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Abstract: Let G = (V,E) be a graph. A double Roman dominating function
(DRDF) of G is a function f : V → {0, 1, 2, 3} such that, for each v ∈ V with f(v) = 0,

there is a vertex u adjacent to v with f(u) = 3 or there are vertices x and y adjacent

to v such that f(x) = f(y) = 2 and for each v ∈ V with f(v) = 1, there is a vertex
u adjacent to v with f(u) > 1. The weight of a DRDF f is f(V ) =

∑
v∈V f(v). Let

n and k be integers such that 3 ≤ 2k + 1 ≤ n. The generalized Petersen graph

GP (n, k) = (V,E) is the graph with V = {u1, u2, . . . , un} ∪ {v1, v2, . . . , vn} and
E = {uiui+1, uivi, vivi+k : 1 ≤ i ≤ n}, where addition is taken modulo n.

In this paper, we firstly prove that the decision problem associated with double Roman
domination is NP-complete even restricted to planar bipartite graphs with maximum

degree at most 4. Next, we give a dynamic programming algorithm for computing a

minimum DRDF (i.e., a DRDF with minimum weight along all DRDFs) of GP (n, k)
in O(n81k) time and space and so a minimum DRDF of GP (n,O(1)) can be computed

in O(n) time and space.
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AMS Subject classification: 05C78, 05C76

1. Introduction

Let G = (V,E) be a graph with the vertex set V and the edge set E. Here, we study

finite, simple and undirected graphs. The open neighborhood of a vertex v ∈ V is

NG(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}.
The degree of v ∈ V , denoted by degG(v), is the cardinality of NG(v). For any S ⊆ V
the induced subgraph G[S] is the graph whose vertex set is S and whose edge set

consists of all edges in E that have both endpoints in S. If degG(v) = 1, then v is

called a pendant vertex of G.

The graph G is called a bipartite graph if V can be partitioned into two subsets X

and Y such that each edge in E has one end in X and one end in Y , denoted by
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G = (X,Y,E). A tree is a connected graph with no cycles. A tree T = (V,E) is called

a star if |V | = 2 or |V | ≥ 3 and T contains exactly one vertex that is not pendant

that is called the central vertex of the star. A path is a tree with exactly two pendants

and a triad is three paths with a common end.

A function f : V → {0, 1, 2} is called a Roman dominating function of G if for every

vertex v ∈ V with f(v) = 0, there is a vertex u ∈ N(v) with f(u) = 2. Roman

domination was initially motivated by the defence of the Roman empire. In the main

problem, a city may be defended by using one of the two legions from a neighboring

city. Beeler et al. [5] first initiated the study of double Roman dominating functions,

a stronger version of Roman domination functions that can defend any attack by at

least two legions. A double Roman dominating function (DRDF) of G is a function

f : V → {0, 1, 2, 3} such that:

(i) for each v ∈ V with f(v) = 0, there is a vertex u ∈ NG(v) with f(u) = 3 or

there are vertices x, y ∈ NG(v) with f(x) = f(y) = 2, and

(ii) for each v ∈ V with f(v) = 1, there is a vertex u ∈ NG(v) with f(u) > 1.

For a DRDF f of G, we use the notation f = (V0, V1, V2, V3), where Vi is the set of

all vertices of G with label i under f for each i ∈ {0, 1, 2, 3}. The weight of a DRDF

f , denoted by w(f), is f(V ) =
∑
v∈V f(v). The double Roman domination number of

G, denoted by γdR(G), is the minimum weight of a DRDF of G between all DRDFs

of G. A minimum DRDF of G is a DRDF f of G with w(f) = γdR(G).

Variants of double Roman domination of graphs have been studied extensively in the

literature, for example [2, 3, 6, 8, 9, 13]. The decision problem associated with the

double Roman domination is NP-complete even when restricted to bipartite graphs

and chordal graphs [1, 7], star convex bipartite graphs and tree convex bipartite

graphs [11] and undirected path graphs, chordal bipartite graphs and circle graphs

[4]. There are linear time algorithms for computing the double Roman domination

number of special classes of graphs such as proper interval graphs and block graphs

[4], trees [15], and unicyclic graphs [12].

Let n and k be integers such that 3 ≤ 2k + 1 ≤ n. Watkins [14] has introduced

the generalized Petersen graph GP (n, k) = (V,E) as the graph with the vertex set

V = {u1, u2, . . . , un} ∪ {v1, v2, . . . , vn} and the edge set E = {uiui+1, uivi, vivi+k :

1 ≤ i ≤ n}, where the subscripts are added modulo n.

In this paper, we first prove that the decision problem associated with the double Ro-

man domination is NP-complete even when restricted to planar bipartite graphs with

maximum degree at most 4. Then, we propose an algorithm to compute a minimum

DRDF of GP (n, k) in O(n81k) time and space. For this purpose we first propose an

algorithm based on a dynamic programming approach to compute γdR(GP (n, k)) and

then using a backtracking search algorithm we find a minimum DRDF of GP (n, k)

in O(n81k) time and space. As a result, we can compute a minimum DRDF of

GP (n,O(1)) in O(n) time and space.
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Figure 1. Illustrating the gadget Ge, where e = uv.

