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Abstract: Suppose each edge of a simple connected undirected graph is given a

unique number from the numbers 1, 2, . . . , q, where q is the number of edges of that
graph. Then each vertex is labelled with sum of the labels of the edges incident to it.

If no two vertices have the same label, then the graph is called an antimagic graph.

We prove that the Cartesian product of wheel graph and path graph is antimagic.
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1. Introduction

An undirected, simple graph G = (V,E) is said to be antimagic, if there exists a

bijective labeling f : E → {1, 2, 3, . . . , |E|} such that all vertex sums are distinct.

Vertex sum is the sum of all the labels of edges incident to it. Antimagic labeling

was introduced by Hartsfield and Ringel [6]. They had also conjectured that every

connected graph different from K2 is antimagic. This conjecture remains open. Nev-

ertheless, some classes of graphs are shown to be antimagic. A short version of the

conjecture is that all trees but K2 are antimagic. The details and latest updates of

various graph labelings can be found in Gallian’s survey [5].

Wang proved that toroidal grids, Cm × Cn, and higher dimensional toroidal grids,

Cm1
×Cm2

×Cm3
×· · ·×Cmt

are antimagic [10]. It is proved that lattice grid graphs,

prism grid graphs, generalised prism grid graphs, generalised toroidal grid graphs,

some lexicographic product graphs and some composition graphs are antimagic [4, 10].
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Zhang and Sun have proved that the Cartesian product of two or more paths and the

Cartesian product of an antimagic regular graph and a connected graph are antimagic

[11]. Phanalasy et al. constructed an antimagic labeling for the Cartesian product

of regular graphs [8]. In 2011, Li gave the antimagic labeling of Ck
n for k = 2, 3, 4.

[7]. In 2013, Wang et al. showed that join of G1 and G2 are antimagic [9], where

G1 is a graph with n vertices of minimum degree r, and G2 is a graph with m

vertices of maximum degree 2r − 1 (m ≥ n). In 2014, Arumugam et al. defined

a new family of graphs called generalized pyramid graph [1]. The authors gave the

antimagic labeling for the family of generalized pyramid graphs. In the same year,

Buset et al. provided antimagic labelings for a family of generalized antiprism graphs

and generalized toroidal antiprism graphs [3]. Bača et al. (2015) constructed the

antimagic labeling for some multipartite graphs. The antimagic labeling includes, the

join graph G + nK1, G + Km and G + G1, with some conditions on G [2].

In this paper, we present the antimagic labeling of the Cartesian product of wheel

graph and path graph. Also, we show that switching of priority of operations in

graphs (K1 + Cn−1)� Pm and K1 + (Cn−1 � Pm) does not have an impact on

antimagicness.

2. Existence of the Antimagic Labelling

Theorem 1. The Cartesian product of wheel graph and path graph is antimagic.

Proof. A non-trivial Cartesian product of wheel graph and path, Wn � Pm, where

Wn is a wheel with n ≥ 4 vertices and Pm is a path with m ≥ 1 vertices, can be

visualized as cylindrical in shape. See Figure 1. The Cartesian product graph Wn �
Pm has 3mn− 2m− n edges.

Figure 1. W6 � P6

The proof is obtained in three cases. They are m = 1 and n ≥ 4, m > 1 and n > 4

and m > 1 and n = 4.

Case 1. m = 1 and n ≥ 4.
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Wn � P1 is just a wheel. It has already been shown that wheel graphs are antimagic

[6]. Hence the theorem is true for n ≥ 4 and m = 1.

Case 2. m > 1 and n > 4.

For the wheel Wn, let the central vertex be u0 and u1, u2, u3, . . . , u(n−1) be the

other vertices. For the path Pm, let v1, v2, v3, . . . , vm be the vertices. Let the

function s : V (Wn�Pm) → N be the vertex sum induced by the edge labeling f :

E(Wn�Pm)→ {1, 2, 3, . . . , (3mn−2m−n)}. The Cartesian product gives rise to two

parts, one contributed by Wn and the other by Pm. Let the vertices of the graph Wn

� Pm be (ui, vj) for 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ m.

