On the Roman domination polynomials

Seyed Hosein Mirhoseini ${ }^{\dagger}$ and Nader Jafari Rad*
Department of Mathematics, Shahed University, Tehran, Iran
${ }^{\dagger}$ seyedhosein.mirhoseini@shahed.ac.ir
*n.jafarirad@shahed.ac.ir

Received: 7 December 2022; Accepted: 7 May 2023
Published Online: 20 May 2023

Abstract

A Roman dominating function (RDF) on a graph G is a function f : $V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u with $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF f is the sum of the weights of the vertices under f. The Roman domination number, $\gamma_{R}(G)$ of G is the minimum weight of an RDF in G. The Roman domination polynomial of a graph G of order n is the polynomial $R D(G, x)=\sum_{i=\gamma_{R}(G)}^{2 n} d_{R}(G, i) x^{i}$, where $d_{R}(G, i)$ is the number of RDFs of G with weight i. In this paper we prove properties of Roman domination polynomials and determine $R D(G, x)$ in several classes of graphs G by new approaches. We also present bounds on the number of all Roman domination polynomials in a graph.

Keywords: Roman domination polynomial, Roman dominating function, Roman domination number

AMS Subject classification: 05C69

1. Introduction

For notations and definitions not given here we refer to [13]. We consider simple and finite graphs $G=(V, E)$, where $V=V(G)$ is the vertex set and $E=E(G)$ is the edge set. The order of G, denoted $|V(G)|=n$, is the number of vertices in G and the size of G, denoted $|E(G)|=m$, is the number of edges in G. For any two vertices $x, y \in V(G), x$ and y are adjacent if the edge $x y \in E(G)$. The degree of a vertex v, denoted by $\operatorname{deg}(v)\left(\right.$ or $\left.\operatorname{deg}_{G}(v)\right)$, is the number of vertices adjacent to v. A vertex of degree zero is called an isolated vertex. We denote by Δ and δ, respectively, the maximum degree and minimum degree among the vertices of G. An induced subgraph

[^0]of a graph G is a graph formed from a subset D of vertices of G and all of the edges in G connecting pairs of vertices in that subset, denoted by $\langle D\rangle$. An independent set is a set of vertices any two of which are not adjacent. A graph G is bipartite if $V(G)$ can be partitioned into two independent sets called partite sets. The join of two graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$ is a graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right\}$.
A dominating set of a graph G is a subset D of vertices such that every vertex outside D has a neighbor in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality amongst all dominating sets of G. Cockayne et al. [9] introduced the mathematical definition of Roman domination. This concept was subsequently developed very vastly, and to see the latest progress until 2020 we refer to [6-8]. A function $f: V \longrightarrow\{0,1,2\}$ is called a Roman dominating function or just an RDF for G if for every vertex $v \in V$ with $f(v)=0$ there exists a vertex $u \in N(v)$ such that $f(u)=2$. The weight of an RDF f is the sum $f(V)=\sum_{v \in V} f(v)$. The minimum weight of an RDF on G is called the Roman domination number of G and is denoted by $\gamma_{R}(G)$.
Graph polynomials play an important role in studying the structure of a graph, and there are some polynomials associated to graphs such as Chromatic polynomial, clique polynomial, characteristic polynomial and Tutte polynomial. Alikhani and Peng [4] introduced the concept of domination polynomials in graphs. This concept was further studied in $[1,3]$ and has been considered for some other types of dominating sets, for example, for total dominating sets ([2]), connected dominating sets ([14]) and hope dominating sets ([15]).
Gangabylaiah et al. [12] introduced the concept of Roman domination polynomial of a graph. For a graph G of order n with Roman domination number $\gamma_{R}(G)$, the Roman domination polynomial of a graph G, denoted $R D(G, x)$, is defined as follows
$$
R D(G, x)=\sum_{i=\gamma_{R}(G)}^{2 n} d_{R}(G, i) x^{i}
$$
where, $d_{R}(G, i)$ is the number of all Roman dominating functions on the graph G with weight i. They presented several basic properties and exact values of the Roman domination polynomial of a graph. This concept was further studied by Deepak et al. [10, 11].
In this paper we prove some further properties of Roman domination polynomial in graphs. We prove some previous results given in $[11,12]$ by new and easier approach. We also present bounds for the number of all RDFs of graph G.
We recall that the number of solutions of the equation $x_{1}+x_{2}+\cdots+x_{n}=r, x_{i} \in \mathbb{Z}^{+}$, is
$$
\binom{r+n-1}{r}=\binom{r+n-1}{n-1}
$$
(see e.g. [5]), and thus we have the following proposition:

Proposition 1. The number of integral solutions of $x_{1}+x_{2}+\ldots+x_{n}=r, a \leq x_{i} \leq b$, is

$$
\binom{r-n a+n-1}{n-1}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k}\binom{r-n a-k(b-a+1)+n-1}{n-1}
$$

We also make use of the following.

