Research Article

On the Roman domination polynomials

Seyed Hosein Mirhoseini[†] and Nader Jafari Rad^{*}

Department of Mathematics, Shahed University, Tehran, Iran [†]seyedhosein.mirhoseini@shahed.ac.ir *n.jafarirad@shahed.ac.ir

Received: 7 December 2022; Accepted: 7 May 2023 Published Online: 20 May 2023

Abstract: A Roman dominating function (RDF) on a graph G is a function $f: V(G) \to \{0, 1, 2\}$ satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the sum of the weights of the vertices under f. The Roman domination number, $\gamma_R(G)$ of G is the minimum weight of an RDF in G. The Roman domination polynomial of a graph G of order n is the polynomial $RD(G, x) = \sum_{i=\gamma_R(G)}^{2n} d_R(G, i)x^i$, where $d_R(G, i)$ is the number of RDFs of G with weight i. In this paper we prove properties of Roman domination polynomials and determine RD(G, x) in several classes of graphs G by new approaches. We also present bounds on the number of all Roman domination polynomials in a graph.

 ${\bf Keywords:}$ Roman domination polynomial, Roman dominating function, Roman domination number

AMS Subject classification: 05C69

1. Introduction

For notations and definitions not given here we refer to [13]. We consider simple and finite graphs G = (V, E), where V = V(G) is the vertex set and E = E(G) is the edge set. The order of G, denoted |V(G)| = n, is the number of vertices in G and the size of G, denoted |E(G)| = m, is the number of edges in G. For any two vertices $x, y \in V(G)$, x and y are adjacent if the edge $xy \in E(G)$. The degree of a vertex v, denoted by deg(v) (or deg $_G(v)$), is the number of vertices adjacent to v. A vertex of degree zero is called an *isolated vertex*. We denote by Δ and δ , respectively, the maximum degree and minimum degree among the vertices of G. An induced subgraph

^{*} Corresponding Author

^{© 2024} Azarbaijan Shahid Madani University

of a graph G is a graph formed from a subset D of vertices of G and all of the edges in G connecting pairs of vertices in that subset, denoted by $\langle D \rangle$. An *independent set* is a set of vertices any two of which are not adjacent. A graph G is *bipartite* if V(G) can be partitioned into two independent sets called *partite sets*. The *join* of two graphs G_1 and G_2 , denoted by $G_1 \vee G_2$ is a graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2) \cup \{uv | u \in V(G_1) \text{ and } v \in V(G_2)\}$.

A dominating set of a graph G is a subset D of vertices such that every vertex outside D has a neighbor in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality amongst all dominating sets of G. Cockayne et al. [9] introduced the mathematical definition of Roman domination. This concept was subsequently developed very vastly, and to see the latest progress until 2020 we refer to [6–8]. A function $f: V \longrightarrow \{0, 1, 2\}$ is called a *Roman dominating function* or just an RDF for G if for every vertex $v \in V$ with f(v) = 0 there exists a vertex $u \in N(v)$ such that f(u) = 2. The weight of an RDF f is the sum $f(V) = \sum_{v \in V} f(v)$. The minimum weight of an RDF on G is called the *Roman domination number* of G and is denoted by $\gamma_R(G)$.

Graph polynomials play an important role in studying the structure of a graph, and there are some polynomials associated to graphs such as Chromatic polynomial, clique polynomial, characteristic polynomial and Tutte polynomial. Alikhani and Peng [4] introduced the concept of domination polynomials in graphs. This concept was further studied in [1, 3] and has been considered for some other types of dominating sets, for example, for total dominating sets ([2]), connected dominating sets ([14]) and hope dominating sets ([15]).

Gangabylaiah et al. [12] introduced the concept of Roman domination polynomial of a graph. For a graph G of order n with Roman domination number $\gamma_R(G)$, the Roman domination polynomial of a graph G, denoted RD(G, x), is defined as follows

$$RD(G, x) = \sum_{i=\gamma_R(G)}^{2n} d_R(G, i) x^i,$$

where, $d_R(G, i)$ is the number of all Roman dominating functions on the graph G with weight i. They presented several basic properties and exact values of the Roman domination polynomial of a graph. This concept was further studied by Deepak et al. [10, 11].