Figure 2. Wn � Pm

We define the edge labeling for the graph Wn � Pm as follows.

f((u1, vj), (u(n−1), vj)) = 1 + (2n− 2)(j − 1) , for j = 1, 2, 3, . . . ,m,

f((ui, vj), (ui+1, vj)) = 2i + 1 + (2n − 2)(j − 1) for i = 1, 2, . . . , n − 2 and j =

1, 2, 3, . . . ,m,

f((ui, vj), (ui, vj+2)) = (2n − 2i) + (2n − 2)(j − 1), for i = 1, 2, . . . , n − 1 and

j = 1, 2, 3, . . . ,m− 2,

f((ui, vm−1), (ui, vm)) = (2n− 2i) + (2n− 2)(m− 2) for i = 1, 2, 3, . . . , n− 1,

f((u0, v1), (ui, v1)) = (2n− 2)m− 2(n− (2 + i)) for i = 1, 2, 3, . . . , n− 2,

f((u0, v1), (un−1, v1)) = 2((n− 1)m− n + 2)

f((u0, vj), (ui, vj)) = (2n− 2)m + 1 + i + (n− 1)(j − 2) for i = 1, 2, 3, . . . , n− 2

and j = 2, 3, . . . ,m,

f((u0, vj), (un−1, vj)) = (2n− 2)m + 1 + (n− 1)(j − 2) for j = 2, 3, . . . ,m,

f((u0, vj), (u0, vj+2)) = (2n − 2)m + (n − 1)(m − 1) + j for j = 1, 2, 3, . . . ,m − 2

and

f((u0, vm−1), (u0, vm)) = (2n− 2)m + (m− 1)n.

Using these labelings the vertex sum is as follows.

s(un−1, v1) = (2n− 2)m + 4,

s(ui, v1) = (2n− 2)m + 4 + 4i for i = 1, 2, 3, . . . , n− 2,

s(un−1, v2) = (2n− 2)(m + 3) + 2n + 1,

s(ui, v2) = 3i + 2n + 1 + (2n− 2)(m + 3) for i = 1, 2, 3, . . . , n− 2,

s(un−1, vj) = 3 + 2n + (n− 1)(9j + 2m− 14) for j = 3, 4 . . . ,m− 1,
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s(ui, vj) = 1 + 4n + i + (n− 1)(9j + 2m− 14) for i = 1, 2, 3, . . . , n− 2

and j = 3, 4, . . . ,m− 1

s(un−1, vm) = 5 + (n− 1)(11m− 14),

s(ui, vm) = 3 + i + 2n + (n− 1)(11m− 14) for i = 1, 2, 3, . . . , n− 2,

s(u0, v1) = 2(n− 1)2(m− 1) + (n− 1)(3m + n− 1) + 1,

s(u0, v2) = 2(n− 1)2m + (n− 1)(n
2 + 3m− 1) + 2,

s(u0, vj) = (n− 1)2(2m + j − 2) + n(n−1)
2 + (n− 1)(6m− 2) + 2j − 2

for j = 3, 4, . . . ,m− 1 and

s(u0, vm) = (n− 1)2(3m− 2) + n(n−1)
2 + (n− 1)(6m− 2) + 2m− 3.

Subcase 2a. m = 2 and n > 4

The above labeling remains the same while the vertex sum changes as there is

only one part contributed by P2 to the graph Wn�P2. Hence the vertex sum for

(u1, v2), (u2, v2), (u3, v2) . . . (un−1, v2) and (u0, v2) will be s(ui, v2) = 1 + 3i + 2n +

(n− 1)(11m− 14) for i = 1, 2, 3, . . . , n− 2.