Proposition 2 ([9]). For a path $P_{n}, \gamma_{R}\left(P_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$.

2. Roman domination polynomial in join of graphs

Roman domination polynomial in join of two graphs was studied in [12]. In this section, we determine the Roman domination polynomial in join of two graphs by a new approach and then using it we determine the Roman domination polynomial in the complete and complete bipartite graphs. For this purpose, we first introduce some notations. For a graph G of order n, let:

- $D_{R}(G, k)$ stands for the set of all RDFs on the graph G with weight k, and let $d_{R}(G, k)=\left|D_{R}(G, k)\right|$.
- $D_{n R}(G, k)$ stands for the set of all functions $f: V(G) \rightarrow\{0,1,2\}$ on the graph G with weight k such that f is not an RDF, and let $d_{n R}(G, k)=\left|D_{n R}(G, k)\right|$.
- $D(G, k)$ stands for the set of all functions $f: V(G) \rightarrow\{0,1,2\}$ on the graph G with weight k, and let $d(G, k)=|D(G, k)|$.
- $P(G, x)=\sum_{i=0}^{2|V(G)|} d(G, i) x^{i}$.

Clearly, $d(G, k)=d_{R}(G, k)+d_{n R}(G, k)$. Furthermore, the following is easily verified.

Observation 1. If G_{1} and G_{2} are two graphs of order n_{1} and n_{2}, respectively, then

$$
P\left(G_{1} \vee G_{2}, x\right)=P\left(G_{1}, x\right) P\left(G_{2}, x\right)
$$

We now determine the Roman domination polynomial in join of two graphs.

Theorem 2. If G_{1} and G_{2} are two connected graphs of order n_{1} and n_{2}, respectively, then

$$
\begin{aligned}
R D\left(G_{1} \vee G_{2}, x\right) & =\sum_{p=1}^{n_{1}} \sum_{r=0}^{n_{1}-p} \sum_{q=1}^{n_{2}} \sum_{s=0}^{n_{2}-q}\binom{n_{1}}{p}\binom{n_{1}-p}{r}\binom{n_{2}}{q}\binom{n_{2}-q}{s} x^{2 p+r+2 q+s} \\
& +R D\left(G_{1}, x\right) \sum_{i=0}^{n_{2}}\binom{n_{2}}{i} x^{i}-x^{n_{1}} \sum_{i=0}^{n_{2}-1}\binom{n_{2}}{i} x^{i} \\
& +R D\left(G_{2}, x\right) \sum_{i=0}^{n_{1}}\binom{n_{1}}{i} x^{i}-x^{n_{2}} \sum_{i=0}^{n_{1}-1}\binom{n_{1}}{i} x^{i}-x^{n_{1}+n_{2}} .
\end{aligned}
$$