In this paper we prove some further properties of Roman domination polynomial in graphs. We prove some previous results given in [11, 12] by new and easier approach. We also present bounds for the number of all RDFs of graph G.

We recall that the number of solutions of the equation $x_1 + x_2 + \cdots + x_n = r, x_i \in \mathbb{Z}^+$, is

$$\binom{r+n-1}{r} = \binom{r+n-1}{n-1}$$

(see e.g. [5]), and thus we have the following proposition:

Proposition 1. The number of integral solutions of $x_1 + x_2 + ... + x_n = r$, $a \le x_i \le b$, is

$$\binom{r-na+n-1}{n-1} + \sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{r-na-k(b-a+1)+n-1}{n-1}.$$

We also make use of the following.

Proposition 2 ([9]). For a path P_n , $\gamma_R(P_n) = \lceil \frac{2n}{3} \rceil$.

2. Roman domination polynomial in join of graphs

Roman domination polynomial in join of two graphs was studied in [12]. In this section, we determine the Roman domination polynomial in join of two graphs by a new approach and then using it we determine the Roman domination polynomial in the complete and complete bipartite graphs. For this purpose, we first introduce some notations. For a graph G of order n, let:

- $D_R(G,k)$ stands for the set of all RDFs on the graph G with weight k, and let $d_R(G,k) = |D_R(G,k)|.$
- $D_{nR}(G,k)$ stands for the set of all functions $f: V(G) \to \{0,1,2\}$ on the graph G with weight k such that f is not an RDF, and let $d_{nR}(G,k) = |D_{nR}(G,k)|$.
- D(G, k) stands for the set of all functions $f : V(G) \to \{0, 1, 2\}$ on the graph G with weight k, and let d(G, k) = |D(G, k)|.

•
$$P(G, x) = \sum_{i=0}^{2|V(G)|} d(G, i) x^i$$

Clearly, $d(G, k) = d_R(G, k) + d_{nR}(G, k)$. Furthermore, the following is easily verified.

Observation 1. If G_1 and G_2 are two graphs of order n_1 and n_2 , respectively, then

$$P(G_1 \lor G_2, x) = P(G_1, x)P(G_2, x).$$

We now determine the Roman domination polynomial in join of two graphs.

Theorem 2. If G_1 and G_2 are two connected graphs of order n_1 and n_2 , respectively, then

$$RD(G_{1} \vee G_{2}, x) = \sum_{p=1}^{n_{1}} \sum_{r=0}^{n_{1}-p} \sum_{q=1}^{n_{2}} \sum_{s=0}^{n_{2}-q} \binom{n_{1}}{p} \binom{n_{1}-p}{r} \binom{n_{2}}{q} \binom{n_{2}-q}{s} x^{2p+r+2q+s}$$

+ $RD(G_{1}, x) \sum_{i=0}^{n_{2}} \binom{n_{2}}{i} x^{i} - x^{n_{1}} \sum_{i=0}^{n_{2}-1} \binom{n_{2}}{i} x^{i}$
+ $RD(G_{2}, x) \sum_{i=0}^{n_{1}} \binom{n_{1}}{i} x^{i} - x^{n_{2}} \sum_{i=0}^{n_{1}-1} \binom{n_{1}}{i} x^{i} - x^{n_{1}+n_{2}}.$

Proof. For an RDF f in a graph G, we denote by V_i the set of all vertices of G with label i under f. Thus an RDF f can be represented by a triplet (V_0, V_1, V_2) , and we use the notation $f = (V_0, V_1, V_2)$. In order to enumerate the RDFs of the graph $G_1 \vee G_2$, for any RDF $f : V(G_1 \vee G_2) \to \{0, 1, 2\}$ put $p = |\{v : v \in V(G_1), f(v) = 2\}|$ and $q = |\{v : v \in V(G_2), f(v) = 2\}|$. Now we enumerate all RDFs on $G_1 \vee G_2$ by dividing them into the following types:

Type-1: RDFs $f = (V_0, V_1, V_2)$, where $V_2 = \emptyset$.

Note that there is only one Type-1 RDF assigning 1 to every vertex of $G_1 \vee G_2$. Thus we obtain the term $x^{n_1+n_2}$ of the Roman domination polynomial.

