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Abstract: A new concept known as the orthogonal component graph associated with

a finite-dimensional vector space over a finite field has been recently added as another
class of algebraic graphs. In these types of graphs, the vertices will be all the possible

non-zero linear combinations of orthogonal basis vectors, and any two vertices will be

adjacent if the corresponding vectors are orthogonal. In this paper, we discuss the
various colorings and structural properties of orthogonal component graphs.
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1. Introduction

Let V be an n-dimensional vector space over a field F . Then, any vector v ∈ V can be

expressed as the linear combination of the basis vectors in a unique manner. Recently,

an extensive investigation has been carried out on the graphs derived from vector

spaces and the properties and characteristics of different types of graphs constructed

from finite-dimensional vector spaces (see [4–8, 13]).

One such type of graph is the non-zero component graphs of finite-dimensional vector

space over the finite fields, which was introduced and explored in [4, 6]. The non-zero

component graphs are those graphs whose vertices are all the possible non-zero linear
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combinations of the basis vectors in which any two vertices will be adjacent if the

corresponding vectors share a common basis vector in their linear combination. A

detailed study on the various properties, including coloring, domination, structural

aspects and topological indices, has also been carried out in [9–12].

Further extending the work on graphs on vector spaces led to the study of a new

type of graph wherein the vertex set remains the same as the non-zero component

graph, and the adjacency was defined based on the orthogonality of the corresponding

vectors in the vector space. This new graph, called orthogonal component graph of a

finite-dimensional vector space, is defined as follows:

Definition 1. [12] Let V be an n-dimensional vector space over the field F with p
elements. Let B = {α1, α2, . . . , αn} be an orthogonal basis of V . The orthogonal component

graph of finite-dimensional vector space over the finite field, denoted by G
(Vn)
F , is the graph

whose vertices are all the possible non-zero combinations of these orthogonal basis vectors
and any two vertices u and v in the graph will be adjacent if u.v = 0.

A major observation was that this class of graphs was similar to the complement of the

non-zero component graph when we consider certain fields and not in all cases, as it

depended on the elements of the field under consideration as well as the orthogonality

of the basis which we take to generate the elements of the vector space. Thus, it is

still an open problem to generalise the complement of the non-zero component graph

as, in general, it cannot be stated that they are complements of each other. But the

same is true when the field under consideration is Zp (see [12]). Thus, in this paper,

we consider only the orthogonal component graphs of finite-dimensional vector space

over the field Zp, which is also the complement of the non-zero component graph of

the vector space over the field F = Zp.

Example 1. Consider the 2-dimensional vector space V2 over Z2. Then the graph G
(V2)
Z2

is shown in Figure 1.

α2

α1 + α2

α1

Figure 1. The graph G
(V2)

Z2

Example 2. Consider the 3- dimensional vector space V3 over Z2. Then the graph G
(V3)
Z2

is shown in Figure 2.

Throughout our study, we consider the orthogonal component graph over an n-

dimensional vector space over the field Zp. Hence, in this case, the adjacency of
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α1 + α3α2 + α3

α1 + α2

α1 + α2 + α3

α3

α2α1

Figure 2. The graph G
(V3)

Z2

any two vertices in G
(Vn)
F can be redefined as, any two vertices u and v are adjacent if

they do not share any common basis vectors in their representation as a linear com-

bination of the basis. Also, the graph G
(Vn)
F will always be a disconnected graph with

pn−1 vertices. In this paper we study some important properties of such graphs such

as coloring, planarity, weak perfection and centrality measures. A graph G is said to

be weakly perfect if χ(G) = ω(G) for G, but not necessarily for all induced subgraphs

of G. Centrality measures are those which helps in measuring the importance of var-

ious vertices in graphs.The various types of centrality are degree centrality, closeness

centrality, betweeness centrality and eigen vector centrality. According to the degree

centrality metric, a vertex’s relevance in a graph is determined by its degree; the

greater the degree of the vertex, the more significant it is in the graph. Since in the

orthogonal component graph, the vertex which corresponds to the vector containing

only one basis vector has got maximum degree, such vertices are more significant in

the graph(See [12]). The closeness centrality measure of any vertex determines how

near it is to every other vertex in the graph. Based on how frequently a vertex ap-

pears on the shortest path connecting all pairs of vertices in a graph, the betweeness

centrality establishes and gauges the significance of a vertex in a network.