Proof. For an RDF f in a graph G, we denote by V_{i} the set of all vertices of G with label i under f. Thus an RDF f can be represented by a triplet $\left(V_{0}, V_{1}, V_{2}\right)$, and we use the notation $f=\left(V_{0}, V_{1}, V_{2}\right)$. In order to enumerate the RDFs of the graph $G_{1} \vee G_{2}$, for any RDF $f: V\left(G_{1} \vee G_{2}\right) \rightarrow\{0,1,2\}$ put $p=\left|\left\{v: v \in V\left(G_{1}\right), f(v)=2\right\}\right|$ and $q=\left|\left\{v: v \in V\left(G_{2}\right), f(v)=2\right\}\right|$. Now we enumerate all RDFs on $G_{1} \vee G_{2}$ by dividing them into the following types:
Type-1: RDFs $f=\left(V_{0}, V_{1}, V_{2}\right)$, where $V_{2}=\emptyset$.
Note that there is only one Type-1 RDF assigning 1 to every vertex of $G_{1} \vee G_{2}$. Thus we obtain the term $x^{n_{1}+n_{2}}$ of the Roman domination polynomial.
Type-2: RDFs $f=\left(V_{0}, V_{1}, V_{2}\right)$, where $V_{2} \cap V\left(G_{1}\right) \neq \emptyset$ and $V_{2} \cap V\left(G_{2}\right)=\emptyset$.
Observe that f is Type- 2 RDF for $G_{1} \vee G_{2}$ if and only if $\left.f\right|_{V\left(G_{1}\right)}$ is an RDF for G_{1}.
Note that a typical RDF of G_{1} is a Type-2 RDF of $G_{1} \vee G_{2}$ with exception that all the vertices of G_{1} assigned value 1 and there is at least one vertex in G_{2} with weight 0 . Thus, we obtain the following terms of the Roman domination polynomial.
$R D\left(G_{1}, x\right) \sum_{i=0}^{n_{2}}\binom{n_{2}}{i} x^{i}-x^{n_{1}} \sum_{i=0}^{n_{2}}\binom{n_{2}}{i} x^{i}=R D\left(G_{1}, x\right) \sum_{i=0}^{n_{2}}\binom{n_{2}}{i} x^{i}-x^{n_{1}} \sum_{i=0}^{n_{2}-1}\binom{n_{2}}{i} x^{i}-x^{n_{1}+n_{2}}$,
where i is the number of vertices of G_{2} with weight one.
Type-3: RDFs $f=\left(V_{0}, V_{1}, V_{2}\right)$, where $V_{2} \cap V\left(G_{1}\right)=\emptyset$ and $V_{2} \cap V\left(G_{2}\right) \neq \emptyset$.
Similar to Type-2 RDFs, we find the following terms of the Roman domination polynomial.
$R D\left(G_{2}, x\right) \sum_{i=0}^{n_{1}}\binom{n_{1}}{i} x^{i}-x^{n_{2}} \sum_{i=0}^{n_{1}}\binom{n_{1}}{i} x^{i}=R D\left(G_{2}, x\right) \sum_{i=0}^{n_{1}}\binom{n_{1}}{i} x^{i}-x^{n_{2}} \sum_{i=0}^{n_{1}-1}\binom{n_{1}}{i} x^{i}-x^{n_{1}+n_{2}}$,
where i is the number of vertices of G_{1} with weight one.
Type-4: RDFs $f=\left(V_{0}, V_{1}, V_{2}\right)$, where $V_{2} \cap V\left(G_{1}\right) \neq \emptyset$ and $V_{2} \cap V\left(G_{2}\right) \neq \emptyset$.
We enumerate the number of Type-4 RDFs on $G_{1} \vee G_{2}$ by summing all such RDFs that assign 2 to p vertices of G_{1} and q vertices of G_{2}, where $1 \leq p \leq n_{1}$ and $1 \leq q \leq n_{2}$. For a fixed $p \in\left\{1, \ldots, n_{1}\right\}$ and fixed $q \in\left\{1, \ldots, n_{2}\right\}$, and a fixed Type-4 RDF f on $G_{1} \vee G_{2}$, it may be possible that f assign 1 to some vertices of G_{1} or G_{2}. We enumerate Type-4 RDFs on $G_{1} \vee G_{2}$ assigning 2 to p vertices of G_{1} and q vertices of G_{2}, by summing all such RDFs assigning 1 to r vertices of G_{1} and s vertices of G_{2}, where $0 \leq r \leq n_{1}-p$ and $0 \leq s \leq n_{2}-q$.
There are $\binom{n_{1}}{p}\binom{n_{1}-p}{r}$ functions on G_{1} such that p vertices are assigned 2 and r vertices are assigned 1. For each such choice, there are $\binom{n_{2}}{q}\binom{n_{2}-q}{s}$ functions on the graph G_{2}, such that q vertices are assigned 2 and s vertices are assigned 1 . Thus we obtain the term

$$
\sum_{p=1}^{n_{1}} \sum_{r=0}^{n_{1}-p} \sum_{q=1}^{n_{2}} \sum_{s=0}^{n_{2}-q}\binom{n_{1}}{p}\binom{n_{1}-p}{r}\binom{n_{2}}{q}\binom{n_{2}-q}{s} x^{2 p+r+2 q+s} .
$$