Also, s(un−1, v2) = 1 + 2n + (n − 1)(11m − 14) and s(u0, v2) = 2(n −
1)2m + (n − 1)(n

2 + 3m − 1) + 1. The vertex sum remains the same for

(u1, v1), (u2, v1), (u3, v1) . . . (un−1, v1) and (u0, v1).

From the above defined vertex sum it is obvious that s(un−1, v1) < s(u1, v1) <

s(u2, v1) < s(u3, v1) < · · · < s(un−2, v1) < s(un−1, v2) < s(u1, v2) < s(u2, v2) <

s(u3, v2) < · · · < s(un−2, v2) < s(u0, v1) < s(u0, v2)

We now show that the above labeling makes the graph Wn � Pm antimagic.

s(un−1, v1) < s(u1, v1) < s(u2, v1) < · · · < s(un−2, v1) <

s(un−1, v2) < s(u1, v2) < s(u2, v2) < . . . , s(un−2, v2) <

s(un−1, v3) < s(u1, v3) < s(u2, v3) < . . . , s(un−2, v3) <
...

s(un−1, vm−1) < s(u1, vm−1) < s(u2, vm−1) < . . . , < s(un−2, vm−1) < s(un−1, vm) <

s(u1, vm) < s(u2, vm) < s(u3, vm) . . . , < s(un−2, vm) < s(u0, v1) < s(u0, v2) <

s(u0, v3) < . . . , < s(u0, vm−1) < s(u0, vm).

We know that, 4 < 4i + 4 for i = 1, 2, . . . , n− 2 and thus

(2n− 2)m + 4 < (2n− 2)m + 4i + 4 and hence,

s(un−1, v1) < s(ui, v1).

Since s(ui, v1) = (2n− 2)m + 4 + 4i for i = 1, 2, 3, . . . , n− 2, we have, s(u1, v1) <

s(u2, v1) < · · · < s(un−2, v1).

Hence, s(un−1, v1) < s(u1, v1) < s(u2, v1) < · · · < s(un−2, v1).

Also, 4n− 4 < 8n− 5.

Hence, (2n− 2)m + 4n− 4 < (2n− 2)m + 8n− 5.

i.e., (2n− 2)m + 4 + 4(n− 2) < (2n− 2)(m + 3) + 2n + 1.

Hence, s(un−2, v1) < s(un−1, v2) and

2n + 1 < 2n + 1 + 3i for i = 1, 2, . . . , n− 2,

(2n− 2)(m + 3) + 2n + 1 < (2n− 2)(m + 3) + 2n + 1 + 3i

s(un−1, v2) < s(ui, v2).

Since s(ui, v2) = 3i + 2n + 1 + (2n − 2)(m + 3) for i = 1, 2, 3, . . . , n − 2, we have,
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s(u1, v2) < s(u2, v2) < . . . , s(un−2, v2).

Hence, s(un−1, v2) < s(u1, v2) < s(u2, v2) < . . . , s(un−2, v2).

We have, 11n− 11 < 15n− 10.

Thus, 2m(n− 1) + 11n− 11 < 15n− 10 + 2m(n− 1) and

5n− 5 + 2(n− 1)(m + 3) < 3 + 2n + (n− 1)(2m + 13).

Hence, s(un−2, v2) < s(un−1, v3) and

3 + 2n < 1 + 4n + i for i = 1, 2, 3, . . . , n− 2 and

(n− 1)(2m + 13) + 3 + 2n < (n− 1)(2m + 13) + 1 + 4n + i

s(un−1, v3) < s(ui, v3).

Since s(ui, v3) = (n − 1)(2m + 13) + 1 + 4n + i for i = 1, 2, 3, . . . , n − 2, we have,

s(u1, v3) < s(u2, v3) < . . . , s(un−2, v3).

Hence, s(un−1, v3) < s(u1, v3) < s(u2, v3) < . . . , s(un−2, v3).