In this paper, we represent the orthogonal component graph of a finite-dimensional

vector space V over a finite field Zp by G instead of G
(Vn)
Zp

. Also, throughout this dis-

cussion, by the term orthogonal component graph, we mean the orthogonal component

graph of a given finite-dimensional vector space over the finite field Zp. Moreover, n

represents dim(V ) and p represents |Zp|.
For all basic terminologies and definitions in graph theory, algebraic graph theory and

linear algebra, we refer to [1–3, 14, 15]

2. Coloring of orthogonal component graphs

In this section, we try to apply various graph colorings on an orthogonal component

graph G over an n-dimensional vector space over the field F with p elements. In-

terestingly, it was found that the orthogonal graphs is one such type of graph class

whose chromatic number, equitable chromatic number, Grundy chromatic number

and co-chromatic number are the same.

The assignment of colors to the vertices of a graph such that no two vertices receive

the same color is known as the proper coloring and the minimum number of colors
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used to obtain a proper coloring of the graph is known as the chromatic number.

In this paper we also study various proper colorings of the orthogonal component

graph G such as equitable coloring, Grundy coloring, complete coloring, cocoloring

and obtain the respective chromatic numbers. The equitable coloring is another type

of proper coloring in which the cardinalities of the color classes differ by at most 1.

The minimum number of color classes formed in an equitable coloring is called the

equitable chromatic number. In the following theorems, we calculate these chromatic

numbers for an orthogonal component graph G.

Theorem 1. The chromatic number of an orthogonal component graph G is equal to the
dimension of V .

Proof. Let G be an orthogonal component graph of an n-dimensional vector space

V over the field Zp. Then, any vector in v can be expressed in terms of the n basis

vectors, say {α1, α2, . . . , αn}. Let S(v) denotes the set of all basis vectors in v. The

vertex set can be partitioned into n sets as follows, where 1 ≤ k ≤ n.

Vk =
{
v ∈ V : |S(v)| = k

}
.

Then, the cardinality of each of these sets will be

|Vk| =
(
n

k

)
(p− 1)k.

The basis vectors of V which are in V1 are adjacent to each other and hence they

need to be assigned different colors. The remaining vertices in V1, which are the

scalar multiples of the basis vectors can be assigned the same color as that of the

corresponding basis vector as they are not adjacent in G. The vertices in V2 are those

which are expressed in terms of two basis vectors say, αi and αj . Therefore, the

vertices containing these vectors can be assigned to those color classes containing αi

and αj . In a similar way, all the vertices belonging to V2 can be assigned to each color

class. The vertices in V3 are those consisting of three basis vectors. In a similar way,

these vertices can be distributed into those color classes containing the respective basis

vectors. Proceeding this way, all the vertices other than those expressed in terms of

at most n− 1 basis vectors will be assigned to any of those color class containing any

of the respective missing basis vectors. It remains to assign colors to those vertices

which are expressed in terms of all basis vectors. Since all such vertices are isolated,

they can be assigned to any color class. Hence, the chromatic number is equal to the

dimension of the vector space.

It remains to prove that the number of colors thus used to obtain a proper coloring

of G is minimum. Since the clique number of the orthogonal component graph G is

also dim(V ), we can conclude that the minimality is obtained.
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Theorem 2. The equitable chromatic number of the orthogonal component graph G is
equal to the dimension of V .

Proof. In order to prove the result, it suffices to show that χe(G) = χ(G). The

proper coloring of G mentioned in Theorem 2 also gives an equitable coloring of the

orthogonal component graph G. The proper coloring is done in such a way that all

those vertices containing k basis vectors are equally assigned to k color classes, which

contains one of the basis vectors in the linear combination such that each of it receives

equal number of vertices or at most one more than the other. The assignment is set

up so that, at each iteration, the color class containing the least number of vertices

gets the extra vertices if any when it is equally divided in the next step. Also, in

each of these steps, the
(
n
k

)
(p− 1)k number of vertices in the sets Vk, 1 ≤ k ≤ n− 1,

are equally distributed into n color classes. The remaining isolated vertices are also

assigned to each of the color classes so that the difference between the cardinality

of the color classes is either 0 or 1. Since the equitable chromatic number of G is

equal to the chromatic number of G, the minimality is directly established. Hence,

χe(G) = n.

Recall that the Grundy coloring is a proper coloring such that for every two colors

i and j with i < j, every vertex colored j should have a neighbour colored i. The

maximum number of colors that are used to obtain a Grundy coloring of G is called

the Grundy chromatic number.

