly increasing function. Therefore Tds is an

injective function too. By definitions of Tds and Ts , result (ii) holds for all positive

integers n. For proving (iii), we take two dyadic fractions in (0,1), x =
r∑

k=0

αk
1
2k

and

y =
m∑

k=0

βk
1
2k

, where αk = 0 or 1 and βk = 0 or 1. Therefore, we get the product as

x× y =
m+r∑
k=0

k∑
j=0

(αjβk−j)
1
2k

. Then there are two cases to consider.

Case 1. When x and y are component independent dyadic rational numbers in (0,1),

here we get,

x× y =

r∑
k=0

αk
1

2k
.

m∑
k=0

βk
1

2k
=

m+r∑
k=0

k∑
j=0

(αjβk−j)
1

2k
. (3)

Since x and y are component independent dyadic rational numbers, there will not be

any term with coefficient 2(αjβk−j) in the multiplied form of the equation (3). So we

can apply the dyadic 2S3 transformation. Using the definition of Tds(x), we get

Tds(xy) =

m+r∑
k=0

k∑
j=0

(αjβk−j)
1

3k
. (4)

Again

Tds(x).Tds(y) =

r∑
k=0

αk
1

3k
.

m∑
k=0

βk
1

3k
=

m+r∑
k=0

k∑
j=0

(αjβk−j)
1

3k
. (5)

From equations (4) and (5), we get Tds(x.y) = Tds(x).Tds(y) for all integers x and y

that are component independent dyadic rational numbers.

Case 2. When x and y are component dependent dyadic rational numbers, then there

will be terms with coefficient 2(αjβk−j) in the multiplied form of the equation (3). So

we can not apply the dyadic 2S3 transformation as the dyadic additive components

are not distinct.

When x and y are additive distinct dyadic fractions, the terms in the expansion of x

are different from that of y. Then the result (iv) holds. This completes the proof.
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Proposition 2. For all dyadic rational x in (0,1), 0 < Tds(x) < 1
2
.

Proof. For a fixed positive integer n, the maximum possible value of the function

Tds is
1

3n
+

3

3n
+

9

3n
+ · · · + 3n−1

3n
. But we have 2(1 + 3 + 32 + . . . + 3n−1) < 3n

and hence the result.

Theorem 4. Let x and y be two dyadic rational numbers in (0,1). Let T z = {(x, y) :

x 6= y, Tds(x+ y) = Tds(x) + Tds(y)} and N(T z) = |T z|. Then N(T z) =
n2n − n2 − n

2
+ δn,

where δn =
1

2

n−2∑
r=2

[(
n
r

) n−2∑
k=2

(
n−r
k

)]
and Tds(x) is a dyadic 2S3 transformation.

Proof. We have Tds(x+y) = Tds(x)+Tds(y) only when x and y are additive distinct

dyadic fractions. This will happen when d(vx, vy) is either 3 or 4, or x, y ∈ Dn in

the case of the graph SMF (
∑

n). The number of unordered pairs (x, y) in which

d(vx, vy) = 3 is n(2n−1 − n) and that in which d(vx, vy) = 4 is δn as given in the

theorem. Hence proved.

Theorem 5. Let x and y be two dyadic rational numbers in (0,1). Let $(Tds) = {(x, y) :

x 6= y, Tds(xy) 6= Tds(x).Tds(y)}. Then |$(Tds)| <
(
2n−n−1

2

)
.

Proof. Let the graph G = SMF (
∑

n) be the SM dyadic sum graph for n ≥ 2.

Let ds(vx, vy) denote the number of unordered pairs of vertices for which d(vx, vy) =

s. Here SM(
∑

n) and SMF (
∑

n) are isomorphic for each n. By Lemma 1, when

d(vx, vy) = 1 or 3, we can see that x and y are component independent dyadic rational

numbers. In these cases, Tds(xy) = Tds(x).Tds(y).

When d(vx, vy) = 2, then two cases arise.

Case 1. When x, y ∈ Dn. In this situation, it is clear that x and y are component

independent dyadic rational numbers. Therefore, Tds(xy) = Tds(x).Tds(y).

Case 2. When x, y /∈ Dn, then x and y may or may not be component independent

dyadic rational numbers. So Tds(xy) may or may not be equal to Tds(x).Tds(y)

depending on the Definition 12. The number of unordered pairs for which x, y 6∈ Dn,

x and y have at least one common dyadic additive component is
[(

2n−n−1
2

)
− δn

]
.

Also, when d(vx, vy) = 4, there may be some cases in which x and y are component

dependent dyadic rational numbers. Since G is a simple graph, |$(Tds| < d2(vx, vy)+

δn −
n(n− 1)

2
=
(
2n−n−1

2

)
, where vxvy is an edge of G and, x and y are distinct.

Theorem 6. For each n ≥ 2, SMF (
∑

n) and SMF (B+
n ) are isomorphic.

Proof. Let G1 = SMF (
∑

n) and G2 = SMF (B+
n ). We make use of the dyadic 2S3

transformation to show that there exists an isomorphism between the graphs G1 and

G2.
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Let Tds : Nd → (0, 1) such that Tds(x) =
n∑
1
x∗i , where Nd is the set of all dyadic

rational numbers in the open interval (0, 1) and each x∗i is obtained by changing the

base 1
2 of xi to base 1

3 . Let S be the range of Tds. We consider the edge between

y = Tds(x) and each x∗i . Let set of these edges be E′ and the graph induced by

the edge set E′ be G3 which is then congruent to G2. Since Tds is one to one,

|V (G1)| = |V (G3)|. Also, the degrees of corresponding vertices are the same. We can

clearly observe that Tds preserves the adjacency. Therefore G1
∼= G2. This completes

the proof.

There exists a homomorphism between SMF (
∑

n) and SMF (Bn).

This homomorphism maps the vertex set of SMF (
∑

n) which is the set of dyadic frac-

tions to the set of vertices of SMF (Bn). In fact, there is an injective correspondence

between the vertex set V of SMF (
∑

n) and the set of dyadic fractions in (0, 1). By

considering the addition and subtraction operations of elements of V, the structure

of the additive abelian group is conceived. In view of the Pontryagin duality (the

one which explains the general properties of the Fourier transform on locally compact

abelian groups), the dual group of the additive dyadic fractions can also be taken as

topological group called the dyadic solenoid.

5. Conclusion

In this paper, we extended the 2S3 transformation for the dyadic rational numbers

in (0,1). Two new graphs SMF (
∑

n) and SMF (Bn) were introduced which are

similar to the SM sum graphs and SM balancing graphs. And also an isomorphism

between SMF (
∑

n) and SMF (B+
n ) was established. The properties of dyadic 2S3

transformation were examined and found that some properties are similar to the 2S3

transformation which was defined for all positive integers. The newly introduced

transformation Tds was explored through a graph-theoretical way. It has been ob-

served that 0 < Tds(x) < 1
2 . Some of the combinatorics and relationship between the

parameters of these two graphs are analyzed through this dyadic 2S3 transformation.
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