Therefore

$$
\begin{aligned}
R D\left(G_{1} \vee G_{2}, x\right) & =x^{n_{1}+n_{2}}+R D\left(G_{1}, x\right) \sum_{i=0}^{n_{2}}\binom{n_{2}}{i} x^{i}-x^{n_{1}} \sum_{i=0}^{n_{2}-1}\binom{n_{2}}{i} x^{i}-x^{n_{1}+n_{2}} \\
& +R D\left(G_{2}, x\right) \sum_{i=0}^{n_{1}}\binom{n_{1}}{i} x^{i}-x^{n_{2}} \sum_{i=0}^{n_{1}-1}\binom{n_{1}}{i} x^{i}-x^{n_{1}+n_{2}} \\
& +\sum_{p=1}^{n_{1}} \sum_{r=0}^{n_{1}-p} \sum_{q=1}^{n_{2}} \sum_{s=0}^{n_{2}-q}\binom{n_{1}}{p}\binom{n_{1}-p}{r}\binom{n_{2}}{q}\binom{n_{2}-q}{s} x^{2 p+r+2 q+s} \\
& =\sum_{p=1}^{n_{1}} \sum_{r=0}^{n_{1}-p} \sum_{q=1}^{n_{2}} \sum_{s=0}^{n_{2}-q}\binom{n_{1}}{p}\binom{n_{1}-p}{r}\binom{n_{2}}{q}\binom{n_{2}-q}{s} x^{2 p+r+2 q+s} \\
& +R D\left(G_{1}, x\right) \sum_{i=0}^{n_{2}}\binom{n_{2}}{i} x^{i}-x^{n_{1}} \sum_{i=0}^{n_{2}-1}\binom{n_{2}}{i} x^{i} \\
& +R D\left(G_{2}, x\right) \sum_{i=0}^{n_{1}}\binom{n_{1}}{i} x^{i}-x^{n_{2}} \sum_{i=0}^{n_{1}-1}\binom{n_{1}}{i} x^{i}-x^{n_{1}+n_{2}} .
\end{aligned}
$$

Thus the proof is complete.
Since $R D\left(\overline{K_{n}}, x\right)=x^{n}(1+x)^{n}($ see [12] $), K_{n}=\underbrace{K_{1} \vee K_{1} \vee \cdots \vee K_{1}}_{n \text { times }}$, and $K_{m, n}=$ $\overline{K_{m}} \vee \overline{K_{n}}$, we obtain the following.

Corollary 1 ([12]).

1. $R D\left(K_{n}, x\right)=\left(1+x+x^{2}\right)^{n}-(1+x)^{n}+x^{n}$.
2. $R D\left(K_{m, n}, x\right)=x^{m+n}+(1+x)^{m+n}\left(x^{m}+x^{n}\right)-x^{m}(1+x)^{n}-x^{n}(1+x)^{m}$

$$
+\sum_{p=1}^{m} \sum_{r=0}^{m-p} \sum_{q=1}^{n} \sum_{s=0}^{n-q}\binom{m}{p}\binom{m-p}{r}\binom{n}{q}\binom{n-q}{s} x^{2 p+r+2 q+s} .
$$

3. Roman domination polynomial in Paths

The Roman domination polynomial for a path P_{n} is determined in [11] in which the authors employed the results of Alikhani and Peng [3] on the domination polynomials of graphs. In this section we determine the Roman domination polynomial for a path P_{n} without the need of domination polynomials. For this purpose, we need some notations. For any vertex v of a graph G, let:

- $d_{k}^{0}(G, v)=\mid\{f: V(G) \rightarrow\{0,1,2\} \mid f$ is an RDF with $f(V)=k, f(v)=0\} \mid$.
- $d_{k}^{1}(G, v)=\mid\{f: V(G) \rightarrow\{0,1,2\} \mid f$ is an RDF with $f(V)=k, f(v)=1\} \mid$.

$$
\text { - } d_{k}^{2}(G, v)=\mid\{f: V(G) \rightarrow\{0,1,2\} \mid f \text { is an } R D F \text { with } f(V)=k, f(v)=2\} \mid
$$

Then $d_{k}^{0}(G, v)+d_{k}^{1}(G, v)+d_{k}^{2}(G, v)$ is equal to the number of all RDFs with weight k. That is,

$$
d_{R}(G, k)=d_{k}^{0}(G, v)+d_{k}^{1}(G, v)+d_{k} i^{2}(G, v) .
$$

So the coefficients of x^{i} in the polynomial $\sum_{i=\gamma_{R}(G)}^{2 n}\left(d_{i}^{0}(G, v)+d_{i}^{1}(G, v)+d_{i}^{2}(G, v)\right) x^{i}$, are independent of the choice of the vertex v, and so the Roman domination polynomial of graph G can be written as

$$
R D(G, x)=\sum_{i=\gamma_{R}(G)}^{2 n}\left(d_{i}^{0}(G, v)+d_{i}^{1}(G, v)+d_{i}^{2}(G, v)\right) x^{i},
$$

where v is a vertex in $V(G)$.

