Research Article

Outer-independent total 2-rainbow dominating functions in graphs

A. Mahmoodi^{1*} and L. Volkmann²

¹Department of Mathematics, Payame Noor University, P.O. Box 19395- 4697 Tehran, Iran *ak.mahmoodi@pnu.ac.ir

²Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany volkm@math2.rwth-aachen.de

> Received: 30 March 2022; Accepted: 16 May 2022 Published Online: 20 May 2022

Abstract: Let G = (V, E) be a simple graph with vertex set V and edge set E. An outer-independent total 2-rainbow dominating function of a graph G is a function f from V(G) to the set of all subsets of $\{1, 2\}$ such that the following conditions hold: (i) for any vertex v with $f(v) = \emptyset$ we have $\bigcup_{u \in N_G(v)} f(u) = \{1, 2\}$, (ii) the set of all vertices $v \in V(G)$ with $f(v) = \emptyset$ is independent and (iii) $\{v|f(v) \neq \emptyset\}$ has no isolated vertex. The outer-independent total 2-rainbow domination number of G, denoted by $\gamma_{oitr2}(G)$, is the minimum value of $\omega(f) = \sum_{v \in V(G)} |f(v)|$ over all such functions f. In this paper, we study the outer-independent total 2-rainbow domination number of G and classify all graphs with outer-independent total 2-rainbow domination number of G and classify all graphs with outer-independent total 2-rainbow domination number of G and classify all graphs with outer-independent total 2-rainbow domination number of G and classify all graphs with outer-independent total 2-rainbow domination number of G and classify all graphs with outer-independent total 2-rainbow domination number of G and classify all graphs with outer-independent total 2-rainbow domination number belonging to the set $\{2, 3, n\}$. Among other results, we present some sharp bounds concerning the invariant.

Keywords: Domination number; 2-rainbow domination number; total 2-rainbow domination number, outer-independent total 2-rainbow domination number

AMS Subject classification: 05C22

1. Introduction

Let G be a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V| of G is denoted by n = n(G) and size |E| of G is denoted by m = m(G). For every vertex $v \in V$, the open neighborhood $N(v) = N_G(v)$ is the set $\{u \in V \mid uv \in E\}$ and the closed neighborhood of v is the set $N[v] = N_G[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $\deg_G(v) = \deg(v) = |N(v)|$. The minimum and maximum degree

^{*} Corresponding Author

^{© 2023} Azarbaijan Shahid Madani University

of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. A vertex of degree 1 is called a *leaf* and its neighbor is a *support* vertex. Also, a support vertex is called a *strong support* vertex if it is adjacent to at least two leaves and *weak support* if it is adjacent to one leaf. The *distance* $d_G(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. The *diameter* of a graph G, denoted by diam(G), is the greatest distance between two vertices of G. The complement of a graph G is denoted by \overline{G} . We write K_n for the *complete graph* of order n, C_n for a *cycle* of order n and P_n for a *path* of order n. By a star we mean the graph $S_{1,m}$ where $m \geq 2$. Let $S_{r,t}$ be the *double star* with exactly two adjacent vertices u and v that are not leaves such that u is adjacent to $r \geq 1$ leaves and vis adjacent to $s \geq 1$ leaves. The *girth* g(G) of a graph G is the length of a shortest cycle. For terminology and notation on graph theory not defined here, the reader is referred to [11].

A set D of vertices in a graph G is called a *dominating set* if every vertex $v \in V(G)$ is either an element of D or is adjacent to an element of D. A set D of vertices in a graph G is called a *total dominating set* if every vertex $v \in V(G)$ is adjacent to an element of D. The *domination number* of a graph G denoted by $\gamma(G)$ is the minimum cardinality of a dominating set in G. Respectively, the *total domination number* of a graph G denoted by $\gamma_t(G)$ is the minimum cardinality of a total dominating set in G. A subset S of vertices is called a 2-packing if $N[u] \cap N[v] = \emptyset$ for every pair of vertices $u, v \in S$. The 2-packing number $\rho(G)$ of a graph G is the maximum cardinality of a 2-packing in G.

A k-rainbow dominating function of a graph G is a function f from V(G) to the set of all subsets of $\{1, 2, ..., k\}$ such that for any vertex v with $f(v) = \emptyset$ we have $\bigcup_{u \in N_G(v)} f(u) = \{1, 2, ..., k\}$. The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number $\gamma_{rk}(G)$ of a graph G, that is the minimum value of $\sum_{v \in V(G)} |f(v)|$ where f runs over all k-rainbow dominating functions of G. The concept of rainbow domination was introduced in [3] and has been studied extensively [1, 2, 4, 5, 7, 8, 13]. An outer-independent 2-rainbow dominating function of a graph G is a function f from V(G) to the set of all subsets of $\{1, 2\}$ such that the following conditions hold: (i) for any vertex v with $f(v) = \emptyset$ we have $\bigcup_{u \in N_G(v)} f(u) = \{1, 2\}$, (ii) the set of all vertices $v \in V(G)$ with $f(v) = \emptyset$ is independent. The outer-independent 2-rainbow domination number of G, denoted by $\gamma_{oir2}(G)$, is the minimum value of $\omega(f) = \sum_{v \in V(G)} |f(v)|$ over all such functions f. Outer independent 2-rainbow domination was introduced by Kang et al. in [9] in 2019. This concept has been studied by several authors, see for example [6, 10].