Type-2: RDFs $f = (V_0, V_1, V_2)$, where $V_2 \cap V(G_1) \neq \emptyset$ and $V_2 \cap V(G_2) = \emptyset$. Observe that f is Type-2 RDF for $G_1 \vee G_2$ if and only if $f|_{V(G_1)}$ is an RDF for G_1 . Note that a typical RDF of G_1 is a Type-2 RDF of $G_1 \vee G_2$ with exception that all the vertices of G_1 assigned value 1 and there is at least one vertex in G_2 with weight 0. Thus, we obtain the following terms of the Roman domination polynomial.

$$RD(G_1, x) \sum_{i=0}^{n_2} \binom{n_2}{i} x^i - x^{n_1} \sum_{i=0}^{n_2} \binom{n_2}{i} x^i = RD(G_1, x) \sum_{i=0}^{n_2} \binom{n_2}{i} x^i - x^{n_1} \sum_{i=0}^{n_2-1} \binom{n_2}{i} x^i - x^{n_1+n_2},$$

where i is the number of vertices of G_2 with weight one.

Type-3: RDFs $f = (V_0, V_1, V_2)$, where $V_2 \cap V(G_1) = \emptyset$ and $V_2 \cap V(G_2) \neq \emptyset$. Similar to Type-2 RDFs, we find the following terms of the Roman domination polynomial.

$$RD(G_2, x) \sum_{i=0}^{n_1} {n_1 \choose i} x^i - x^{n_2} \sum_{i=0}^{n_1} {n_1 \choose i} x^i = RD(G_2, x) \sum_{i=0}^{n_1} {n_1 \choose i} x^i - x^{n_2} \sum_{i=0}^{n_1-1} {n_1 \choose i} x^i - x^{n_1+n_2},$$

where i is the number of vertices of G_1 with weight one.

Type-4: RDFs $f = (V_0, V_1, V_2)$, where $V_2 \cap V(G_1) \neq \emptyset$ and $V_2 \cap V(G_2) \neq \emptyset$. We enumerate the number of Type-4 RDFs on $G_1 \lor G_2$ by summing all such RDFs that assign 2 to p vertices of G_1 and q vertices of G_2 , where $1 \leq p \leq n_1$ and $1 \leq q \leq n_2$. For a fixed $p \in \{1, \ldots, n_1\}$ and fixed $q \in \{1, \ldots, n_2\}$, and a fixed Type-4 RDF fon $G_1 \lor G_2$, it may be possible that f assign 1 to some vertices of G_1 or G_2 . We enumerate Type-4 RDFs on $G_1 \lor G_2$ assigning 2 to p vertices of G_1 and q vertices of G_2 , by summing all such RDFs assigning 1 to r vertices of G_1 and s vertices of G_2 , where $0 \leq r \leq n_1 - p$ and $0 \leq s \leq n_2 - q$.

There are $\binom{n_1}{p}\binom{n_1-p}{r}$ functions on G_1 such that p vertices are assigned 2 and r vertices are assigned 1. For each such choice, there are $\binom{n_2}{q}\binom{n_2-q}{s}$ functions on the graph G_2 , such that q vertices are assigned 2 and s vertices are assigned 1. Thus we obtain the term

$$\sum_{p=1}^{n_1} \sum_{r=0}^{n_1-p} \sum_{q=1}^{n_2} \sum_{s=0}^{n_2-q} \binom{n_1}{p} \binom{n_1-p}{r} \binom{n_2}{q} \binom{n_2-q}{s} x^{2p+r+2q+s}.$$