Lemma 1. Let $G=P_{n}, V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}\right\}$. Then

$$
\begin{aligned}
d_{i}^{0}\left(P_{n}, v_{1}\right) & =d_{i}^{2}\left(P_{n-1}, v_{1}\right), \\
d_{i}^{1}\left(P_{n}, v_{1}\right) & =d_{i-1}^{0}\left(P_{n-1}, v_{1}\right)+d_{i-1}^{1}\left(P_{n-1}, v_{1}\right)+d_{i-1}^{2}\left(P_{n-1}, v_{1}\right), \\
d_{i}^{2}\left(P_{n}, v_{1}\right) & =d_{i-2}^{0}\left(P_{n-2}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-2}, v_{1}\right)+d_{i-2}^{2}\left(P_{n-2}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-1}, v_{1}\right) \\
& +d_{i-2}^{2}\left(P_{n-1}, v_{1}\right),
\end{aligned}
$$

where $P_{n-1}=G\left[\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}\right]$ and $P_{n-2}=G\left[\left\{v_{1}, v_{2}, \ldots, v_{n-2}\right\}\right]$.

Proof. Let $Q_{n-1}=G\left[\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}\right]$ and $R_{n-2}=G\left[\left\{v_{3}, v_{4}, \ldots, v_{n}\right\}\right]$. For any RDF f for P_{n}, if $f\left(v_{1}\right)=0$ then $f\left(v_{2}\right)=2$. So the number of RDFs on P_{n} with $f\left(v_{1}\right)=0$ is equal to the number of RDFs on Q_{n-1} with $f\left(v_{2}\right)=2$. Therefore $d_{i}^{0}\left(P_{n}, v_{1}\right)=d_{i}^{2}\left(Q_{n-1}, v_{2}\right)$.
Assume that f is an RDF for P_{n} with weight i and $f\left(v_{1}\right)=1$. Then $g=\left.f\right|_{\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}}$ is an RDF for $Q_{n-1}, g(V)=i-1$ and $g\left(v_{2}\right) \in\{0,1,2\}$. Conversely, suppose that g is an RDF for Q_{n-1} with weight $i-1$. Then the function $f: V\left(P_{n}\right) \rightarrow\{0,1,2\}$ defined by $f\left(v_{1}\right)=1$ and $f\left(v_{j}\right)=g\left(v_{j}\right)$ for $2 \leq j \leq n$, is an RDF for P_{n} with weight i. Thus in this case, $d_{i}^{1}\left(P_{n}, v_{1}\right)=d_{i-1}^{0}\left(Q_{n-1}, v_{2}\right)+d_{i-1}^{1}\left(Q_{n-1}, v_{2}\right)+d_{i-1}^{2}\left(Q_{n-1}, v_{2}\right)$.
Assume that f is an RDF for P_{n} with weight i and $f\left(v_{1}\right)=2$. Assume that $f\left(v_{2}\right)=0$. With a similar argument to that used for the calculation of $d_{i}^{1}\left(P_{n}, v_{1}\right)$, we obtain that $d_{i}^{2}\left(P_{n}, v_{1}\right)=d_{i-2}^{0}\left(R_{n-2}, v_{3}\right)+d_{i-2}^{1}\left(R_{n-2}, v_{3}\right)+d_{i-2}^{2}\left(R_{n-2}, v_{3}\right)$. Next assume that $f\left(v_{2}\right)=1$. It is evident that the restriction of g to $V\left(P_{n}\right)-\left\{v_{1}\right\}$ is an RDF for Q_{n-1}, $g(V)=i-2$ and $g\left(v_{2}\right)=1$. Conversely, if g is an RDF for Q_{n-1} with weight $i-2$ and $g\left(v_{2}\right)=1$, then $f\left(v_{1}\right)=2$ and $f\left(v_{j}\right)=g\left(v_{j}\right)$ for $2 \leq j \leq n$, and so f is an RDF for P_{n}
with weight i. Thus in this case $d_{i}^{2}\left(P_{n}, v_{1}\right)=d_{i-2}^{1}\left(Q_{n-1}, v_{2}\right)$. Similarly, if $f\left(v_{2}\right)=2$, then $d_{i}^{2}\left(P_{n}, v_{1}\right)=d_{i-2}^{2}\left(Q_{n-1}, v_{2}\right)$. We thus have the following:

$$
\begin{aligned}
d_{i}^{2}\left(P_{n}, v_{1}\right) & =d_{i-2}^{0}\left(R_{n-2}, v_{3}\right)+d_{i-2}^{1}\left(R_{n-2}, v_{3}\right)+d_{i-2}^{2}\left(R_{n-2}, v_{3}\right) \\
& +d_{i-2}^{1}\left(Q_{n-1}, v_{2}\right)+d_{i-2}^{2}\left(Q_{n-1}, v_{2}\right)
\end{aligned}
$$