Lately, the interest in the domination theory in graphs has increased and a very high number of variants of domination parameters have been studied. Here we initiate *outer-independent total 2-rainbow dominating function* and continue the study in this context.

An outer-independent total 2-rainbow dominating function (OIt2RDF) on a graph G is a function f from V(G) to the set of all subsets of $\{1, 2\}$ such that the following

conditions hold: (i) for any vertex v with $f(v) = \emptyset$ we have $\bigcup_{u \in N_G(v)} f(u) = \{1, 2\}$, (ii) the set of all vertices $v \in V(G)$ with $f(v) = \emptyset$ is independent and (iii) $\{v|f(v) \neq \emptyset\}$ has no isolated vertex. The outer-independent total 2-rainbow domination number of G, denoted by $\gamma_{oitr2}(G)$, is the minimum $\omega(f) = \sum_{v \in V(G)} |f(v)|$ over all such functions f. An outer-independent total 2-rainbow dominating function with weight $\gamma_{oitr2}(G)$ is called a $\gamma_{oitr2}(G)$ -function of G. An outer-independent total 2-rainbow dominating function $f: V \longrightarrow \mathcal{P}(\{1,2\})$ can be represented by the ordered partition $(V_0, V_1, V_2, V_{1,2})$ of V(G) induced by f, where $V_0 = \{v \in V \mid f(v) = \emptyset\}$, $V_1 = \{v \in$ $V \mid f(v) = \{1\}\}$, $V_2 = \{v \in V \mid f(v) = \{2\}\}$ and $V_{12} = \{v \in V \mid f(v) = \{1,2\}\}$. In this representation, its weight is $\omega(f) = |V_1| + |V_2| + 2|V_{12}|$. Suppose that G_1, G_2, \ldots, G_t are the components of G. Then

$$\gamma_{oitr2}(G) = \sum_{i=1}^{t} \gamma_{oitr2}(G_i).$$

Therefore, in the rest of the text, we assume, without loss of generality, that G is a connected graph.

In the next section, we investigate some basic properties of the outer-independent total 2-rainbow dominating functions and we determine exact values for some classes of graphs. Then in Section 3, we obtain the relationship between $\gamma_{oitr2}(G)$ and some other domination parameters. At the end, in Section 4, we present some sharp bounds for outer-independent total 2-rainbow domination number.

2. Basic properties and examples

In this section we present some basic properties of the outer-independent total 2rainbow domination. We have the following simple results.

Observation 1. For any connected graph G with $n \ge 2$, $\gamma_{oitr2}(G)$ is well defined and $2 \le \gamma_{oitr2}(G) \le n$.

We give now, the characterizations of all connected graphs G for which $\gamma_{oitr2}(G) \in \{2,3,n\}$.

Proposition 1. Let G be a graph of order $n \ge 2$. Then $\gamma_{oitr2}(G) = 2$ if and only if $G = \overline{K_{n-2}} \lor P_2$.

Proof. If $G = \overline{K_{n-2}} \vee P_2$, then clearly $\gamma_{oitr2}(G) = 2$. Conversely, assume that $\gamma_{oitr2}(G) = 2$ and f is a $\gamma_{oitr2}(G)$ -function. Since $\{v \mid f(v) \neq \emptyset\}$ has no isolated vertex, no vertex of G has label $\{1, 2\}$. Thus there are two adjacent vertices u, v such that |f(u)| = |f(v)| = 1 and the other vertices must be independent with label \emptyset and adjacent with u, v. Therefore, for n = 2, $G = P_2$ and for n > 2, $G = \overline{K_{n-2}} \vee P_2$. \Box

To continue the characterization, we need to define some family of graphs.

- Let \mathcal{F}_1 be the family of graphs obtained from a path uv by first adding $t \ge 1$ pendant edges at u and then adding $s \ge 0$ new vertices and connecting them to u and v.
- Let \mathcal{F}_2 be the family of graphs G obtained from a path uvw by first adding $t \ge 0$ new vertices and connecting them to u and v, and then adding $s \ge 0$ new vertices and connecting them to u and w.
- Let \mathcal{F}_3 be the family of graphs G obtained from a path uvw by first adding $t \ge 0$ new vertices and connecting them to u and v, and then adding $s \ge 0$ new vertices and connecting them to u and w, and adding $\ell \ge 1$ new vertices and connecting them to u, v and w.
- Let \mathcal{F}_4 be the family of graphs G obtained from a triangle uvwu by first adding $t \geq 1$ new vertices and connecting them to u and v, and then adding $s \geq 1$ new vertices and connecting them to u and w.
- Let \mathcal{F}_5 be the family of graphs G obtained from a triangle uvwu by first adding $t \ge 0$ new vertices and connecting them to u and v, and then adding $s \ge 0$ new vertices and connecting them to u and w, and adding $\ell \ge 1$ new vertices and connecting them to u, v and w.
- Let \mathcal{F}_6 be the family of graphs G obtained from a path uvw by first adding $t \ge 0$ new vertices and connecting them to v and u, and then adding $s \ge 0$ new vertices and connecting them to v and w.
- Let \mathcal{F}_7 be the family of graphs G obtained from a path uvw by first adding $t \ge 0$ new vertices and connecting them to v and u, and then adding $s \ge 0$ new vertices and connecting them to v and w, and adding $\ell \ge 1$ new vertices and connecting them to u, v and w.