2. Hardness

In this section we study the computational complexity of the following decision

problem.

Double Roman Domination (DRD) problem:

Instance: A graph G and a positive integer t.

Question: Is there a DRDF f on G with w(f) ≤ t?

We prove that the DRD problem is NP-complete even when restricted to planner

bipartite graphs with maximum degree at most 4. We introduce a reduction from

the vertex cover (VC) problem to the DRD problem, where VC is the problem of

deciding whether given a graph G = (V,E) and a positive integer k, there is a vertex

cover (i.e., a set S ⊆ V such that each edge has at least one endpoint in S) in G

with cardinality at most k. The VC problem is NP-complete even when restricted to

2-connected planar cubic graphs [10].

For a given 2-connected planar cubic graph G = (V,E), let H be a graph constructed

from G by replacing each edge e = uv in G by a gadget Ge illustrated in Figure 1.

The graph H is a planar bipartite graph with maximum degree at most 4 that can be

constructed in polynomial time of |E|. Let β(G) denote the vertex covering number

of a graph G. In the rest of the paper, we need the following result of Beeler et. al.

[5].

Corollary 1. For any graph G, there is a minimum DRDF f = (V0, V1, V2, V3) with
V1 = ∅.

Lemma 1. Given a 2-connected planar cubic graph G, let H be a graph constructed
from G by replacing each edge e = uv in G by a gadget Ge illustrated in Figure 1. Then,
γdR(H) = β(G) + 2|V (G)|+ 6|E(G)|.
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Proof. Let D be a vertex cover of G with |D| = β(G). Let e = uv be an edge in

E(G). At least one of vertices u and v is inD. We construct a DRDF f ofH as follows.

Initially, set D′3 to be the empty set. Add we to D′3. If v /∈ D, then add v′′ to D′3, if

u /∈ D, then add u′′ to D′3, and if both u and v are in D, then add u′′ to D′3. Thus,

|D′3| = 2|E(G)|. Let f = (V (H) \ (D′3 ∪ V (G)), ∅, V (G) \D,D′3 ∪D). We obtain that

f is a DRDF of H with w(f) = 2|V (G) \D|+ 3|D′3 ∪D| = β(G) + 2|V (G)|+ 6|E(G)|
and so γdR(H) ≤ w(f).

On the other hand, by Corollary 1, let g = (V g0 , ∅, V
g
2 , V

g
3 ) be a minimum DRDF of H.

Let e = uv ∈ E(G). If g(xe)+g(ye) > 0, then g(xe)+g(ye)+g(we) > 3. By replacing

both g(xe) and g(ye) by 0 and g(we) by 3, we obtain a new DRDF ofH with weight less

than w(g), contradicting that g is a minimum DRDF of H. Hence, g(xe) = g(ye) = 0

and g(we) = 3. Similarly, g(ae) = g(be) = 0 and so either at least one of vertices

u′′ and v′′ is in V g3 or both u′′ and v′′ are in V g2 . Assume g(u′′) = g(v′′) = 2. If

g(u) = 3 (respectively, g(v) = 3), then by replacing g(u′′) and g(v′′) by 0 and 3

(resp., 3 and 0), respectively, we obtain a new DRDF of H with weight less than

w(g), a contradiction. So, both u and v are not in V g3 . If g(u) = 0 (respectively,

g(v) = 0), then g(u′) = a > 1 and so by replacing g(u) and g(u′) (respectively, g(v)

and g(v′)) by a and 0, respectively, we obtain a new DRDF of H with weight less or

equal to w(g). Hence, we may assume g(u) = g(v) = 2. By replacing g(u), g(u′′),

and g(v′′) by 3, 0, and 3, respectively, we obtain a new DRDF of H with weight less

or equal to w(g). Hence, we may assume either g(u′′) = 3 and g(v′′) = 0 or g(u′′) = 0

and g(v′′) = 3. Let S = {u′′, v′′, we : e = uv ∈ E(G)}, let S3 = {x ∈ S : g(x) = 3}, let

V ′ ⊆ V (H) be the set of vertices that are not adjacent to some vertex in S3, and let

H ′ be the induced subgraph H[V ′]. All vertices ae, be, xe, ye, we, u
′′, v′′ and either u′

or v′ (not both) are not in V ′ and so H ′ is a forest of trees with |V (G)| components

that each component is a star whose central vertex is a vertex in V (G). Let T be a

component of H ′. If T is a single vertex, then g(z) = 2, where V (T ) = {z} and if

T is not a single vertex, then g(z) = 3, where z is the central vertex of T and so at

least one of two vertices u and v is in V3. Let D = V (G) ∩ V g3 . We obtain that D is

a VC of G and w(g) = 3|D|+ 2(|V (G)| − |D|) + 6|E(G)| = |D|+ 2|V (G)|+ 6|E(G)|.
Thus, β(G) ≤ |D| = w(g)− 2|V (G)| − 6|E(G)| = γdR(H)− 2|V (G)| − 6|E(G)|. This

completes the proof of the lemma.

By Lemma 1 and the fact that H is a planar bipartite graph with maximum degree

at most 4 that can be computed in polynomial time of |E|, where G = (V,E) is a

given 2-connected planar cubic graph, and the fact that the DRD problem is in NP,

we have the following result.