Now, let P_{n-1} and P_{n-2} be obtained by relabeling the vertices of Q_{n-1} and R_{n-2} as $V\left(P_{n-1}\right)=\left\{u_{1}=v_{2}, u_{2}=v_{3}, \ldots, u_{n-1}=v_{n} \mid v_{i} \in V\left(Q_{n-1}\right), i=2,3, \ldots, n\right\}$, and $V\left(P_{n-2}\right)=\left\{u_{1}=v_{3}, u_{2}=v_{4}, \ldots, u_{n-2}=v_{n} \mid v_{i} \in V\left(R_{n-2}\right), i=3,4, \ldots, n\right\}$. Then $d_{i}^{0}\left(P_{n}, v_{1}\right)=d_{i}^{2}\left(P_{n-1}, u_{1}\right), d_{i}^{1}\left(P_{n}, v_{1}\right)=d_{i-1}^{0}\left(P_{n-1}, u_{1}\right)+d_{i-1}^{1}\left(P_{n-1}, u_{1}\right)+$ $d_{i-1}^{2}\left(P_{n-1}, u_{1}\right)$ and $d_{i}^{2}\left(P_{n}, v_{1}\right)=d_{i-2}^{0}\left(P_{n-2}, u_{1}\right)+d_{i-2}^{1}\left(P_{n-2}, u_{1}\right)+d_{i-2}^{2}\left(P_{n-2}, u_{1}\right)+$ $d_{i-2}^{1}\left(P_{n-1}, u_{1}\right)+d_{i-2}^{2}\left(P_{n-1}, u_{1}\right)$, as desired.

Note that Lemma 1 expresses a recursive relation to obtain the values $d_{i}^{0}\left(P_{n}, v_{1}\right)$, $d_{i}^{1}\left(P_{n}, v_{1}\right)$ and $d_{i}^{2}\left(P_{n}, v_{1}\right)$. In a recursive relationship, it is essential to know the initial conditions as well as the end condition. By Proposition 2 we obtain the following.

Proposition 3. If P_{n} is a path graph with n vertices then

1) $d_{2 n-2}^{0}\left(P_{n}, v_{1}\right)=1, d_{m}^{0}\left(P_{n}, v_{1}\right)=0$ for $m>2 n-2$ or $m<\left\lceil\frac{2 n}{3}\right\rceil$.
2) $d_{2 n-1}^{1}\left(P_{n}, v_{1}\right)=1, d_{m}^{1}\left(P_{n}, v_{1}\right)=0$ for $m>2 n-1$ or $m<\left\lceil\frac{2 n}{3}\right\rceil$.
3) $d_{2 n}^{2}\left(P_{n}, v_{1}\right)=1, d_{m}^{2}\left(P_{n}, v_{1}\right)=0$ for $m>2 n$ or $m<\left\lceil\frac{2 n}{3}\right\rceil$.

Theorem 3. For $n \geq 4$, let $G=P_{n}$ with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=$ $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}\right\}$. Then,

$$
R D\left(P_{n}, x\right)=R D\left(P_{1}, x\right) R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+x R D\left(P_{1}, x\right) R D\left(P_{n-3}, x\right),
$$

with the initial values $R D\left(P_{1}, x\right)=x+x^{2}, R D\left(P_{2}, x\right)=3 x^{2}+2 x^{3}+x^{4}, R D\left(P_{3}, x\right)=$ $x^{2}+5 x^{3}+6 x^{4}+3 x^{5}+x^{6}$.

Proof. It is evident that

$$
\begin{aligned}
R D\left(P_{n}, x\right) & =\sum_{i=\gamma_{R}\left(P_{n}\right)}^{2 n}\left(d_{i}^{0}\left(P_{n}, v_{1}\right)+d_{i}^{1}\left(P_{n}, v_{1}\right)+d_{i}^{2}\left(P_{n}, v_{1}\right)\right) x^{i} \\
& =\sum_{i=\left\lceil\frac{2 n}{3}\right\rceil}^{2 n}\left(d_{i}^{0}\left(P_{n}, v_{1}\right)+d_{i}^{1}\left(P_{n}, v_{1}\right)+d_{i}^{2}\left(P_{n}, v_{1}\right)\right) x^{i} .
\end{aligned}
$$