Let $\mathcal{F} = \{\mathcal{F}_1, \ldots, \mathcal{F}_7\}.$

Proposition 2. Let G be a connected graph of order $n \ge 3$. Then $\gamma_{oitr2}(G) = 3$ if and only if $G \in \mathcal{F}$.

Proof. Obviously $\gamma_{oitr2}(G) = 3$ if $G \in \mathcal{F}$. Conversely, assume that $\gamma_{oitr2}(G) = 3$ and let $f = (V_0, V_1, V_2, V_{1,2})$ be a $\gamma_{oitr2}(G)$ -function such that $|V_{1,2}|$ is maximized. We consider the following cases.

Case 1. There is a vertex $v \in V(G)$ such that $f(v) = \{1, 2\}$. Then there is a vertex $u \in N(v)$ with |f(u)| = 1 and the other vertices must be independent with label \emptyset and adjacent with v. So $G \in F_1$. **Case 2.** $V_{1,2} = \emptyset$ and there are three vertices $v, u, w \in V(G)$ such that |f(u)| = |f(v)| = |f(w)| = 1.

Without loss of generality, let $f(u) = f(w) = \{1\}$ and $f(v) = \{2\}$. The other vertices must be independent with label \emptyset and adjacent with v. Consider two following subcases:

Subcase 2.1. The subgraph of G induced by $\{u, v, w\}$ is the path uwv.

If all vertices with label \emptyset are adjacent with u but not with w, then $G = K_{2,n-2} \in \mathcal{F}_2$. If each vertex with label \emptyset is adjacent to either u or w, then $G \in \mathcal{F}_2$. If some vertices with label \emptyset are adjacent with u and some of them are adjacent with w and some of them are adjacent with both, then $G \in \mathcal{F}_3$. If all vertices with label \emptyset are adjacent with w but not with u, then $G \in \mathcal{F}_1$.

Subcase 2.2. The subgraph of G induced by $\{u, v, w\}$ is the path uvw.

All vertices with label \emptyset must be adjacent with u or with w. If all vertices with label \emptyset are adjacent with u but not with w, then $G \in \mathcal{F}_1$. If some vertices with label \emptyset are adjacent with u and some of them are adjacent with w, then $G \in \mathcal{F}_6$. If some vertices with label \emptyset are adjacent with u, some of them are adjacent with w and w are adjacent with w and w and w are adjacent with w and w are adjacent w and w and w are adjacent w an

Subcase 2.3. The subgraph of G induced by $\{u, v, w\}$ is the triangle uvwu.

If all vertices with label \emptyset are adjacent with u but not with w, then $G = \overline{K_{n-2}} \lor P_2$ which is a contradiction by Proposition 1. Thus some vertices with label \emptyset are adjacent with u, some of them are adjacent with w, some of them are adjacent with u and w. Hence $G \in \mathcal{F}_4 \cup \mathcal{F}_5$.

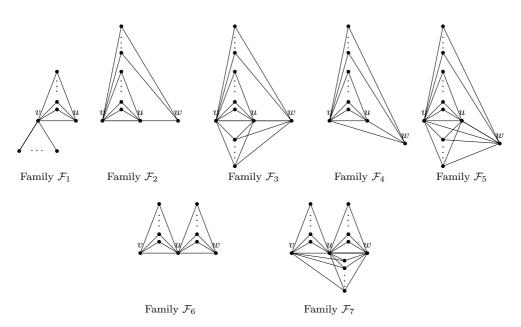


Figure 1. The families of graphs G with $\gamma_{oitr2}(G) = 3$

We now characterize the graphs attaining the upper bound from Observation 1.

Proposition 3. Let G be a graph of order $n \ge 2$. Then $\gamma_{oitr2}(G) = n$ if and only if $G = P_2$ or $G = P_3$ or $G = P_4$ or every non-leaf vertex of G is a weak support vertex.

Proof. Necessary is clear. For the sufficiency let $\gamma_{oitr2}(G) = n$. If $\delta \geq 2$, then clearly $\gamma_{oitr2}(G) \leq n-1$. So we can assume that $\delta = 1$. It is easy to see that if $2 \leq n \leq 4$ and $\gamma_{oitr2}(G) = n$, then $G = P_2$ or $G = P_3$ or $G = P_4$. So assume that $n \geq 5$. Obviously, if there is a strong support vertex, then $\gamma_{oitr2}(G) \leq n-1$. Thus we can suppose that every support vertex is weak. We claim that every non-leaf vertex of G is a weak support vertex. To see this by contradiction, suppose that there is a non-leaf vertex say v which is not a support vertex. Hence we have $deg(v) \geq 2$. Let $u, w \in N(v)$ such that $deg(u) \geq 2$, $deg(w) \geq 2$. Define $f : V(G) \longrightarrow \mathcal{P}(\{1,2\})$ by $f(v) = \emptyset$, f(u) = 1, f(w) = 2 and f(x) = 1 otherwise. It is easy to see that f is an outer-independent total 2-rainbow dominating function on G. Thus $\gamma_{oitr2}(G) \leq n-1$, a contradiction.