Let k be any number in j = 3, 4, . . . ,m− 1.

Claim: s(un−2, vk−1) < s(un−1, vk) < s(ui, vk) for i = 1, 2, 3, . . . , n− 2.

We have, −18n− 22 < −12n + 17.

Thus, 9k(n− 1) + 2m(n− 1)− 18n− 22 < −12n + 17 + 9k(n− 1) + 2m(n− 1)

1 + 4n + n− 2 + (n− 1)(9(k − 1) + 2m− 14) < 3 + 2n + (n− 1)(9k + 2m− 14).

Hence, s(un−2, vk−1) < s(un−1, vk).

We have, 3 + 2n < 1 + 4n + i.

Thus 3 + 2n + (n− 1)(9k + 2m− 14) < 1 + 4n + i + (n− 1)(9k + 2m− 14).

Hence, s(un−1, vk) < s(ui, vk).

Therefore, s(un−2, vk−1) < s(un−1, vk) < s(u1, vk) < s(u2, vk) < s(u3, vk) < · · · <
s(un−2, vk).

We have, −18n + 22 < −14n + 19.

Thus −18n + 22 + 11m(n− 1) < 11m(n− 1)− 14n + 19 and

1 + 4n + n− 2 + (n− 1)(9(m− 1) + 2m− 14) < 5 + (n− 1)(11m− 14)

s(un−2, vm−1) < s(un−1, vm)

5 < 2n + 3 + i for i = 1, 2, 3, . . . , n− 2 and

5 + (n− 1)(11m− 14) < (n− 1)(11m− 14) + 2n + 3 + i

s(un−1, vm) < s(ui, vm).

Since, s(ui, vm) = (n − 1)(11m − 14) + 2n + 3 + i for i = 1, 2, 3, . . . , n − 2,

s(u1, vm) < s(u2, vm) < s(u3, vm) < · · · < s(un−2, vm).

Therefore, s(un−1, vm) < s(u1, vm) < s(u2, vm) < s(u3, vm) < · · · < s(un−2, vm)

3n + 1 + 3m(n− 1) + (n− 1)(8m− 14) < (n− 1)2(2m− 1) + 3m(n− 1) + 1.

As n > 4, nmin = 5, substituting n = 5 in the above inequality, we get −40 < −15. If

the inequality holds for n = 5, it will hold for n > 5 also.

Hence, s(un−2, vm) < s(u0, v1).

(n− 1)2(2m− 1) + 3m(n− 1) + 1 < 2(n− 1)2m + (n− 1)(n
2 + 3m− 1) + 2.



644 The Cartesian product of wheel graph and path graph is antimagic

As n > 4, nmin = 5, substituting n = 5 in the above inequality, we get −15 < 8. If

the inequality holds for n = 5, it will hold for n > 5 also.

Hence, s(u0, v1) < s(u0, v2).

i.e., 2 < (n− 1)2 + (n− 1)(3m− 1) + 4

i.e., 2 + (n− 1)(3m− 1) < (n− 1)(3m− 1) + (n− 1)2 + (n− 1)(3m− 1) + 4

2 + (n− 1)(3m− 1) + 2(n− 1)2m+ (n− 1)n
2 < 2(n− 1)2m+ (n− 1)n

2 + (n− 1)(3m−
1) + (n− 1)2 + (n− 1)(3m− 1) + 4.

i.e., 2+2(n−1)2m+(n−1)(n
2 +(3m−1)) < (n−1)2(2m+1)+n(n−1)

2 +(n−1)(6m−2)+4.

Hence, s(u0, v2) < s(u0, v3).

Since, s(u0, vj) = (n− 1)2(2m + j − 2) + n(n−1)
2 + (n− 1)(6m− 2) + 2j − 2

for j = 3, 4, . . . ,m − 1, it is obvious that s(u0, v3) < s(u0, v4) < s(u0, v5) < · · · <
s(u0, vm−1).