Using Lemma 1, it can be written:

$$
\begin{aligned}
& R D\left(P_{n}, x\right)=\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i}^{2}\left(P_{n-1}, v_{1}\right)+d_{i-1}^{0}\left(P_{n-1}, v_{1}\right)+d_{i-1}^{1}\left(P_{n-1}, v_{1}\right)+d_{i-1}^{2}\left(P_{n-1}, v_{1}\right)\right. \\
& +d_{i-2}^{0}\left(P_{n-2}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-2}, v_{1}\right)+d_{i-2}^{2}\left(P_{n-2}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-1}, v_{1}\right) \\
& \left.+d_{i-2}^{2}\left(P_{n-1}, v_{1}\right)\right) x^{i} \\
& =\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i-1}^{0}\left(P_{n-1}, v_{1}\right)+d_{i-1}^{1}\left(P_{n-1}, v_{1}\right)+d_{i-1}^{2}\left(P_{n-1}, v_{1}\right)\right) x^{i} \\
& +\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i-2}^{0}\left(P_{n-2}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-2}, v_{1}\right)+d_{i-2}^{2}\left(P_{n-2}, v_{1}\right)\right) x^{i} \\
& +\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i}^{2}\left(P_{n-1}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-1}, v_{1}\right)+d_{i-2}^{2}\left(P_{n-1}, v_{1}\right)\right) x^{i} \\
& =x R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i}^{2}\left(P_{n-1}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-1}, v_{1}\right)\right. \\
& \left.+d_{i-2}^{2}\left(P_{n-1}, v_{1}\right)\right) x^{i} \\
& =x R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i}^{2}\left(P_{n-1}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-1}, v_{1}\right)\right. \\
& \left.+d_{i-2}^{2}\left(P_{n-1}, v_{1}\right)+d_{i-2}^{0}\left(P_{n-1}, v_{1}\right)-d_{i-2}^{0}\left(P_{n-1}, v_{1}\right)\right) x^{i} \\
& =x R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+x^{2} R D\left(P_{n-1}, x\right)+\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i}^{2}\left(P_{n-1}, v_{1}\right)\right. \\
& \left.-d_{i-2}^{0}\left(P_{n-1}, v_{1}\right)\right) x^{i} \\
& =\left(x+x^{2}\right) R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i}^{2}\left(P_{n-1}, v_{1}\right)\right. \\
& \left.-d_{i-2}^{0}\left(P_{n-1}, v_{1}\right)\right) x^{i} \\
& =R D\left(P_{1}, x\right) R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i-2}^{0}\left(P_{n-3}, v_{1}\right)\right. \\
& +d_{i-2}^{1}\left(P_{n-3}, v_{1}\right)+d_{i-2}^{2}\left(P_{n-3}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-2}, v_{1}\right)+d_{i-2}^{2}\left(P_{n-2}, v_{1}\right) \\
& \text { - } \left.d_{i-2}^{2}\left(P_{n-2}, v_{1}\right)\right) x^{i} \\
& =R D\left(P_{1}, x\right) R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right) \\
& +\sum_{i=\lceil(2 n) / 3\rceil}^{2 n}\left(d_{i-2}^{0}\left(P_{n-3}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-3}, v_{1}\right)+d_{i-2}^{2}\left(P_{n-3}, v_{1}\right)+d_{i-2}^{1}\left(P_{n-2}, v_{1}\right)\right) x^{i} \\
& =R D\left(P_{1}, x\right) R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+x^{2} R D\left(P_{n-3}, x\right) \\
& +\sum_{i=\left\lceil\frac{2 n}{3}\right\rceil}^{2 n}\left(d_{i-3}^{0}\left(P_{n-3}, v_{1}\right)+d_{i-3}^{1}\left(P_{n-3}, v_{1}\right)+d_{i-3}^{2}\left(P_{n-3}, v_{1}\right)\right) x^{i} \\
& =R D\left(P_{1}, x\right) R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+x^{2} R D\left(P_{n-3}, x\right)+x^{3} R D\left(P_{n-3}, x\right) \\
& =R D\left(P_{1}, x\right) R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+\left(x^{2}+x^{3}\right) R D\left(P_{n-3}, x\right) \\
& =R D\left(P_{1}, x\right) R D\left(P_{n-1}, x\right)+x^{2} R D\left(P_{n-2}, x\right)+x R D\left(P_{1}, x\right) R D\left(P_{n-3}, x\right),
\end{aligned}
$$

as desired.

4. A bound for the total number of Roman domination polynomial

In this section, we prove an upper bound as well as a lower bound for the number of all RDFs of a graph and characterize graphs achieving equality for the lower bound.

Theorem 4. Let G be an arbitrary graph with n vertices. Then

$$
2^{n} \leq d_{R}(G) \leq 3^{n}-\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 n-2 k-1}{n}
$$

Equality for the lower bound holds if and only if $G=\bar{K}_{n}$.