Next we determine the outer-independent total 2-rainbow domination number of some special graphs.

Observation 2. For $n \ge 3$, $\gamma_{oitr2}(K_n) = n - 1$.

By Observation 2, one has the following fact.

Corollary 1. For any integer $t \ge 2$, there is a graph G such that $\gamma_{oitr2}(G) = t$.

Observation 3. For $r, t \geq 2$, $\gamma_{oitr2}(S_{r,t}) = 4$.

Proposition 4. For $2 \le n \le m$, $\gamma_{oitr2}(K_{n,m}) = n + 1$.

Proof. Let $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ be two partite sets of $K_{n,m}$. Define $f : V(K_{n,m}) \longrightarrow \mathcal{P}(\{1,2\})$ by $f(u_1) = f(u_i) = f(v_1) = \{1\}$ for $3 \leq i \leq n$, $f(u_2) = 2$ and $f(v_i) = \emptyset$ for $2 \leq i \leq m$. Clearly f is an outer-independent total 2-rainbow dominating function and $\omega(f) \leq n+1$. So $\gamma_{oitr2}(K_{n,m}) \leq n+1$. The inverse inequality is obvious.

Proposition 5. For $n \ge 2$, $\gamma_{oitr2}(P_n) = \begin{cases} \lceil \frac{2n}{3} \rceil, & n = 3k+2 \\ \lceil \frac{2n}{3} \rceil + 1, & \text{otherwise.} \end{cases}$

Proof. Clearly $\gamma_{oitr2}(P_2) = 2$. Assume that $n \geq 3$ and let $P_n = v_1 v_2 \dots v_n$ be a path on n vertices. If n = 3k + 2 for some non-negative integer k, then define the function $f: V(P_n) \longrightarrow \mathcal{P}(\{1,2\})$ by $f(v_{3i+1}) = \{1\}, f(v_{3i+2}) = \{2\}$ and $f(v_{3i}) = \emptyset$

for $0 \le i \le k$. Clearly, f is an outer-independent total 2-rainbow dominating function of P_n with $\omega(f) \le \lceil \frac{2n}{3} \rceil$.

If n = 3k+1 for some integer k, then define $f : V(P_n) \longrightarrow \mathcal{P}(\{1,2\})$ by $f(v_{3i+1}) = \{1\}$, $f(v_{3i+2}) = \{2\}$, $f(v_{3i}) = \emptyset$ for $1 \le i \le k-1$ and $f(v_{n-1}) = f(v_n) = 1$. Clearly, f is an outer-independent total 2-rainbow dominating function and $\omega(f) \le \lceil \frac{2n}{3} \rceil + 1$. So $\gamma_{oitr2}(P_n) \le \lceil \frac{2n}{3} \rceil + 1$.

If n = 3k for some integer k, then define $f: V(P_n) \longrightarrow \mathcal{P}(\{1,2\})$ by $f(v_{3i+1}) = \{1\}$, $f(v_{3i+2}) = \{2\}$, $f(v_{3i}) = \emptyset$ for $1 \le i \le k-1$ and $f(v_n) = 1$. Clearly, f is an outer-independent total 2-rainbow dominating function and $\omega(f) \le \lceil \frac{2n}{3} \rceil + 1$. So $\gamma_{oitr2}(P_n) \le \lceil \frac{2n}{3} \rceil + 1$.

Conversely, assume that g is a $\gamma_{oitr2}(P_n)$ -function. It is easy to verify that $|g(v_1)| + |g(v_2)| \ge 2$, $|g(v_{n-1})| + |g(v_n)| \ge 2$ and $|g(v_i)| + |g(v_{i+1})| + |g(v_{i+2})| \ge 2$ for $1 \le i \le n-2$.

If n = 3k + 2, then we deduce that

$$\omega(g) = \sum_{i=1}^{3k} |g(v_i)| + |g(v_{n-1})| + |g(v_n)| \ge 2k + 2 = \left\lceil \frac{2n}{3} \right\rceil$$

If n = 3k + 1, then we have

$$\begin{aligned} \omega(g) &= |g(v_1)| + |g(v_2)| + \sum_{i=3}^{3k-1} |g(v_i)| + |g(v_{n-1})| + |g(v_n)| \\ &\geq 2 + 2(k-1) + 2 = 2k + 2 \\ &= \left\lceil \frac{2n}{3} \right\rceil + 1. \end{aligned}$$

Assume that n = 3k. If $|g(v_1)| \ge 1$, then we conclude that

$$\omega(g) = |g(v_1)| + \sum_{i=2}^{3k-2} |g(v_i)| + |g(v_{n-1})| + |g(v_n)| \ge 1 + 2(k-1) + 2 = 2k + 1 = \left\lceil \frac{2n}{3} \right\rceil + 1.$$

If $|g(v_1)| = 0$, then we observe that $|g(v_1)| + |g(v_2)| + |g(v_3)| \ge 3$ and we obtain

$$\omega(g) = |g(v_1)| + |g(v_2)| + |g(v_3)| + \sum_{i=4}^{3k} |g(v_i)| \ge 3 + 2(k-1) = 2k + 1 = \left\lceil \frac{2n}{3} \right\rceil + 1.$$

Proposition 6. For $n \ge 3$, $\gamma_{oitr2}(C_n) = \lceil \frac{2n}{3} \rceil$.