We have −3(n− 1)2 + 2m− 4 < −2(n− 1)2 + 2m− 3.

Thus 3m(n − 1)2 + n(n−1)
2 + (n − 1)(6m − 2) − 3(n − 1)2 + 2m − 4 < 3m(n − 1)2 +

n(n−1)
2 + (n− 1)(6m− 2)− 2(n− 1)2 + 2m− 3 and

s(u0, vm−1) < s(u0, vm).

Hence the graph is antimagic.

Case 3. n = 4 and m > 1.

Consider the wheel W4. Let the central vertex be u0 and u1, u2, u3, be the other

vertices. For the path Pm, let v1, v2, v3, . . . , vm be the vertices. Let the function

s : V (W4�Pm)→ N be the vertex sum induced by the edge labeling f : E(W4�Pm)→
{1, 2, 3, . . . , (10m−4)}. The Cartesian product gives rise to two parts, one contributed

by W4 and the other by Pm. The vertices of graph W4 � Pm are (ui, vj) for 0 ≤ i ≤ 3

and 1 ≤ j ≤ m.

We define the edge labeling for the graph W4 � Pm as follows.

f((u0, vj), (ui, vj)) = (2i− 1) + (j − 1)10 for i = 1, 2, 3 and j = 1, 2, . . . ,m,

f((ui, vj), (ui+1, vj)) = 2i + (j − 1)10 for i = 1, 2 and j = 1, 2, . . . ,m,

f((u3, vj), (u1, vj)) = 6 + (j − 1)10 for j = 1, 2, . . . ,m,

f((ui, vj), (ui, vj+2)) = 7 + i + (j − 1)10. for i = 0, 1, 2, 3 and j = 1, 2,

f((ui, vj), (ui, vj+2)) = 14 + i + (j − 1)10 + (j − 3)10. for i = 0, 1, 2, 3 and j =

3, 4, . . . ,m− 1 and

f((ui, vm−1), (ui, vm)) = 7 + i + (m− 2)10 for i = 0, 1, 2, 3.

Using these labelings vertex sum is defined.

For all i = 1, 2, 3

s(ui, vj) = 17 + (i− 1)i + 4(j − 1)10 for j = 1, 2.

s(ui, vj) = 24 + (i− 1)i + i + (5j − 7)10 for j = 3, 4, . . . ,m− 1,

s(ui, vm) = 24 + (i− 1)i + i + (5m− 8)10,

s(u0, vj) = 16 + 4(j − 1)10 for j = 1, 2,

s(u0, vj) = 23 + (5j − 7)10 for j = 3, 4, . . . ,m− 1 and

s(u0, vm) = 23 + (5m− 8)10.

From the above vertex sum defined in this way, it is obvious that the inequality given

below will follow.
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s(u0, v1) < s(u1, v1) < s(u2, v1) < s(u3, v1) <

s(u0, v2) < s(u1, v2) < s(u2, v2) < s(u3, v2) <

s(u0, v3) < s(u1, v3) < s(u2, v3) < s(u3, v3) <
...

s(u0, vm−1) < s(u1, vm−1) < s(u2, vm−1) < s(u3, vm−1) <

s(u0, vm) < s(u1, vm) < s(u2, vm) < s(u3, vm).

Hence the graph W4 � Pm is antimagic.

Subcase 3a. m = 2 and n = 4

The above edge labeling can be used but not the vertex sum. Vertex sum can be

calculated specifically for it and observed to be distinct.

Therefore, from Case 1, Case 2, Subcase 2a, Case 3 and Subcase 3a, the theorem is

proved.

3. On (K1 + Cn−1)� Pm and K1 + (Cn−1 � Pm)

Wheel graphs are nothing but join of K1 +Cn−1. From the above theorem, it can be

seen that (K1 + Cn−1)�Pm is antimagic. Consider the graph K1 + (Cn−1�Pm).