Theorem 1. The decision version of the double Roman domination problem is NP-
complete even when restricted to planar bipartite graphs with maximum degree at most 4.
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Figure 2. Illustrating (a) GP (8, 3) and (b) SGP (8, 3) and G3
7.

3. Computing γdR of generalized Petersen graphs

In this section, we give an algorithm to compute the double Roman domination num-

ber of the generalized Petersen graph GP (n, k). Before we begin our algorithm, we

need the following notations.

3.1. Notations needed for the Algorithm

In the rest of the paper, we fix integers n and k such that 3 ≤ 2k + 1 ≤ n. Let

GP (n, k) = (VGP , EGP ) be the generalized Petersen graph with VGP = {u1, . . . , un}∪
{v1, . . . , vn} and EGP = {uiui+1, uivi, vivi+k : 1 ≤ i ≤ n}, where addition is taken

modulo n. The semi generalized Petersen graph SGP (n, k) = (Vs, Es) (corresponding

to GP (n, k)) is a graph with the vertex set

Vs = VGP ∪ Vl ∪ Vr,

where Vl = {v1−k, v2−k, . . . , v0, u0} and Vr = {un+1, vn+1, vn+2, . . . , vn+k} and the

edge set

Es = (EGP \ {u1un, vn−k+ivi : 1 ≤ i ≤ k}) ∪ El ∪ Er,

where El = {v1−kv1, v2−kv2, . . . , v0vk, u0u1, u0v0} and Er = {un+1vn+1, unun+1,

vn−k+1vn+1, vn−k+2vn+2, . . . , vnvn+k}. See Fig. 2.

Remark 1. We have degSGP (n,k)(v) = 3 for every vertex v ∈ VGP and degSGP (n,k)(v) < 3
for every vertex v ∈ Vl ∪ Vr.
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Let G′ = (V ′, E′) be a connected subgraph of SGP (n, k). A function f : V ′ →
{0, 1, 2, 3} is a semi double Roman dominating function (SDRDF) of G′ such that

for each vertex v ∈ V ′ with degG′(v) = 3,

(i) if f(v) = 0, there is a vertex u ∈ NG′(v) with f(u) = 3 or there are vertices

x, y ∈ NG′(v) with f(x) = f(y) = 2, and

(ii) if f(v) = 1, there is a vertex u ∈ NG′(v) with f(u) > 1.

Let Gki be the subgraph of SGP (n, k) induced by Vi = Vl ∪ {u1, . . . , ui} ∪
{v1, . . . , vi+k−1} for each 1 ≤ i ≤ n + 1. We obtain that Gkn+1 = SGP (n, k). See

Fig. 2(b). Let b1, b2, . . . , b2k+2 ∈ {0, 1, 2, 3} and let i ∈ {1, 2, . . . , n + 1}. In the

following, we define γ
b2k+2b2k+1···b1
dR (Gki ). Here, b2k+2, b2k+1, . . . , b1 are corresponding

to vertices vi−k, vi−k+1, . . . , vi−1, ui−1, ui, vi, vi+1, . . . , vi+k−1, respectively, of Gki . Let

j ∈ {1, . . . , 2k + 2}. The value γ
b2k+2···b1
dR (Gki ) is the weight of a minimum SDRDF

f = (V0, V1, V2, V3) of Gki such that if bj = x ∈ {0, 1, 2, 3}, then the correspond-

ing vertex of bj is in Vx. Let S be the set of vertices corresponding to bj for all

j ∈ {1, . . . , 2k + 2}. Note that each vertex w ∈ S with dGk
i
(w) = 3 is adjacent to at

least one vertex in V (Gki ) that is not in S and so γ
b2k+2···b1
dR (Gki ) is well-defined. Since

there are 42k+2 = 16k+1 different cases for defining γ
b2k+2···b1
dR (Gki ), in the following

we give the complete formal definition of some cases.

• γ0···0dR (Gki ) = min{w(f) : f = (V0, V1, V2, V3) is a SDRDF of Gki , vi−k ∈ V0,

vi−k+1 ∈ V0, . . . , vi−1 ∈ V0, ui−1 ∈ V0, ui ∈ V0, vi ∈ V0, vi+1 ∈ V0, . . . ,

vi+k−1 ∈ V0},

• γ1···12dR (Gki ) = min{w(f) : f = (V0, V1, V2, V3) is a SDRDF of Gki , vi−k ∈ V1,

vi−k+1 ∈ V1, . . . , vi−1 ∈ V1, ui−1 ∈ V1, ui ∈ V1, vi ∈ V1, vi+1 ∈ V1, . . . ,

vi+k−1 ∈ V2}, and

• γ3···3dR (Gki ) = min{w(f) : f = (V0, V1, V2, V3) is a SDRDF of Gki , vi−k ∈ V3,

vi−k+1 ∈ V3, . . . , vi−1 ∈ V3, ui−1 ∈ V3, ui ∈ V3, vi ∈ V3, vi+1 ∈ V3, . . . ,

vi+k−1 ∈ V3}.