Proof. Define $f: V(C_n) \longrightarrow \mathcal{P}(\{1,2\})$ by $f(v_i) = \{1\}$ if $i \equiv 1 \pmod{3}$, $f(v_i) = \{2\}$ if $i \equiv 2 \pmod{3}$ and $f(v_i) = \emptyset$ if $i \equiv 0 \pmod{3}$, for $1 \leq i \leq n$. Clearly f is an outer-independent total 2-rainbow dominating function with $\omega(f) \leq \lceil \frac{2n}{3} \rceil$. So $\gamma_{oitr2}(C_n) \leq \lceil \frac{2n}{3} \rceil$. Similar to the proof of Proposition 5, the inverse inequality arises.

3. Outer-independent total 2-rainbow domination number and other graph parameters

Here we are interested in the relationship between $\gamma_{oitr2}(G)$ and several other domination parameters. For instance any outer-independent total 2-rainbow dominating function is an outer-independent 2-rainbow dominating function, so one has

$$\gamma_{oir2}(G) \le \gamma_{oitr2}(G).$$

Also we have the following straightforward observation.

Observation 4. Let $f = (V_0, V_1, V_2, V_{12})$ be a $\gamma_{oitr2}(G)$ -function. Then $V_1 \cup V_2 \cup V_{12}$ is a total dominating set in G and $\gamma_t(G) \leq \gamma_{oitr2}(G)$.

On the other hand, clearly $\gamma(G) \leq \gamma_t(G)$ and so we have the following relation by Observation 4.

$$\gamma(G) \le \gamma_t(G) \le \gamma_{oitr2}(G).$$

A subset S of V(G) is called *independent* if no two vertices in S are adjacent. An independent set of maximum cardinality is a maximum independent set of G. The *independence number* of G is the cardinality of a maximum independent set of G and is denoted by $\alpha(G)$. An independent set of cardinality $\alpha(G)$ is called an $\alpha(G)$ -set. A set of vertices S is a vertex cover set if every edge of G is incident with a vertex of S. A vertex cover set of minimum cardinality is a minimum vertex cover set of G. The *vertex cover number* of G is the cardinality of a minimum vertex cover set of G and is denoted by $\beta(G)$. A vertex cover of cardinality $\beta(G)$ is called a $\beta(G)$ -set.

Proposition 7. If G is a graph of order $n \ge 2$, then $\beta(G) \le \gamma_{oitr2}(G)$. Moreover, this bound is sharp.

Proof. Let $f = (V_0, V_1, V_2, V_{12})$ be a $\gamma_{oitr2}(G)$ -function. Since V_0 is an independent set, we deduce that $|V_0| \leq \alpha(G)$. Using this fact and Gallai's theorem $(\alpha(G) + \beta(G) = n)$, we obtain

$$n - \gamma_{oitr2}(G) = n - (|V_1| + |V_2| + 2|V_{12}|)$$

$$\leq n - (|V_1| + |V_2| + |V_{12}|)$$

$$= |V_0|$$

$$\leq \alpha(G)$$

$$= n - \beta(G)$$

and the proof is complete. For the sharpness, consider $G = \overline{K_{n-2}} \lor P_2$, $n \ge 2$, by Proposition 1 and the graphs F_2 , F_3 , F_4 and F_5 .

Corollary 2. If G is a graph of order $n \ge 2$, then $\delta(G) \le \beta(G) \le \gamma_{oitr2}(G)$.

Proof. If I is an $\alpha(G)$ -set, then it is well known that $V(G) \setminus I$ is a $\beta(G)$ -set. If $v \in I$, then this implies that $\delta(G) \leq \deg(v) \leq |V(G) \setminus I| = \beta(G)$. The other inequality follows from Proposition 7, and the proof is complete.

The minimum degree bound $\delta(G) \leq \beta(G)$ can be found in the Thesis of W. Willis [12]. For completeness we have given the short proof.

Corollary 3. If $G = K_{n_1,n_2,...,n_p}$ is the complete *p*-partite graph with $n_1 \le n_2 \le ... \le n_p$ and $p \ge 3$, then

$$\delta(G) = \beta(G) = \gamma_{oitr2}(G) = n_1 + n_1 + \ldots + n_{p-1}.$$

Proof. Corollary 2 implies $\gamma_{oitr2}(G) \geq \beta(G) \geq \delta(G) = n_1 + n_2 + \ldots + n_{p-1}$. Let S_i be the partite set with $|S_i| = n_i$ for $1 \leq i \leq p$. Define the function $f = (V_0, V_1, V_2, V_{12})$ by $V_0 = S_p$, $V_1 = S_1$, $V_2 = S_2 \cup S_3 \cup \ldots \cup S_{p-1}$ and $V_{12} = \emptyset$. Then f is an outer-independent total 2-rainbow dominating function on G and thus $\gamma_{oitr2}(G) \leq n_1 + n_2 + \ldots + n_{p-1} = \beta(G) = \delta(G)$.

Corollary 3 demonstrates the sharpness of Corollary 2 and Proposition 7.

4. Bounds

Our aim in this section is to determine some bounds on the OIt2RD number of graphs. First, we obtain an upper bound for graphs G of girth $g(G) \ge 5$.