Therefore

$$RD(G_{1} \lor G_{2}, x) = x^{n_{1}+n_{2}} + RD(G_{1}, x) \sum_{i=0}^{n_{2}} {n_{2} \choose i} x^{i} - x^{n_{1}} \sum_{i=0}^{n_{2}-1} {n_{2} \choose i} x^{i} - x^{n_{1}+n_{2}}$$

$$+ RD(G_{2}, x) \sum_{i=0}^{n_{1}} {n_{1} \choose i} x^{i} - x^{n_{2}} \sum_{i=0}^{n_{1}-1} {n_{1} \choose i} x^{i} - x^{n_{1}+n_{2}}$$

$$+ \sum_{p=1}^{n_{1}} \sum_{r=0}^{n_{1}-p} \sum_{q=1}^{n_{2}} \sum_{s=0}^{n_{2}-q} {n_{1} \choose p} {n_{1}-p \choose r} {n_{2} \choose q} {n_{2}-q \choose s} x^{2p+r+2q+s}$$

$$= \sum_{p=1}^{n_{1}} \sum_{r=0}^{n_{1}-p} \sum_{q=1}^{n_{2}} \sum_{s=0}^{n_{2}-q} {n_{1} \choose p} {n_{1}-p \choose r} {n_{2} \choose q} {n_{2}-q \choose s} x^{2p+r+2q+s}$$

$$+ RD(G_{1}, x) \sum_{i=0}^{n_{2}} {n_{2} \choose i} x^{i} - x^{n_{1}} \sum_{i=0}^{n_{2}-1} {n_{2} \choose i} x^{i}$$

$$+ RD(G_{2}, x) \sum_{i=0}^{n_{1}} {n_{1} \choose i} x^{i} - x^{n_{2}} \sum_{i=0}^{n_{1}-1} {n_{1} \choose i} x^{i} - x^{n_{1}+n_{2}}.$$

Thus the proof is complete.

Since $RD(\overline{K_n}, x) = x^n(1+x)^n$ (see [12]), $K_n = \underbrace{K_1 \vee K_1 \vee \cdots \vee K_1}_{n \ times}$, and $K_{m,n} = \overline{K_m} \vee \overline{K_n}$, we obtain the following.

Corollary 1 ([12]).

1.
$$RD(K_n, x) = (1 + x + x^2)^n - (1 + x)^n + x^n.$$

2. $RD(K_{m,n}, x) = x^{m+n} + (1 + x)^{m+n}(x^m + x^n) - x^m(1 + x)^n - x^n(1 + x)^m$
 $+ \sum_{p=1}^m \sum_{r=0}^{m-p} \sum_{q=1}^n \sum_{s=0}^{n-q} \binom{m}{p} \binom{m-p}{r} \binom{n}{q} \binom{n-q}{s} x^{2p+r+2q+s}.$

3. Roman domination polynomial in Paths

The Roman domination polynomial for a path P_n is determined in [11] in which the authors employed the results of Alikhani and Peng [3] on the domination polynomials of graphs. In this section we determine the Roman domination polynomial for a path P_n without the need of domination polynomials. For this purpose, we need some notations. For any vertex v of a graph G, let:

•
$$d_k^0(G, v) = |\{f : V(G) \to \{0, 1, 2\} \mid f \text{ is an } RDF \text{ with } f(V) = k, f(v) = 0\}|$$

•
$$d_k^1(G, v) = |\{f : V(G) \to \{0, 1, 2\} \mid f \text{ is an } RDF \text{ with } f(V) = k, f(v) = 1\}|.$$

• $d_k^2(G, v) = |\{f : V(G) \to \{0, 1, 2\} \mid f \text{ is an } RDF \text{ with } f(V) = k, f(v) = 2\}|.$

Then $d_k^0(G, v) + d_k^1(G, v) + d_k^2(G, v)$ is equal to the number of all RDFs with weight k. That is,

$$d_R(G,k) = d_k^0(G,v) + d_k^1(G,v) + d_k i^2(G,v).$$

So the coefficients of x^i in the polynomial $\sum_{i=\gamma_R(G)}^{2n} (d_i^0(G,v) + d_i^1(G,v) + d_i^2(G,v))x^i$, are independent of the choice of the vertex v, and so the Roman domination polynomial of graph G can be written as

$$RD(G,x) = \sum_{i=\gamma_R(G)}^{2n} (d_i^0(G,v) + d_i^1(G,v) + d_i^2(G,v))x^i$$

where v is a vertex in V(G).