It is has been already proved that (Cn � Pm) is antimagic [4]. Now, join of K1 and

(Cn−1�Pm) gives rise to a graph with vertices (u1, v1), (u2, v1), . . . , (un−1, vm) and

u0 of K1. Comparing this with Wn � Pm for n > 4 and m > 1, the central vertices

(u0, v1), (u0, v2), . . . , (u0, vm) are replaced by a single vertex say u0 of K1. The labels

on spokes remain same as in Case 2 and are connected to u0. It is already shown that

the vertex sum of (u1, v1), (u2, v1), (u3, v1), . . . , (un−1, vm) are distinct and vertex sum

at u0 will be the largest vertex sum. Thus, all vertices of the graph K1 + (Cn−1�Pm)

are distinct for n > 4 and hence antimagic.

As the labeling for Cn−1 where n = 4 is different and also removing the central vertex

from Wn for n = 4 affects the other labeling, we define a new labeling for K1 + (Cn−1

� Pm) for n = 4 and m > 1.

Let the function s : V (K1 + (Cn−1�Pm)) → N be the vertex sum induced by the

edge labeling f : E(K1 + (Cn−1�Pm))→ {1, 2, 3, . . . , (9m− 3)}. The vertices of the

graph C3 � Pm are (ui, vj) for 1 ≤ i ≤ 3 and 1 ≤ j ≤ m and u0 is the vertex of K1.

We define the edge labeling for the graph K1 + (Cn−1 � Pm)for n = 4 and m > 1 as

follows.

f((ui, vj), (ui+1, vj)) = 6(j − 1) + 2i for i = 1, 2 and j = 1, 2, . . . ,m,

f((u3, vj), (u1, vj)) = 6j for j = 1, 2, . . . ,m,

f(u0, (ui, vj)) = 6j + 2i− 7 for i = 1, 2, 3 and j = 1, 2, . . . ,m,

f((ui, vj), (ui, vj+2) = 6m + 3j + i− 3 for i = 1, 2, 3 and j = 1, 2, . . . ,m− 2 and

f((ui, vm−1), (ui, vm)) = 9m + i− 6 for i = 1, 2, 3.

Using these labelings vertex sum is obtained as, s(ui, vj) = 21j + 6m + i− 12 for

i = 1, 2 and j = 1, 2,

s(u3, vj) = 21j + 6m− 3 for j = 1, 2,

s(ui, vj) = 24j + 12m + 2i− 21 for i = 1, 2 and j = 3, 4, . . . ,m− 1,

s(u3, vj) = 24j + 12m− 9 for j = 3, 4, . . . ,m− 1,
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s(ui, vm) = 36m + 2i− 24 for i = 1, 2,

s(u3, vm) = 36m− 12 and

s(u0) = 9m2.

From the above defined vertex sum, it is obvious that the below inequality will follow

except for m = 2 and m = 3.

s(u1, v1) < s(u2, v1) < s(u3, v1) <

s(u1, v2) < s(u2, v2) < s(u3, v2) <

s(u1, v3) < s(u2, v3) < s(u3, v3) <
...

Thus s(u1, vm−1) < s(u2, vm−1) < s(u3, vm−1) <

s(u1, vm) < s(u2, vm) < s(u3, vm) < s(u0).

When m = 2, s(u1, v1) < s(u2, v1) < s(u3, v1) < s(u1, v2) < s(u2, v2) < s(u0) <

s(u3, v2).

When m = 3, s(u1, v1) < s(u2, v1) < s(u3, v1) < s(u1, v2) < s(u2, v2) < s(u3, v2) <

s(u0) < s(u1, v3) < s(u2, v3) < s(u3, v3).

Hence, the graph K1 + (Cn−1 � Pm) is antimagic.

Therefore, switching priority in operations for graph (K1 + Cn−1)� Pm and K1 +

(Cn−1 � Pm) does not affect the antimagicness.
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