Theorem 5. If G is a graph of order n with $g(G) \ge 5$ and $\delta(G) \ge 2$, then

$$\gamma_{oitr2}(G) \le n - \Delta(G) + 1,$$

and this bound is sharp.

Proof. Let v be a vertex of maximum degree $\Delta = \Delta(G)$, and let $u_1, u_2, \ldots, u_\Delta$ be the neighbors of v. Define the function f by $f(v) = f(u_1) = \{1\}, f(u_2) = f(u_3) = \ldots = f(u_\Delta) = \emptyset$ and $f(x) = \{2\}$ otherwise.

As G is triangle-free, $\{u_2, u_3, \ldots, u_{\Delta}\}$ is an independent set. The condition $\delta(G) \ge 2$ implies that each vertex u_i has a neighbor w with $f(w) = \{2\}$ for $2 \le i \le \Delta$. As $f(v) = \{1\}$, we obtain $\bigcup_{x \in N(u_i)} f(x) = \{1, 2\}$ for each $2 \le i \le \Delta$. In addition, we deduce from $g(G) \ge 5$ and $\delta(G) \ge 2$ that each vertex x with $f(x) = \{2\}$ has a neighbor with $f(w) = \{2\}$. Consequently, f is an outer-independent total 2-rainbow dominating function on G of weight $n - \Delta + 1$ and thus $\gamma_{oitr2}(G) \le n - \Delta + 1$.

Let H be consist of a subdivide star with the leaves x_1, x_2, \ldots, x_{2p} such that x_{2i-1} and x_{2i} are adjacent for $1 \le i \le p$. Then it is easy to verify that $\gamma_{oitr2}(H) = 2p + 2 =$ $n(H) - \Delta(H) + 1$. This family of graphs show that this upper bound is sharp, \Box Next we present a lower bound for outer-independent total 2-rainbow domination number with regard to the maximum and minimum degree.

Theorem 6. Let G be a connected graph of order $n \ge 2$ with minimum degree δ and maximum degree Δ . Then

$$\gamma_{oitr2}(G) \ge \left\lceil \frac{\delta n}{\Delta + \delta - 1} \right\rceil$$

Moreover, this bound is sharp.

Proof. The results is trivial if n = 2 or $\gamma_{oitr2}(G) = n$. So assume that $n \geq 3$ and $\gamma_{oitr2}(G) < n$. Let $f = (V_0, V_1, V_2, V_{12})$ be a $\gamma_{oitr2}(G)$ -function and $V_0 = \{x_1, x_2, \ldots, x_t\}$. Since V_0 is an independent set, every vertex x_i , for $1 \leq i \leq t$, has at least δ neighbors in $V_1 \cup V_2 \cup V_{12}$. On the other hand, every vertex in $V_1 \cup V_2 \cup V_{12}$ has at most $\Delta - 1$ neighbors in V_0 , since $\{v \mid f(v) \neq \emptyset\}$ has no isolated vertex. So we obtain

$$\delta |V_0| \le (\Delta - 1)(|V_1| + |V_2| + |V_{12}|).$$

Using this inequality and the fact that $n = |V_0| + |V_1| + |V_2| + |V_{12}|$, we have

$$\begin{split} \delta n &\leq (\Delta - 1)(|V_1| + |V_2| + |V_{12}|) + \delta(|V_1| + |V_2| + |V_{12}|) \\ &= (\Delta - 1 + \delta)(|V_1| + |V_2| + |V_{12}|) \\ &\leq (\Delta - 1 + \delta)(|V_1| + |V_2| + 2|V_{12}|) \\ &= (\Delta - 1 + \delta)\gamma_{oitr2}(G). \end{split}$$

Therefore $\gamma_{oitr2}(G) \geq \lceil \frac{\delta n}{\Delta + \delta - 1} \rceil$, because $\gamma_{oitr2}(G)$ is an integer. For the sharpness, consider cycles by Proposition 6.

As an immediate consequence of Theorem 6, we have the following corollaries.

Corollary 4. Let G be an r-regular graph of order $n \ge 2$. Then $\gamma_{oitr2}(G) \ge \left\lceil \frac{rn}{2r-1} \right\rceil$.

Corollary 5. Let G be a graph of order $n \ge 2$ with $\delta = 1$. Then $\gamma_{oitr2}(G) \ge \lceil \frac{n}{\Delta} \rceil$, specially for every tree T, $\gamma_{oitr2}(T) \ge \lceil \frac{n}{\Delta} \rceil$.

We propose a so called Nordhaus-Gaddum type inequality for the outer-independent total 2-rainbow domination number of regular graphs.

Theorem 7. Let G be an r-regular graph of order $n \ge 4$. Then

$$\gamma_{oitr2}(G) + \gamma_{oitr2}(\overline{G}) \ge \frac{n(n-1)}{n-2}.$$

Proof. Since G is r-regular, the complement \overline{G} is (n - r - 1)-regular. By Corollary 4, one has

$$\gamma_{oitr2}(G) + \gamma_{oitr2}(\overline{G}) \ge \frac{rn}{2r-1} + \frac{(n-r-1)n}{2(n-r-1)-1}$$

The function $f(x) = \frac{xn}{2x-1} + \frac{(n-x-1)n}{2(n-x-1)-1}$ gets its minimum at $x = \frac{n-1}{2}$. So we have

$$\gamma_{oitr2}(G) + \gamma_{oitr2}(\overline{G}) \ge \frac{\frac{n-1}{2}n}{2\frac{n-1}{2}-1} + \frac{(n-\frac{n-1}{2}-1)n}{2(n-\frac{n-1}{2}-1)-1} = \frac{n(n-1)}{n-2}.$$

In the following proposition, an upper bound is given for outer-independent total 2-rainbow domination number with regard to the 2-packing.