Lemma 1. Let $G = P_n$, $V(P_n) = \{v_1, v_2, \dots, v_n\}$ and $E(P_n) = \{v_1v_2, v_2v_3, \dots, v_{n-1}v_n\}$. Then

$$\begin{aligned} &d_i^0(P_n, v_1) = d_i^2(P_{n-1}, v_1), \\ &d_i^1(P_n, v_1) = d_{i-1}^0(P_{n-1}, v_1) + d_{i-1}^1(P_{n-1}, v_1) + d_{i-1}^2(P_{n-1}, v_1), \\ &d_i^2(P_n, v_1) = d_{i-2}^0(P_{n-2}, v_1) + d_{i-2}^1(P_{n-2}, v_1) + d_{i-2}^2(P_{n-2}, v_1) + d_{i-2}^1(P_{n-1}, v_1) \\ &+ d_{i-2}^2(P_{n-1}, v_1), \end{aligned}$$

where $P_{n-1} = G[\{v_1, v_2, \dots, v_{n-1}\}]$ and $P_{n-2} = G[\{v_1, v_2, \dots, v_{n-2}\}].$

Proof. Let $Q_{n-1} = G[\{v_2, v_3, \ldots, v_n\}]$ and $R_{n-2} = G[\{v_3, v_4, \ldots, v_n\}]$. For any RDF f for P_n , if $f(v_1) = 0$ then $f(v_2) = 2$. So the number of RDFs on P_n with $f(v_1) = 0$ is equal to the number of RDFs on Q_{n-1} with $f(v_2) = 2$. Therefore $d_i^0(P_n, v_1) = d_i^2(Q_{n-1}, v_2)$.

Assume that f is an RDF for P_n with weight i and $f(v_1) = 1$. Then $g = f|_{\{v_2, v_3, \dots, v_n\}}$ is an RDF for Q_{n-1} , g(V) = i - 1 and $g(v_2) \in \{0, 1, 2\}$. Conversely, suppose that g is an RDF for Q_{n-1} with weight i - 1. Then the function $f : V(P_n) \to \{0, 1, 2\}$ defined by $f(v_1) = 1$ and $f(v_j) = g(v_j)$ for $2 \le j \le n$, is an RDF for P_n with weight i. Thus in this case, $d_i^1(P_n, v_1) = d_{i-1}^0(Q_{n-1}, v_2) + d_{i-1}^1(Q_{n-1}, v_2) + d_{i-1}^2(Q_{n-1}, v_2)$.

Assume that f is an RDF for P_n with weight i and $f(v_1) = 2$. Assume that $f(v_2) = 0$. With a similar argument to that used for the calculation of $d_i^1(P_n, v_1)$, we obtain that $d_i^2(P_n, v_1) = d_{i-2}^0(R_{n-2}, v_3) + d_{i-2}^1(R_{n-2}, v_3) + d_{i-2}^2(R_{n-2}, v_3)$. Next assume that $f(v_2) = 1$. It is evident that the restriction of g to $V(P_n) - \{v_1\}$ is an RDF for Q_{n-1} , g(V) = i-2 and $g(v_2) = 1$. Conversely, if g is an RDF for Q_{n-1} with weight i-2 and $g(v_2) = 1$, then $f(v_1) = 2$ and $f(v_j) = g(v_j)$ for $2 \le j \le n$, and so f is an RDF for P_n with weight *i*. Thus in this case $d_i^2(P_n, v_1) = d_{i-2}^1(Q_{n-1}, v_2)$. Similarly, if $f(v_2) = 2$, then $d_i^2(P_n, v_1) = d_{i-2}^2(Q_{n-1}, v_2)$. We thus have the following:

$$d_i^2(P_n, v_1) = d_{i-2}^0(R_{n-2}, v_3) + d_{i-2}^1(R_{n-2}, v_3) + d_{i-2}^2(R_{n-2}, v_3) + d_{i-2}^1(R_{n-2}, v_3) + d_{i-2}^1(Q_{n-1}, v_2) + d_{i-2}^2(Q_{n-1}, v_2).$$