Theorem 3. For an orthogonal component graph G, the Grundy chromatic number is
equal to the dimension of the vector space V.

Proof. In order to obtain a Grundy coloring, we partition the vertex set V (G) into

n sets in the following way such that each set receives the same color. Let W1 be the

set of vertices in G such that it contain all the vertices which contain the basis vector

α1 in the linear combination, W2 be the set of vertices in G not belonging to W1

which contains the basis vector α2, W3 be the set of vertices not belonging to W1 and

W2 which contain the vector α3. In a similar way, we get the sets W4,W5, . . . ,Wn.

Since none of the vertices in each of the respective sets are adjacent to each other,

each of these sets forms separate color classes. Also, this way of assigning colors gives

a Grundy coloring of G, because all the vertices in W2 will be adjacent to the vertex

α1 in W1 as none of the vertices in W2 contains α1, thereby making all the vertices

in W2 which are assigned the same color adjacent to a vertex assigned a lesser color.

The same follows for the other pair of colors.

It remains to prove that the Grundy number thus obtained is maximum.Since the Wi’s

partition the set of vertices of G into n independent sets, then a Grundy coloring gives

the same color to all the elements in Wi, 1 ≤ i ≤ n. Thus the Grundy number is at

most n. Hence, the result follows.
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A cocoloring of the graph G is the assignment of colors in such a way that each color

class forms an independent set in G or G. The minimum number of colors used to

obtain a cocoloring of G is called the cochromatic number of G.

Theorem 4. The cochromatic number z(G) of an orthogonal component graph G is equal
to the dimension of vector space dim(V ).

Proof. For an orthogonal component graph, the partitioning of the vertex set into

subsets Wi, 1 ≤ i ≤ n as discussed in Theorem 3 divides the vertex set into indepen-

dent sets. Since each of these sets are independent, we can assign different colors to

each of the sets, thereby producing a cocoloring of G.

Next, we need to prove that the number of colors thus obtained is minimum. Con-

sidering the orthogonal component graph G all the basis vectors need to be given

different colors in G, and all the remaining vertices can be assigned to any of these

color classes and on the other hand if we consider it’s complement, the (p− 1)n ver-

tices itself form a clique and hence to be independent they need to be assigned to

different color classes. Since the cochromatic number is the fewest of the number of

colors, assigning colors to the independent sets in G itself would give the cochromatic

number z(G) which is equal to dim(V ).

Corollary 1. For an orthogonal component graph G, χ(G) = χe(G) = χgr(G) = z(G) =
dim(V ).

Proof. The proof is immediate from Theorems 1,2,3 and 4.

A complete coloring of G is a proper vertex coloring of G such that for every two

distinct colors i and j used in the coloring, there exist adjacent vertices of G colored

i and j. The maximum number of colors used to obtain a complete coloring of G is

called the achromatic number of G. In the following theorem, we find the achromatic

number of the orthogonal component graph G.

Theorem 5. The achromatic number of an orthogonal component graph G over an n
dimensional vector space over Zp is:

χach(G) =

{
dim(V ) + 1, when n > 2 and p = 2

dim(V ), otherwise.

Proof. Since by the coloring mentioned in Theorem 1, the basis vectors itself are

assigned different colors and they form a clique, all pairs of colors exists and hence the

corresponding coloring itself forms a complete coloring. But the achromatic number is

the maximum number of colors used such that the resultant coloring gives a complete

coloring. To prove that this coloring gives the achromatic number,we discuss the same

by considering the following cases:
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Case 1. When n = 1, since the graph is a complete disconnected graph, all the

vertices are assigned the same color to obtain a complete coloring.

Case 2. When n = 2 and q = 2, the orthogonal component graph is isomorphic to

P2 ∪K1, and in this case, maximum of two colors can be used so that there exists an

edge corresponding to any pair of colors.

Case 3. When n > 2 and p > 2, we take any vertex other than these basis vectors

and assign a different color, say l, to it other than those used. Since this vertex is

not adjacent to those basis vectors which is present in the linear combination and

assigned some color, say k, there will not exist a pair of colors k and p such that the

corresponding vertices are adjacent. Hence the achromatic number of the orthogonal

component graph will be dim(V ).