A γ0···0dR (Gki )-function is a minimum SDRDF f = (V0, V1, V2, V3) of Gki such that

vi−k ∈ V0, vi−k+1 ∈ V0, . . . , vi−1 ∈ V0, ui−1 ∈ V0, ui ∈ V0, vi ∈ V0, vi+1 ∈ V0, . . . ,
vi+k−1 ∈ V0. Similarly, we define the others. See Fig. 3. Let Xn,k be the set of all

minimum SDRDF f = (V0, ∅, V2, V3) of SGP (n, k) such that

(i) f(uj) = f(un+j) for each j ∈ {0, 1}, and

(ii) f(vj) = f(vn+j) for each j ∈ {−k + 1,−k + 2, . . . , k}.

The following proposition is clear.

Proposition 1. |Xn,k| = 9k+1.
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Now, we can present our algorithm (Algorithm 3.1) for computing the double Roman

domination number of the generalized Petersen graph GP (n, k). The main idea of our

algorithm is as follows. We first show that by using every function in Xn,k, we get a

DRDF on GP (n, k). The algorithm tries to find all γ
b2k+2···b2b1
dR (SGP (n, k))-functions

in Xn,k for all b1, b2, . . . , b2k+2 ∈ {0, 2, 3}. A minimum DRDF on GP (n, k) exists

between these functions. The algorithm uses a dynamic programming approach to

compute the weight of these functions.

Algorithm 3.1: DRDN(GP (n, k))

Input: The generalized Petersen graph GP (n, k) = (V,E).

Output: The duoble Roman domination number of GP (n, k).
1 Let SGP (n, k) be the semi generalized Petersen graph corresponding to GP (n, k).

2 for b1, . . . , b2k+2 ∈ {0, 2, 3} do

3 Initialize γ
b2k+2···b1
dR (Gk

1) to be b1 + · · ·+ b2k+2;
4 for (x1, . . . , x2k+2 ∈ {0, 2, 3}) ∧ (x2k+2 · · ·x1 6= b2k+2 · · · b1) do

5 Initialize γ
x2k+2···x1

dR (Gk
1) to be ∞;

6 for i = 1 to n do
7 for x1, . . . , x2k+2 ∈ {0, 2, 3} do

8 Compute γ
x2k+2···x1

dR (Gk
i+1) by Lemma 3.

9 γ′b2k+2···b1
= γ

b2k+2···b1
dR (Gk

n+1);

10 return min{γ′b2k+2···b1
− (b1 + · · ·+ b2k+2) : b1, . . . , bk ∈ {0, 2, 3}};

3.2. Correctness of Algorithm 3.1

In order to prove Algorithm 3.1 works correctly, we need the following lemmas. The

next lemma is the main idea of our algorithm.

Lemma 2. Let GP (n, k) = (V,E) and let f be a function of Xn,k such that w(fV ) ≤
w(gV ) for every function g ∈ Xn,k, where fV and gV are restrictions of f and g, respectively,
to V . Then, fV is a minimum DRDF of GP (n, k).

Proof. Recall Vl = {v1−k, . . . , v0, u0} and Vr = {un+1, vn+1, . . . , vn+k}. Let f =



498 Double Roman domination in graphs: algorithmic complexity

(V f0 , ∅, V
f
2 , V

f
3 ) and let fV be the restriction of f to V . We first prove that fV is a

DRDF of GP (n, k). By Note 1, we have degSGP (n,k)(w) = 3 for every vertex w ∈ V .

Let v be a vertex of V with label 0 under f . Since f is a SDRDF of SGP (n, k),

there is a vertex u ∈ V f3 adjacent to v or there are vertices x, y ∈ V f2 adjacent to

v. We first assume that there is a vertex u ∈ V f3 adjacent to v. If u ∈ V , then

there is nothing to be proven. Assume that u /∈ V . So, u ∈ Vl ∪ Vr. Assume

without loss of generality that u ∈ Vl, that is, u = vj for some 1 − k ≤ j ≤ 0

(respectively, u = u0). By the definition of SGP (n, k), NSGP (n,k)(vj) = {vj+k} if

j 6= 0 and NSGP (n,k)(v0) = {vk, u0} (respectively, NSGP (n,k)(u0) = {v0, u1}) and so

v = vj+k (respectively, v = u1) because of v ∈ V . Since f ∈ Xn,k and vj ∈ V f3
(respectively, u0 ∈ V f3 ), we deduce that vn+j ∈ V f3 (respectively, un ∈ V f3 ). Because

vn+j ∈ NGP (n,k)(vj+k) (respectively, un ∈ NGP (n,k)(u1)), hence, fV is a DRDF of

GP (n, k). Similarly, if we assume that there are vertices x, y ∈ V f2 adjacent to v, then

we deduce that fV is a DRDF of GP (n, k).