Now, let P_{n-1} and P_{n-2} be obtained by relabeling the vertices of Q_{n-1} and R_{n-2} as $V(P_{n-1}) = \{u_1 = v_2, u_2 = v_3, \dots, u_{n-1} = v_n | v_i \in V(Q_{n-1}), i = 2, 3, \dots, n\},\$ and $V(P_{n-2}) = \{u_1 = v_3, u_2 = v_4, \dots, u_{n-2} = v_n | v_i \in V(R_{n-2}), i = 3, 4, \dots, n\}.\$ Then $d_i^0(P_n, v_1) = d_i^2(P_{n-1}, u_1), \ d_i^1(P_n, v_1) = d_{i-1}^0(P_{n-1}, u_1) + d_{i-1}^1(P_{n-1}, u_1) + d_{i-2}^2(P_{n-1}, u_1) \$ and $d_i^2(P_n, v_1) = d_{i-2}^0(P_{n-2}, u_1) + d_{i-2}^1(P_{n-2}, u_1) + d_{i-2}^2(P_{n-2}, u_1) + d_{i-2}^1(P_{n-1}, u_1) \$ as desired. \Box

Note that Lemma 1 expresses a recursive relation to obtain the values $d_i^0(P_n, v_1)$, $d_i^1(P_n, v_1)$ and $d_i^2(P_n, v_1)$. In a recursive relationship, it is essential to know the initial conditions as well as the end condition. By Proposition 2 we obtain the following.

Proposition 3. If P_n is a path graph with n vertices then

1)
$$d_{2n-2}^{0}(P_n, v_1) = 1$$
, $d_m^{0}(P_n, v_1) = 0$ for $m > 2n - 2$ or $m < \lceil \frac{2n}{3} \rceil$.
2) $d_{2n-1}^{1}(P_n, v_1) = 1$, $d_m^{1}(P_n, v_1) = 0$ for $m > 2n - 1$ or $m < \lceil \frac{2n}{3} \rceil$.
3) $d_{2n}^{2}(P_n, v_1) = 1$, $d_m^{2}(P_n, v_1) = 0$ for $m > 2n$ or $m < \lceil \frac{2n}{3} \rceil$.

Theorem 3. For $n \ge 4$, let $G = P_n$ with $V(G) = \{v_1, v_2, \dots, v_n\}$ and $E(G) = \{v_1v_2, v_2v_3, \dots, v_{n-1}v_n\}$. Then,

$$RD(P_n, x) = RD(P_1, x)RD(P_{n-1}, x) + x^2RD(P_{n-2}, x) + xRD(P_1, x)RD(P_{n-3}, x),$$

with the initial values $RD(P_1, x) = x + x^2$, $RD(P_2, x) = 3x^2 + 2x^3 + x^4$, $RD(P_3, x) = x^2 + 5x^3 + 6x^4 + 3x^5 + x^6$.

Proof. It is evident that

$$RD(P_n, x) = \sum_{i=\gamma_R(P_n)}^{2n} (d_i^0(P_n, v_1) + d_i^1(P_n, v_1) + d_i^2(P_n, v_1))x^i$$
$$= \sum_{i=\lceil \frac{2n}{3} \rceil}^{2n} (d_i^0(P_n, v_1) + d_i^1(P_n, v_1) + d_i^2(P_n, v_1))x^i.$$

Using Lemma 1, it can be written:

$$\begin{split} RD(P_n,x) &= \sum_{i=[(2n)/3]}^{2n} (d_i^2(P_{n-1},v_1) + d_{i-1}^0(P_{n-1},v_1) + d_{i-1}^1(P_{n-1},v_1) + d_{i-2}^2(P_{n-1},v_1) \\ &+ d_{i-2}^0(P_{n-2},v_1) + d_{i-2}^1(P_{n-2},v_1) + d_{i-2}^2(P_{n-2},v_1) + d_{i-2}^1(P_{n-1},v_1) \\ &+ d_{i-2}^2(P_{n-1},v_1))x^i \\ &= \sum_{i=[(2n)/3]}^{2n} (d_{i-1}^0(P_{n-1},v_1) + d_{i-1}^1(P_{n-1},v_1) + d_{i-2}^2(P_{n-2},v_1))x^i \\ &+ \sum_{i=[(2n)/3]}^{2n} (d_{i-2}^0(P_{n-2},v_1) + d_{i-2}^1(P_{n-1},v_1) + d_{i-2}^2(P_{n-2},v_1))x^i \\ &+ \sum_{i=[(2n)/3]}^{2n} (d_{i-2}^0(P_{n-2},v_1) + d_{i-2}^1(P_{n-1},v_1) + d_{i-2}^2(P_{n-2},v_1))x^i \\ &= xRD(P_{n-1},x) + x^2RD(P_{n-2},x) + \sum_{i=[(2n)/3]}^{2n} (d_{i}^2(P_{n-1},v_1) + d_{i-2}^1(P_{n-1},v_1) \\ &+ d_{i-2}^2(P_{n-1},v_1))x^i \\ &= xRD(P_{n-1},x) + x^2RD(P_{n-2},x) + \sum_{i=[(2n)/3]}^{2n} (d_{i}^2(P_{n-1},v_1) + d_{i-2}^1(P_{n-1},v_1) \\ &+ d_{i-2}^2(P_{n-1},v_1))x^i \\ &= xRD(P_{n-1},x) + x^2RD(P_{n-2},x) + x^2RD(P_{n-1},x))x^i \\ &= xRD(P_{n-1},x) + x^2RD(P_{n-2},x) + x^2RD(P_{n-1},x) + \sum_{i=[(2n)/3]}^{2n} (d_{i}^2(P_{n-1},v_1) \\ &- d_{i-2}^0(P_{n-1},v_1))x^i \\ &= (x + x^2)RD(P_{n-1},x) + x^2RD(P_{n-2},x) + \sum_{i=[(2n)/3]}^{2n} (d_{i-2}^2(P_{n-3},v_1) \\ &+ d_{i-2}^2(P_{n-2},v_1))x^i \\ &= RD(P_{1},x)RD(P_{n-1},x) + x^2RD(P_{n-2},x) + \sum_{i=[(2n)/3]}^{2n} (d_{i-2}^2(P_{n-3},v_1) \\ &+ d_{i-2}^2(P_{n-2},v_1))x^i \\ &= RD(P_{1},x)RD(P_{n-1},x) + x^2RD(P_{n-2},x) + x^2RD(P_{n-2},v_1) + d_{i-2}^2(P_{n-2},v_1) \\ &+ \sum_{i=[(2n)/3]}^{2n} (d_{i-2}^2(P_{n-3},v_1) + d_{i-2}^2(P_{n-3},v_1) + d_{i-2}^2(P_{n-2},v_1))x^i \\ &= RD(P_{1},x)RD(P_{n-1},x) + x^2RD(P_{n-2},x) + x^2RD(P_{n-3},x) \\ &+ \sum_{i=[(2n)/3]}^{2n} (d_{i-3}^0(P_{n-3},v_1) + d_{i-3}^2(P_{n-3},v_1) + d_{i-2}^2(P_{n-3},v_1))x^i \\ &= RD(P_{1},x)RD(P_{n-1},x) + x^2RD(P_{n-2},x) + x^2RD(P_{n-3},x) \\ &+ \sum_{i=[(2n)/3]}^{2n} (d_{i-3}^2(P_{n-3},v_1) + d_{i-3}^2(P_{n-3},v_1) + d_{i-2}^2(P_{n-3},v_1))x^i \\ &= RD(P_{1},x)RD(P_{n-1},x) + x^2RD(P_{n-2},x) + (x^2 + x^3)RD(P_{n-3},x) \\ &= RD(P_{1},x)RD(P_{n-1},x) + x^2RD(P_{n-2},x) + (x^2 + x^3)RD(P_{n-3},x) \\ &= RD(P_{1},x)RD(P_{n-1},x) + x^2RD(P_{n-2},x) +$$

as desired.

4. A bound for the total number of Roman domination polynomial

In this section, we prove an upper bound as well as a lower bound for the number of all RDFs of a graph and characterize graphs achieving equality for the lower bound.

Theorem 4. Let G be an arbitrary graph with n vertices. Then

$$2^{n} \le d_{R}(G) \le 3^{n} - \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \binom{2n-2k-1}{n}.$$

Equality for the lower bound holds if and only if $G = \overline{K_n}$.