Case 4. When n > 2 and p = 2, even though the coloring mentioned in Theorem

1 gives a complete coloring, the achromatic number will not be equal to dim(V ) due

to the presence of the pendant vertices in G. The pendant vertices are those vertices

which will have only one basis vector missing in the linear combination. Hence if

we assign a new color, say m, to those pendant vertices, then obviously there exists

edges with end vertices having colors m and the already assigned n colors as each of

these pendant vertex will be adjacent to the corresponding vertex which is expressed

in terms of the missing basis vector and all the basis vectors are assigned n different

colors. Hence in this case, achromatic number is n. The maximality of this follows in

the same way as mentioned in Case 3.

3. Some structural aspects of orthogonal component graphs

The orthogonal component graph G over a finite-dimensional vector space over the

finite field F = Zp is a tree or a disjoint union of trees when either V is 1-dimensional

or 2-dimensional vector space over Z2. When n = 1, G will be a complete disconnected

graph and hence it does not contain a cycle. Also, when n = 2 and p = 2, the resulting

graph will not contain a cycle as the graph G will be K1 ∪ P2. In all other cases,

the graph G is not an acyclic graph. In particular, G will be unicyclic under the

conditions mentioned in the following theorem.

Theorem 6. The orthogonal component graph is unicyclic if and only if any of the
following conditions holds.

1. dim(V ) = 2 and F = Z3;

2. dim(V ) = 3 and F = Z2.

Proof. Let G be an orthogonal component graph of an n-dimensional vector space

over a field F with p elements. If G is a graph which satisfies the given conditions,

we will show that G is unicyclic.

Case 1. When n = 2 and p = 3, the set of vectors {α1, α2, 2α1, 2α2} forms a C4 and

moreover it is the only cycle in G. Hence G is unicyclic.
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Case 2. When n = 3 and p = 2, G will be C3 ◦K1, hence it is also unicyclic as it

contains only one C3.

Conversely, assume that G is not an orthogonal graph constructed with the conditions

(1) or (2). Hence, in all the other cases, specifically when n = 2 and p ≥ 4 or n ≥ 3 and

p ≥ 3 or n ≥ 4 and p = 2, there always exist at least two cycles {ciα1, ciα2, cjα1, cjα2}
and {ciα1, ciα2, ckα1, ckα2} or {ciαi, ciαj , ciαk} and {cjαi, cjαj , cjαk} or {αi, αj , αk}
and {αj , αk, αl} respectively. Hence, G is not unicyclic. This completes the proof.

Theorem 7. The orthogonal component graph is claw-free if and only if any of the
following conditions holds.

1. dim(V ) = 1;

2. dim(V ) = 2 and F = Z2 or Z3;

3. dim(V ) = 3 and F = Z2.

Proof. Let us assume that G is an orthogonal component graph of an n-dimensional

vector space over Zp. We first prove that when the given conditions (1), (2) or (3)

holds, G will be claw-free.

Case 1. When n = 1, the orthogonal component graph will be a complete discon-

nected graph and hence it does not contain any K1,3.

Case 2. When n = 2 and p = 2, G = P2 ∪K1, which is obviously claw free.

Case 3. When n = 2 and p = 3, G = C4 ∪ 4K1, which is also a claw free graph.

Case 4. When n = 3 and p = 2, there will never exist a K1,3 in G.

Conversely, we have to prove that if G do not satisfy either (1), (2) or (3), then G

is not claw-free. Without considering those graphs which are constructed with the

conditions in (1), (2) or (3), in all the other cases, specifically when n ≥ 2 and p ≥ 4

or n = 3 and p = 3, the orthogonal component graph G contains the set of vertices

{ciαi, ciαj , cjαj , ckαj} or {ciαi, ciαj , cjαj , ciαj +cjαk} which forms a claw in G. This

proves the theorem.

Proposition 1. Every orthogonal component graph is weakly perfect.

Proof. Since the chromatic number and the clique number of the orthogonal compo-

nent graph G of a finite-dimensional vector space V over a field F is equal to dim(V ),

and also when dim(V ) ≥ 5 there exists an induced C5, we can say that G is weakly

perfect.

Theorem 8. The orthogonal component graph is planar if and only dim(V ) ≤ 4 and
F = Z2 or Z3.
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Proof. A graph G is planar if and only if G contains no subdivision of K5 or K3,3.

First let us assume that G is an orthogonal component graph with dim(V ) ≤ 4 and

F = Z2 or Z3.

Case 1. When n = 1, the graph is completely disconnected and hence planar.