Now, we prove that fV is a minimum DRDF of GP (n, k). Suppose for a contradiction

that fV is a not a minimum DRDF of GP (n, k). By Corollary 1, assume that h =

(V h0 , ∅, V h2 , V h3 ) is a minimum DRDF of GP (n, k) with w(h) < w(fV ). We construct

h′ as a SDRDF of SGP (n, k) as follows. We set h′(v) to h(v) for each v ∈ V , h′(un+1)

to h(u1), h′(u0) to h(un), h′(vn+j) to h(vj) for each j ∈ {1, 2, . . . , k} and h′(vj−n)

to h(vj) for each j ∈ {n − k + 1, n − k + 2, . . . , n}. So, h′ ∈ Xn,k. Clearly, h is the

restriction of h′ ∈ Xn,k to V with w(h) < w(fV ), a contradiction. This completes the

proof of the lemma.

In order to compute w(f) of all functions f ∈ Xn,k we need the following lemma.

Lemma 3. Let b1, b2, . . . , b2k+2 ∈ {0, 2, 3}, let i ∈ {1, 2, . . . , n + 1} and let
bk+3 + bk+2 ∈ {3, 5, 6}. Then,

(a) γ
b2k+2···bk+4000bk···b20
dR (Gk

i+1) = γ
3b2k+2···bk+4300bk···b2
dR (Gk

i ),

(b) γ
b2k+2···bk+4000bk···b22
dR (Gk

i+1) = min{γxb2k+2···bk+4300bk···b2
dR (Gk

i ) : x ∈ {2, 3}}+ 2,

(c) γ
b2k+2···bk+4000bk···b23
dR (Gk

i+1) = min{γxb2k+2···bk+4300bk···b2
dR (Gk

i ) : x ∈ {0, 2, 3}}+ 3,

(d) γ
b2k+2···bk+4002bk···b20
dR (Gk

i+1) = min{γ3b2k+2···bk+4x00bk···b2
dR (Gk

i ) : x ∈ {2, 3}}+ 2,

(e) γ
b2k+2···bk+4002bk···b22
dR (Gk

i+1) = min{γxb2k+2···bk+4y00bk···b2
dR (Gk

i ) : x, y ∈ {2, 3}}+ 4,

(f) γ
b2k+2···bk+4002bk···b23
dR (Gk

i+1) = min{γxb2k+2···bk+4y00bk···b2
dR (Gk

i ) : x ∈ {0, 2, 3}, y ∈
{2, 3}}+ 5,

(g) γ
b2k+2···bk+4003bk···b20
dR (Gk

i+1) = min{γ3b2k+2···bk+4x00bk···b2
dR (Gk

i ) : x ∈ {0, 2, 3}}+ 3,

(h) γ
b2k+2···bk+4003bk···b22
dR (Gk

i+1) = min{γxb2k+2···bk+4y00bk···b2
dR (Gk

i ) : x ∈ {2, 3}, y ∈
{0, 2, 3}}+ 5,

(i) γ
b2k+2···bk+4003bk···b23
dR (Gk

i+1) = min{γxb2k+2···bk+4y00bk···b2
dR (Gk

i ) : x, y ∈ {0, 2, 3}}+ 6,
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i+1.

(j) γ
b2k+2···bk+402bk+1bk···b20
dR (Gk

i+1) = min{γxb2k+2···bk+4y20bk···b2
dR (Gk

i ) : x ∈ {2, 3}, y ∈
{0, 2, 3}}+ bk+1,

(k) γ
b2k+2···bk+402bk+1bk···b2x
dR (Gk

i+1) = min{γyb2k+2···bk+4z20bk···b2
dR (Gk

i ) : y, z ∈ {0, 2, 3}} +
bk+1 + x, where x ∈ {2, 3},

(l) γ
b2k+2···bk+4200bk···b2b1
dR (Gk

i+1) = min{γxb2k+2···bk+4y02bk···b2
dR (Gk

i ) : x ∈ {0, 2, 3}, y ∈
{2, 3}}+ b1,

(m) γ
b2k+2···bk+420xbk···b2b1
dR (Gk

i+1) = min{γyb2k+2···bk+4z02bk···b2
dR (Gk

i ) : y, z ∈ {0, 2, 3}}+x+
b1, where x ∈ {2, 3},

(n) γ
b2k+2···b2b1
dR (Gk

i+1) = min{γxb2k+2···bk+4ybk+2bk+3bk···b2
dR (Gk

i ) : x, y ∈ {0, 2, 3}}+ bk+1 +
b1.

Proof. In the rest of the proof assume that j ∈ {2, . . . , k − 1, k, k +

4, . . . , 2k + 1, 2k + 2}. We first prove (a). Let f = (V0, ∅, V2, V3) be a

γ
b2k+2···bk+4000bk···b20
dR (Gki+1)-function. So, all vertices vi, ui, ui+1, vi+k are in V0, the

corresponding vertex to bj is in V0 if bj = 0, is in V2 if bj = 2 and is in V3 if bj = 3.