Proof. Any function that assigns the values 1 or 2 to the vertices of a graph is an RDF, and so the number of such functions is equal to 2^n . So $2^n \leq d_R(G)$. On the other hand, the total number of functions such as $f: V(G) \to \{0, 1, 2\}$ is equal to 3^n , as a result $d_R(G) \leq 3^n - |A|$, where $A = \{f: V(G) \to \{0, 1, 2\} | f \text{ is not an } RDF\}$. It is enough to calculate the value of |A|. For every function $f: V(G) \to \{0, 1, 2\}$, let $x_1 = f(v_1), x_2 = f(v_2), \ldots, x_n = f(v_n)$. Then, |A| is at least equal to the number of non-negative integer solutions of the inequality

$$x_1 + x_2 + \dots + x_n \le n - 1,$$

where $0 \le x_i \le 1, 0 \le i \le n$. The number of solutions of $x_1 + x_2 + \cdots + x_n \le n - 1$, $0 \le x_i \le 1, 0 \le i \le n$ is

$$\binom{2n-1}{n} + \sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{2n-2k-1}{n} = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2n-2k-1}{n}.$$

Thus $\sum_{k=0}^{n} (-1)^k {n \choose k} {2n-2k-1 \choose n} \le |A|.$

We next prove the equality part. Let $G = \bar{K_n}$ and f be an arbitrary RDF on G. Then f(v) = 1 or f(v) = 2 for each vertex v. The number of these functions is equal to 2^n . Conversely, suppose that G is an arbitrary graph with $d_R(G) = 2^n$. If $G \neq \bar{K_n}$, then G has at least one edge $v_t v_s$. Set $A = \{f : V(G) \rightarrow \{0, 1, 2\} \mid f(v_i) \ge 1, 1 \le i \le n\} \cup \{g : V(G) \rightarrow \{0, 1, 2\} \mid f(v_t) = 0, f(v_s) = 2, f(v_i) = 1, 1 \le i \le n, i \ne t, i \ne s\}$. Clearly, every member of A is an RDF for G and $|A| = 2^n + 1$. This contradicts the assumption $d_R(G) = 2^n$. This completes the proof.

Note that the upper bound of Theorem 4 is sharp, as can be seen in the graph K_3 .

Acknowledgements: We would like to thank the referees for their very careful evaluation and very useful comments.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] S. Alikhani, The domination polynomial of a graph at -1, Graphs Comb. 29 (2013), no. 5, 1175–1181. https://doi.org/10.1007/s00373-012-1211-x.
- [2] S. Alikhani and N. Jafari, Some new results on the total domination polynomial of a graph, Ars Combin. 149 (2020), 185–197.
- S. Alikhani and Y.H. Peng, Dominating sets and domination polynomials of paths, Int. J. Math. Math. Sci. 2009 (2009), Article ID: 542040. https://doi.org/10.1155/2009/542040.
- [4] _____, Introduction to domination polynomial of a graph, Ars Combin. 114 (2014), 257–266.
- [5] R.A. Brualdi, Introductory Combinatorics, Pearson India, 2019.
- [6] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, p. 365–409.
- [7] _____, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020), no. 3, 966–984.
 - https://doi.org/10.1016/j.akcej.2019.12.001.
- [8] _____, Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, p. 273–307.
- [9] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22. https://doi.org/10.1016/j.disc.2003.06.004.
- [10] G. Deepak, A. Alwardi, and M.H. Indiramma, Roman domination polynomial of cycles, Int. J. Math. Combin. 3 (2021), 86–97.
- [11] _____, Roman domination polynomial of paths, Palestine J. Math. 11 (2022), no. 2, 439–448.
- [12] D. Gangabylaiah, M.H. Indiramma, N.D. Soner, and A. Alwardi, On the Roman domination polynomial of graphs, Bull. Int. Math. Virtual Inst. 11 (2021), no. 2, 355–365.
- [13] T.W. Haynes, S.T. Hedetniemi, and P.J. Salter, Fundamentals of Domination in

Graphs, Marcel Dekker, New York, 1998.

- [14] D.A. Mojdeh and A.S. Emadi, Connected domination polynomial of graphs, Fasc. Math, 60 (2018), no. 1, 103–121. https://doi.org/10.1515/fascmath-2018-0007.
- [15] _____, Hop domination polynomial of graphs, J. Discrete Math. Sci. Crypt. 23 (2020), no. 4, 825–840. https://doi.org/10.1080/09720529.2019.1621493.