Case 2. When n = 2 or n = 3 or n = 4 and p = 2, the orthogonal component graph

G will be P2 ∪K1 or C3 ◦K1 or G
(Z2)
(V4)

respectively, which are planar graphs as there

does not exist a subdivision of K5 or K3,3 in the same.

Case 3. When n = 2 or n = 3 or n = 4 and p = 3, the corresponding graphs will be

also be planar due to the absence of the subdivision of K5 or K3,3.

Conversely, let us assume that G is planar, we need to prove that G is an orthogonal

graph over an n−dimensional vector space over the field F where dim(V ) ≤ 4 and

F = Z2 or Z3. Let us assume the contrary. That is, assume that G does not

satisfy the above condition. Then, we have to show that G is non-planar. In all

the cases other than the condition mentioned above, specifically when dim(V ) ≥ 5

or p ≥ 4, in an orthogonal component graph of an n-dimensional vector space over

a field Zp, the presence of the set of vectors {αi, αj , αk, αl, αh} or {ciαi, cjαi, ckαi}
and {ciαj , cjαj , ckαj} induces a K5 or K3,3 graph respectively which in turn makes

it non-planar. Hence the theorem.

The closeness centrality of a vertex in an orthogonal component graph is discussed in

the following theorem.

Theorem 9. The closeness centrality of any vertex v whose corresponding vector contain
k basis vectors in the connected component of the orthogonal component graph G of an n-
dimensional vector space over the field with p elements is

C(v) =


pn−(p−1)n−1

2pn−pn−k−2(p−1)n−3
, when k < n

2

pn−(p−1)n−1

2pn−pn−k+pk−(p−1)n−5
, when k ≥ n

2

Proof. The closeness centrality is a measure of the average shortest distance from

each vertex to each other vertex and is calculated using the formula

C(v) =
|V (G)| − 1∑

u∈V (G)

d(u, v)
.

For an orthogonal component graph, it can be established as explained below.

Let v be any vertex in G which does not contain any basis vectors in u. There are

pn−k−1 such vectors and these will be adjacent to v. On the other hand, if u contains

at least one basis vector contained in v, then u and v will be at a distance of 2 or 3.

This can be considered int two different ways.

Case 1. If v contains less than half of the basis vectors of the vector space V (that is,

k < n
2 ), then there are pn− 1− (pn−k− 1)− (p− 1)n− 1 number of vertices which are
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adjacent to v and having at least one basis vector common in the linear combination

as that of u. Hence each of these pn−pn−k− (p−1)n−1 vertices will be at a distance

2 from v. Thus, altogether

C(v) =
|V (G)| − 1∑

u d(u, v)
=

pn − (p− 1)n − 1

2(pn − pn−k − (p− 1)n − 1) + pn−k − 1

=
pn − (p− 1)n − 1

2(pn − (p− 1)n)− pn−k − 3
.

Case 2. If v contains more than half of the basis vectors of the vector space V (that

is, k ≥ n
2 ), then the vertices which do not have any common basis vector will be at a

distance 1, those having common basis vectors missing in their corresponding linear

combinations will be at a distance 2 and those do not have common basis vectors

missing in their linear combinations will be at a distance 3. The vertices which

are having common basis vectors missing in the linear combination are those which

contains any of these n − k vectors in the linear combination but not all the basis

vectors. The number of such vertices will be equal to (pn−k − 1)(pk − 1)− (p− 1)n.

The remaining all the vertices in the connected component of G excluding the vertex

v itself will be at a distance 3 from v. Hence, there are pn − 1− [pn−k − 1 + (pn−k −
1)(pk − 1) − (p − 1)n + (p − 1)n + 1] = 3(pn − pn−k − (pn−k − 1)(pk − 1) − 1) such

vertices having distance 2 from v. Altogether,

C(v) =
|V (G)| − 1∑

u d(u, v)
=

pn − (p− 1)n − 1

3(pk − 2) + 2(pn−k − 1)(pk − 1)− (p− 1)n + pn−k − 1

=
pn − (p− 1)n − 1

2pn − pn−k + pk − (p− 1)n − 5.

Hence the theorem.

4. Conclusion

In this paper, we have discussed the various colorings of orthogonal component

graphs of a vector space over the field Zp. It was interestingly found that the chro-

matic number, equitable chromatic number, Grundy number, achromatic number

and cochromatic number are equal. Various other properties were also discussed.

Studying the different types of perfectness and other centrality measures of these

class of graphs can be considered as a future scope for the study.
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