See Fig. 4. Since NGk
i+1

(vi) = {ui, vi−k, vi+k}, NGk
i+1

(ui) = {ui−1, ui+1, vi} and f

is a SDRDF of Gki+1, we deduce that both vertices vi−k and ui−1 are in V3. Let

f ′ = (V ′0 , ∅, V ′2 , V ′3) be the restriction of f to Vi = V (Gki ). Hence, f ′ is a SDRDF of

Gki such that the corresponding vertex to bj is in V ′0 if bj = 0, is in V ′2 if bj = 2, is in

V ′3 if bj = 3, both vertices vi−k and ui−1 are in V ′3 and both vertices vi and ui are in

V ′0 and so γ
3b2k+2···bk+4300bk···b2
dR (Gki ) ≤ w(f ′) = w(f), that is,

γ
3b2k+2···bk+4300bk···b2
dR (Gki ) ≤ γb2k+2···bk+4000bk···b20

dR (Gki+1). (1)

Conversely, let g = (V g0 , ∅, V
g
2 , V

g
3 ) be a γ

3b2k+2···bk+4300bk···b2
dR (Gki )-function. We de-

duce that h = (V h0 = V g0 ∪ {ui+1, vi+k}, ∅, V h2 = V g2 , V
h
3 = V g3 ) is a SDRDF of

Gki+1 such that the corresponding vertex to bj is in V h0 if bj = 0, is in V h2 if

bj = 2, is in V h3 if bj = 3 and all vertices vi, ui, vi+k and ui+1 are in V h0 and so
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γ
b2k+2···bk+4000bk···b20
dR (Gki+1) ≤ w(h) = w(g), that is, γ

b2k+2···bk+4000bk···b20
dR (Gki+1) ≤

γ
3b2k+2···bk+4300bk···b2
dR (Gki ). This, together with Inequality (1), completes the proof of

(a).

Now, we prove (b). Let f = (V0, ∅, V2, V3) be a γ
b2k+2···bk+4000bk···b22
dR (Gki+1)-function.

So, all vertices vi, ui, ui+1 are in V0, vi+k ∈ V2, the corresponding vertex to bj is in V0 if

bj = 0, is in V2 if bj = 2 and is in V3 if bj = 3. Recall that NGk
i+1

(vi) = {ui, vi−k, vi+k}
and NGk

i+1
(ui) = {ui−1, ui+1, vi}. Because f is a SDRDF of Gki+1, we deduce that

ui−1 ∈ V3 and vi−k ∈ V2 ∪ V3. In the following we consider these cases. Let f ′ =

(V ′0 , ∅, V ′2 , V ′3) be the restriction of f to Vi = V (Gki ). We have w(f ′) = w(f)− 2.

• Assume ui−1 ∈ V3 and vi−k ∈ V2. So, f ′ is a SDRDF of Gki such that the

corresponding vertex to bj is in V ′0 if bj = 0, is in V ′2 if bj = 2, is in V ′3 if bj = 3,

vi−k ∈ V ′2 , ui−1 ∈ V ′3 , ui ∈ V ′0 and vi ∈ V ′0 and so γ
2b2k+2···bk+4300bk···b2
dR (Gki ) ≤

w(f ′) = w(f)− 2, that is,

γ
2b2k+2···bk+4300bk···b2
dR (Gki ) + 2 ≤ γb2k+2···bk+4000bk···b22

dR (Gki+1). (2)

• Assume ui−1 ∈ V3 and vi−k ∈ V3. So,

γ
3b2k+2···bk+4300bk···b2
dR (Gki ) + 2 ≤ γb2k+2···bk+4000bk···b22

dR (Gki+1). (3)

Conversely, let g0 = (V 0
0 , ∅, V 0

2 , V
0
3 ) be a γ

2b2k+2···bk+4300bk···b2
dR (Gki )-function and let

g1 = (V 1
0 , ∅, V 1

2 , V
1
3 ) be a γ

3b2k+2···bk+4300bk···b2
dR (Gki )-function. We deduce that h0 =

(V 3
0 = V 0

0 ∪ {ui+1}, ∅, V 3
2 = V 0

2 ∪ {vi+k}, V 3
3 = V 0

3 ) is a SDRDF of Gki+1 such that

the corresponding vertex to bj is in V 3
0 if bj = 0, is in V 3

2 if bj = 2, is in V 3
3 if bj = 3,

all vertices vi, ui, ui+1 are in V 3
0 and vi+k ∈ V 3

2 and so γ
b2k+2···bk+4000bk···b22
dR (Gki+1) ≤

w(h0) = w(g0) + 2, that is,

γ
b2k+2···bk+4000bk···b22
dR (Gki+1) ≤ γ2b2k+2···bk+4300bk···b2

dR (Gki ) + 2. (4)

Let h1 = (V 4
0 = V 1

0 ∪ {ui+1}, ∅, V 4
2 = V 1

2 , V
4
3 = V 1

3 ∪ {vi+k}). Similarly, we obtain

that γ
b2k+2···bk+4000bk···b22
dR (Gki+1) ≤ w(h1) = w(g1) + 3, that is,

γ
b2k+2···bk+4000bk···b22
dR (Gki+1) ≤ γ3b2k+2···bk+4300bk···b2

dR (Gki ) + 3. (5)

Inequalities (2)–(5) complete the proof of (b).

Similarly, we can prove the other cases, i.e., (c)–(n). This completes the proof of the

lemma.