Proof. Any function that assigns the values 1 or 2 to the vertices of a graph is an RDF , and so the number of such functions is equal to 2^{n}. So $2^{n} \leq d_{R}(G)$. On the other hand, the total number of functions such as $f: V(G) \rightarrow\{0,1,2\}$ is equal to 3^{n}, as a result $d_{R}(G) \leq 3^{n}-|A|$, where $A=\{f: V(G) \rightarrow\{0,1,2\} \mid f$ is not an $R D F\}$. It is enough to calculate the value of $|A|$. For every function $f: V(G) \rightarrow\{0,1,2\}$, let $x_{1}=f\left(v_{1}\right), x_{2}=f\left(v_{2}\right), \ldots, x_{n}=f\left(v_{n}\right)$. Then, $|A|$ is at least equal to the number of non-negative integer solutions of the inequality

$$
x_{1}+x_{2}+\cdots+x_{n} \leq n-1
$$

where $0 \leq x_{i} \leq 1,0 \leq i \leq n$. The number of solutions of $x_{1}+x_{2}+\cdots+x_{n} \leq n-1$, $0 \leq x_{i} \leq 1,0 \leq i \leq n$ is

$$
\binom{2 n-1}{n}+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k}\binom{2 n-2 k-1}{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 n-2 k-1}{n}
$$

Thus $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 n-2 k-1}{n} \leq|A|$.
We next prove the equality part. Let $G=\bar{K}_{n}$ and f be an arbitrary RDF on G. Then $f(v)=1$ or $f(v)=2$ for each vertex v. The number of these functions is equal to 2^{n}. Conversely, suppose that G is an arbitrary graph with $d_{R}(G)=2^{n}$. If $G \neq \bar{K}_{n}$, then G has at least one edge $v_{t} v_{s}$. Set $A=\left\{f: V(G) \rightarrow\{0,1,2\} \mid f\left(v_{i}\right) \geq 1,1 \leq i \leq\right.$ $n\} \cup\left\{g: V(G) \rightarrow\{0,1,2\} \mid f\left(v_{t}\right)=0, f\left(v_{s}\right)=2, f\left(v_{i}\right)=1,1 \leq i \leq n, i \neq t, i \neq s\right\}$. Clearly, every member of A is an RDF for G and $|A|=2^{n}+1$. This contradicts the assumption $d_{R}(G)=2^{n}$. This completes the proof.

Note that the upper bound of Theorem 4 is sharp, as can be seen in the graph K_{3}.

Acknowledgements: We would like to thank the referees for their very careful evaluation and very useful comments.

Conflict of Interest: The authors declare that they have no conflict of interest.
Data Availability Statement: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] S. Alikhani, The domination polynomial of a graph at -1, Graphs Comb. 29 (2013), no. 5, 1175-1181.
https://doi.org/10.1007/s00373-012-1211-x.
[2] S. Alikhani and N. Jafari, Some new results on the total domination polynomial of a graph, Ars Combin. 149 (2020), 185-197.
[3] S. Alikhani and Y.H. Peng, Dominating sets and domination polynomials of paths, Int. J. Math. Math. Sci. 2009 (2009), Article ID: 542040. https://doi.org/10.1155/2009/542040.
[4] , Introduction to domination polynomial of a graph, Ars Combin. 114 (2014), 257-266.
[5] R.A. Brualdi, Introductory Combinatorics, Pearson India, 2019.
[6] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, p. 365-409.
[7] \qquad , Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020), no. 3, 966-984. https://doi.org/10.1016/j.akcej.2019.12.001.
[8] __, Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, p. 273-307.
[9] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11-22. https://doi.org/10.1016/j.disc.2003.06.004.
[10] G. Deepak, A. Alwardi, and M.H. Indiramma, Roman domination polynomial of cycles, Int. J. Math. Combin. 3 (2021), 86-97.
[11] \qquad Roman domination polynomial of paths, Palestine J. Math. 11 (2022), no. 2, 439-448.
[12] D. Gangabylaiah, M.H. Indiramma, N.D. Soner, and A. Alwardi, On the Roman domination polynomial of graphs, Bull. Int. Math. Virtual Inst. 11 (2021), no. 2, 355-365.
[13] T.W. Haynes, S.T. Hedetniemi, and P.J. Salter, Fundamentals of Domination in

Graphs, Marcel Dekker, New York, 1998.
[14] D.A. Mojdeh and A.S. Emadi, Connected domination polynomial of graphs, Fasc. Math, 60 (2018), no. 1, 103-121.
https://doi.org/10.1515/fascmath-2018-0007.
[15] _ Hop domination polynomial of graphs, J. Discrete Math. Sci. Crypt. 23 (2020), no. 4, 825-840. https://doi.org/10.1080/09720529.2019.1621493.

[^0]: * Corresponding Author