Proposition 8. Let G be a graph of order n with $\delta \geq 2$. Then $\gamma_{oitr2}(G) \leq n - \rho$. Moreover, this bound is sharp.

Proof. Suppose that $A = \{v_1, v_2, \ldots, v_\rho\}$ is a 2-packing set of G and define $f : V(G) \longrightarrow \mathcal{P}(\{1,2\})$ by $f(v_i) = \emptyset$, $f(u_{i1}) = \{1\}$, $f(u_{i2}) = \{2\}$ for $1 \le i \le \rho$ where u_{it} are neighbors of v_i for t = 1, 2 and $f(x) = \{1\}$ otherwise. Since $\delta \ge 2$, f is an outer-independent total 2-rainbow dominating function and so $\gamma_{oitr2}(G) \le n - \rho$. For the sharpness, consider the complete graph K_n by Observation 2.

Next, we present an upper bound in terms of the diameter of a graph using Proposition 8.

Proposition 9. Let G be a graph of order n with $\delta \geq 2$. Then

$$\gamma_{oitr2}(G) \le n - 1 - \left\lfloor \frac{\operatorname{diam}(G)}{3} \right\rfloor.$$

Moreover, this bound is sharp.

Proof. Suppose that $P = v_0v_1 \dots v_{\operatorname{diam}(G)}$ is a diametral path, $\operatorname{diam}(G) = 3t + r$ with integers $t \ge 0$ and $0 \le r \le 2$. It is easy to see that $A = \{v_0, v_3, \dots, v_{3t}\}$ is a 2-packing set of G such that $|A| = 1 + \lfloor \frac{\operatorname{diam}(G)}{3} \rfloor$. Then we have $\rho \ge |A|$. So by Proposition 8, one has

$$\gamma_{oitr2}(G) \le n - \rho \le n - |A| \le n - 1 - \left\lfloor \frac{\operatorname{diam}(G)}{3} \right\rfloor.$$

For the sharpness, let $P_{3t+1} = v_1 v_2 \dots v_{3t+1}$ be a path of diameter 3t for an integer $t \geq 2$, and let the graph H consists of P_{3t+1} , the vertices u and w and the edges uv_1, uv_2, wv_{3t} and wv_{3t+1} . We have

$$\gamma_{oitr2}(H) \le 3t + 3 - 1 - \left\lfloor \frac{\operatorname{diam}(H)}{3} \right\rfloor = 2t + 2.$$

If g is a $\gamma_{oitr2}(H)$ -function, then we observe that $g(v_1) + g(v_2) + g(u) \ge 2$, $g(v_{3t}) + g(v_{3t+1}) + g(w) \ge 2$ and $g(v_{3i}) + g(v_{3i+1}) + g(v_{3i+2}) \ge 2$ for $1 \le i \le t - 1$. Therefore $\gamma_{oitr2}(H) \ge \frac{2n(H)}{3} = 2t + 2$. Also, consider the complete graph K_n for $n \ge 3$ by Observation 2.

Let S(T) and L(T) be the set of support vertices and the set of leaves of a tree T, respectively. We use the notations s(T) = |S(T)| and $\ell(T) = |L(T)|$. In the following proposition we give an upper bound for $\gamma_{oitr2}(T)$ using s(T) and $\ell(T)$.

Proposition 10. Let T be a tree of order $n \ge 3$ with diam $(T) \ge 3$. Then $\gamma_{oitr2}(T) \le n + s(T) - \ell(T)$. Moreover, this bound is sharp.

Proof. Define $f: V(T) \longrightarrow \mathcal{P}(\{1,2\})$ by $f(s) = \{1,2\}$ for every support vertex s, $f(u) = \emptyset$ for every leaf and f(x) = 1 otherwise. Clearly, f is a $\gamma_{oitr2}(T)$ -function of T with

$$\omega(f) = 2s(T) + (n - s(T) - \ell(T)) = n + s(T) - \ell(T)$$

and the proof has been completed. For the sharpness, consider double stars $S_{r,t}$.

In the following theorem we prepare a lower bound in terms of the order and $\ell(T)$ for a tree T.

Theorem 8. Let T be a tree of order $n \ge 2$. Then

$$\gamma_{oitr2}(T) \ge \left\lceil \frac{2(n+2-\ell(T))}{3} \right\rceil.$$

Moreover, this bound is sharp.