Now, we are in a position to compute all functions of Xn,k. Let i ∈ {1, 2, . . . , n +

1}. Note that, in Lemma 3, for all b1, b2, . . . , b2k+2 ∈ {0, 2, 3} we compute

γ
b2k+2···b2b1
dR (Gki+1) by using some values γ

a2k+2···a2a1
dR (Gki ), where a1, a2, . . . , a2k+2 ∈

{0, 2, 3}.
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Lemma 4. Let b1, . . . , b2k+2 ∈ {0, 2, 3} and let g = (V g
0 , ∅, V

g
2 , V

g
3 ) ∈ Xn,k be a

γ
b2k+2···b1
dR (SGP (n, k))-function. We can compute g in O(n9k) time and space.

Proof. Recall that Xn,k is the set of all minimum SDRDF f = (V0, ∅, V2, V3) of

SGP (n, k) such that

(i) f(uj) = f(un+j) for each j ∈ {0, 1}, and

(ii) f(vj) = f(vn+j) for each j ∈ {−k + 1,−k + 2, . . . , k}.

Since g is in Xn,k and a γ
b2k+2···b1
dR (SGP (n, k))-function, g(uj) = g(un+j) = bk+2−j

for j ∈ {0, 1}, g(vj) = g(vn+j) = bk+3−j for j ∈ {−k + 1,−k + 2, . . . , 0}, and

g(vj) = g(vn+j) = bk+1−j for j ∈ {1, . . . , k}. By Lemma 3 and using a dynamic

programming approach, we compute w(g). We initialize γ
b2k+2···b1
dR (Gk1) to be b1+· · ·+

b2k+2 and γ
x2k+2···x1

dR (Gk1) to be∞ for each x1, . . . , x2k+2 ∈ {0, 2, 3} and x2k+2 · · ·x1 6=
b2k+2 · · · b1. Then, by Lemma 3, compute γ

x2k+2···x1

dR (Gki+1) in a constant time for all

x1, . . . , x2k+2 ∈ {0, 2, 3} and each i = 1, . . . , n, respectively. In the end of this process,

we obtain that w(g) = γ
b2k+2···b1
dR (Gkn+1), where SGP (n, k) = Gkn+1.

When we obtain w(g), then using a backtracking search algorithm on values

γ
x2k+2···x1

dR (Gki ) for all x1, . . . , x2k+2 ∈ {0, 2, 3} and i ∈ {1, . . . , n+ 1}, we can compute

g. This process needs O(n9k) time and space. This completes the proof of the lemma.

Example 1. In Table 1, we see all steps of the execution of Algorithm 3.1 on GP (4, 1)
for computing a function g = (V0, ∅, V2, V3) ∈ X4,1 such that g is a γ0003

dR (SGP (4, 1))-
function, i.e., for (b4b3b2b1) = (0003) in the for-loop of Line 2. As seen from Table 1,
w(g) = 9 and by using a backtracking search algorithm (circled integers), we get that[
g(v0) g(v1) g(v2) g(v3) g(v4) g(v5)

g(u0) g(u1) g(u2) g(u3) g(u4) g(u5)

]
=

[
0 3 0 0 0 3

0 0 0 3 0 0

]
.

Theorem 2. There is an algorithm to compute a minimum DRDF of the generalized
Petersen graph GP (n, k) in O(n81k) time and space.

Proof. Let b1, . . . , b2k+2 ∈ {0, 2, 3} and GP (n, k) = (V,E). By Lemma 4, Algo-

rithm 3.1 on input GP (n, k) in Line 9 computes w(gb2k+2···b1), where gb2k+2···b1 =

(V0, ∅, V2, V3) ∈ Xn,k is a γ
b2k+2···b1
dR (SGP (n, k))-function. Let g

b2k+2···b1
V be the re-

striction of gb2k+2···b1 to V . By the definition of γ
b2k+2···b1
dR (SGP (n, k))-function and

Xn,k, we deduce that w(g
b2k+2···b1
V ) = w(gb2k+2···b1) − (b1 + · · · + b2k+2). By Lemma

2, γdR(GP (n, k)) = min{w(fV ) : f ∈ Xn,k} = min{w(f
x2k+2···x1

V ) : x1, . . . , x2k+2 ∈
{0, 2, 3}, f ∈ Xn,k}. So, Algorithm 3.1 on input GP (n, k) in Line 10 returns the

double Roman domination number of GP (n, k).

By Lemma 4, we obtain gb2k+2···b1 in O(n9k) time and space and so we can compute

a minimum DRDF of GP (n, k) in O(n81k) time and space. This completes the proof

of the theorem.
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i 1 2 3 4 5 i 1 2 3 4 5 i 1 2 3 4 5

γ0000dR (G1
i ) ∞ ∞ ∞ 9 9 γ0020dR (G1

i ) ∞ ∞ ∞ 10 11 γ0030dR (G1
i ) ∞ ∞ 6© 9 11

γ0002dR (G1
i ) ∞ ∞ ∞ 10 10 γ0022dR (G1

i ) ∞ ∞ ∞ 11 12 γ0032dR (G1
i ) ∞ ∞ 8 11 12

γ0003dR (G1
i ) 3© ∞ ∞ 9 9© γ0023dR (G1

i ) ∞ ∞ ∞ 10 11 γ0033dR (G1
i ) ∞ ∞ 9 11 12

γ0200dR (G1
i ) ∞ ∞ 5 7 9 γ0220dR (G1

i ) ∞ ∞ 7 9 11 γ0230dR (G1
i ) ∞ ∞ 8 10 12

γ0202dR (G1
i ) ∞ ∞ 7 9 10 γ0222dR (G1

i ) ∞ ∞ 9 11 12 γ0232dR (G1
i ) ∞ ∞ 10 12 13

γ0203dR (G1
i ) ∞ ∞ 8 10 11 γ0223dR (G1

i ) ∞ ∞ 10 12 13 γ0233dR (G1
i ) ∞ ∞ 11 13 14

γ0300dR (G1
i ) ∞ ∞ 6 6© 9 γ0320dR (G1

i ) ∞ ∞ 8 8 11 γ0330dR (G1
i ) ∞ ∞ 9 9 12

γ0302dR (G1
i ) ∞ ∞ 8 8 11 γ0322dR (G1

i ) ∞ ∞ 10 10 13 γ0332dR (G1
i ) ∞ ∞ 11 11 14

γ0303dR (G1
i ) ∞ ∞ 9 9 12 γ0323dR (G1

i ) ∞ ∞ 11 11 14 γ0333dR (G1
i ) ∞ ∞ 12 12 15

γ2000dR (G1
i ) ∞ ∞ ∞ 7 8 γ2020dR (G1

i ) ∞ ∞ 7 9 10 γ2030dR (G1
i ) ∞ ∞ 8 10 11

γ2002dR (G1
i ) ∞ ∞ ∞ 9 10 γ2022dR (G1

i ) ∞ ∞ 9 11 12 γ2032dR (G1
i ) ∞ ∞ 10 12 13

γ2003dR (G1
i ) ∞ ∞ ∞ 10 11 γ2023dR (G1

i ) ∞ ∞ 10 12 13 γ2033dR (G1
i ) ∞ ∞ 11 13 14

γ2200dR (G1
i ) ∞ ∞ 7 9 10 γ2220dR (G1

i ) ∞ ∞ 9 11 12 γ2230dR (G1
i ) ∞ ∞ 10 12 13

γ2202dR (G1
i ) ∞ ∞ 9 11 12 γ2222dR (G1

i ) ∞ ∞ 11 13 14 γ2232dR (G1
i ) ∞ ∞ 12 14 15

γ2203dR (G1
i ) ∞ ∞ 10 12 13 γ2223dR (G1

i ) ∞ ∞ 12 14 15 γ2233dR (G1
i ) ∞ ∞ 13 15 16

γ2300dR (G1
i ) ∞ ∞ 8 8 11 γ2320dR (G1

i ) ∞ ∞ 10 10 13 γ2330dR (G1
i ) ∞ ∞ 11 11 14

γ2302dR (G1
i ) ∞ ∞ 10 10 13 γ2322dR (G1

i ) ∞ ∞ 12 12 15 γ2332dR (G1
i ) ∞ ∞ 13 13 16

γ2303dR (G1
i ) ∞ ∞ 11 11 14 γ2323dR (G1

i ) ∞ ∞ 13 13 16 γ2333dR (G1
i ) ∞ ∞ 14 14 17

γ3000dR (G1
i ) ∞ 3© 6 8 9 γ3020dR (G1

i ) ∞ 5 8 10 11 γ3030dR (G1
i ) ∞ 6 9 11 12

γ3002dR (G1
i ) ∞ 5 8 10 11 γ3022dR (G1

i ) ∞ 7 10 12 13 γ3032dR (G1
i ) ∞ 8 11 13 14

γ3003dR (G1
i ) ∞ 6 9 11 12 γ3023dR (G1

i ) ∞ 8 11 13 14 γ3033dR (G1
i ) ∞ 9 12 14 15

γ3200dR (G1
i ) ∞ ∞ 8 10 10 γ3220dR (G1

i ) ∞ ∞ 10 12 12 γ3230dR (G1
i ) ∞ ∞ 11 13 13

γ3202dR (G1
i ) ∞ ∞ 10 12 12 γ3222dR (G1

i ) ∞ ∞ 12 14 14 γ3232dR (G1
i ) ∞ ∞ 13 15 15

γ3203dR (G1
i ) ∞ ∞ 11 13 13 γ3223dR (G1

i ) ∞ ∞ 13 15 15 γ3233dR (G1
i ) ∞ ∞ 14 16 16

γ3300dR (G1
i ) ∞ ∞ 9 9 11 γ3320dR (G1

i ) ∞ ∞ 11 11 13 γ3330dR (G1
i ) ∞ ∞ 12 12 14

γ3302dR (G1
i ) ∞ ∞ 11 11 13 γ3322dR (G1

i ) ∞ ∞ 13 13 15 γ3332dR (G1
i ) ∞ ∞ 14 14 16

γ3303dR (G1
i ) ∞ ∞ 12 12 14 γ3323dR (G1

i ) ∞ ∞ 14 14 16 γ3333dR (G1
i ) ∞ ∞ 15 15 17

Table 1. Some steps of the execution of Algorithm 3.1.

By Theorem 2 we have the following result.

Corollary 2. There is an algorithm to compute a minimum DRDF of the generalized
Petersen graph GP (n,O(1)) in O(n) time and space.
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