Proof. We proceed by induction on n. The statement holds for all trees of order $n \leq 4$. Suppose that $n \geq 5$ and let the result hold for all non-trivial tree T of order less than n. Let T be a tree of order $n \geq 5$. If diam(T) = 2, then T is a star, which yields $\gamma_{oitr2}(T) = 3 > \lceil \frac{2(n+2-\ell(T))}{3} \rceil = 2$ by Proposition 2. If diam(T) = 3, then T is a double star and by Observation 3 we have $\gamma_{oitr2}(T) = 4 > 3 = \lceil \frac{2(n+2-\ell(T))}{3} \rceil$. Thus we may assume that diam $(T) \geq 4$. Let $P = v_1 v_2 \dots v_k$ be a diametral path in T and root T in v_k . Let f be a $\gamma_{oitr2}(T)$ -function. We consider the following cases:

Case 1. deg_T(v₂) = $t \ge 3$. Let $T' = T - T_{v_2}$. It is not hard to see that $\gamma_{oitr2}(T) \ge \gamma_{oitr2}(T') + 2$ and $\ell(T) - (t-1) \le \ell(T') \le \ell(T) - (t-2)$ so we conclude from the induction hypothesis that

$$\begin{split} \gamma_{oitr2}(T) &\geq \gamma_{oitr2}(T') + 2 \\ &\geq \lceil \frac{2(n(T') + 2 - \ell(T'))}{3} \rceil + 2 \\ &\geq \lceil \frac{2((n-t) + 2 - \ell(T) + (t-2))}{3} \rceil + 2 \\ &= \lceil \frac{2(n-\ell(T))}{3} \rceil + 2 \\ &\geq \lceil \frac{2(n-\ell(T))}{3} \rceil + 2 \\ &\geq \lceil \frac{2(n+2-\ell(T))}{3} \rceil, \end{split}$$

as desired.

Case 2. $\deg_T(v_2) = 2$.

If deg_T(v₃) \geq 3, then let $T' = T - \{v_1, v_2\}$. Clearly $\gamma_{oitr2}(T) \geq \gamma_{oitr2}(T') + 2$ and $\ell(T') = \ell(T) - 1$ so we conclude from the induction hypothesis on T' that

$$\begin{split} \gamma_{oitr2}(T) &\geq \gamma_{oitr2}(T') + 2\\ &\geq \lceil \frac{2(n(T') + 2 - \ell(T'))}{3} \rceil + 2\\ &= \lceil \frac{2((n-2) + 2 - \ell(T) + 1))}{3} \rceil + 2\\ &\geq \lceil \frac{2(n+2 - \ell(T))}{3} \rceil, \end{split}$$

as desired.

If $\deg_T(v_3) = 2$, then let $T' = T - \{v_1, v_2, v_3\}$. Clearly $\gamma_{oitr2}(T) \ge \gamma_{oitr2}(T') + 2$ and $\ell(T) - 1 \le \ell(T') \le \ell(T)$. We obtain from the induction hypothesis on T' that

$$\begin{split} \gamma_{oitr2}(T) &\geq \gamma_{oitr2}(T') + 2\\ &\geq \lceil \frac{2(n(T') + 2 - \ell(T'))}{3} \rceil + 2\\ &\geq \lceil \frac{2((n-3) + 2 - \ell(T))}{3} \rceil + 2\\ &\geq \lceil \frac{2(n+2 - \ell(T))}{3} \rceil. \end{split}$$

This completes the proof. By Proposition 5, paths of order 3k + 2 attain this bound.

References

- H. Abdollahzadeh Ahangar, J. Amjadi, N. Jafari Rad, and V. Samodivkin, *Total k-rainbow domination numbers in graphs*, Commun. Comb. Optim. 3 (2018), no. 1, 37–50.
- [2] J. Amjadi, N. Dehgardi, M. Furuya, and S.M. Sheikholeslami, A sufficient condition for large rainbow domination number, Int. J. Comput. Math. Comput. Syst. Theory 2 (2017), no. 2, 53–65.
- [3] B. Brešar, M.A. Henning, and D.F. Rall, *Rainbow domination in graphs*, Taiwanese J. Math. **12** (2008), no. 1, 213–225.
- [4] B. Brešar and T.K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007), no. 17, 2394–2400.
- [5] G.J. Chang, J. Wu, and X. Zhu, *Rainbow domination on trees*, Discrete Appl. Math. **158** (2010), no. 1, 8–12.
- [6] N. Dehgardi, On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles, Commun. Comb. Optim. 6 (2021), no. 2, 315– 324.
- [7] E. Gholami, N. Jafari Rad, A. Tehranian, and H. Rasooli, A new upper bound on the independent 2-rainbow domination number in trees, Commun. Comb. Optim. 8 (2022), no. 1, 261–270.
- [8] N. Jafari Rad and M. Krzywkowski, 2-outer-independent domination in graphs, Nat. Acad. Sci. Lett. 38 (2015), no. 3, 263–269.
- [9] Q. Kang, V. Samodivkin, Z. Shao, S.M. Sheikholeslami, and M. Soroudi, Outerindependent k-rainbow domination, J. Taibah University for Science 13 (2019), no. 1, 883–891.
- [10] Z. Mansouri and D.A. Mojdeh, Outer independent rainbow dominating functions in graphs, Opuscula Math. 40 (2020), no. 5, 599–615.
- [11] D.B. West, Introduction to Graph Theory, Prentice-Hall of India, 1999.
- [12] W. Willis, Bounds for the independence number of a graph, Ph.D. thesis, Virginia Commonwealth University, 2011.
- [13] Y. Wu and N. Jafari Rad, Bounds on the 2-rainbow domination number of graphs, Graphs Combin. 29 (2013), no. 4, 1125–1133.