Research Article

On γ -free, γ -totally-free and γ -fixed sets in graphs

N. Gowri¹, David A. Kalarkop², S. Arumugam^{3,*}

¹Department of Mathematics, S. D. College, Alappuzha-690 104, India gowrifourthestate120gmail.com

²Department of Studies in Mathematics, University of Mysore, Manasagangothri, Mysuru-570 006,

India

david.ak123@gmail.com

³Adjunct Professor, Department of Computer Science and Engineering, Ramco Institute of Technology, Rajapalayam-626 117, Tamil Nadu, India *s.arumugam@ritrjpm.ac.in

> Received: 3 April 2023; Accepted: 3 June 2023 Published Online: 10 June 2023

Abstract: Let G = (V, E) be a connected graph. A subset S of V is called a γ -free set if there exists a γ -set D of G such that $S \cap D = \emptyset$. If further the induced subgraph H = G[V - S] is connected, then S is called a cc- γ -free set of G. We use this concept to identify connected induced subgraphs H of a given graph G such that $\gamma(H) \leq \gamma(G)$. We also introduce the concept of γ -totally-free and γ -fixed sets and present several basic results on the corresponding parameters.

Keywords: Domination, domination number, $\gamma\text{-set},$ $\gamma\text{-free set},$ $\gamma\text{-totally-free set},$ $\gamma\text{-fixed set}$

AMS Subject classification: 05C69

1. Introduction

By a graph G = (V, E), we mean a finite, undirected and connected graph with neither loops nor multiple edges. For graph theoretic terminologies we refer to [1]. For domination related concepts we refer to [2].

A subset S of V is called a dominating set of G if every vertex in V - S is adjacent to a vertex in S. The domination number γ of G is the minimum cardinality of a dominating set of G. A dominating set S of G with $|S| = \gamma$ is called a γ -set of G. A

^{*} Corresponding Author

^{© 2023} Azarbaijan Shahid Madani University

dominating set S is called a connected dominating set if the induced subgraph G[S] is connected. The connected domination number γ_c of G is the minimum cardinality of a connected dominating set of G. A vertex v of G is called a support vertex if v is adjacent to a pendent vertex. If the number of pendent vertices adjacent to v is at least two, then v is a strong support vertex. The corona of two graphs G and H, denoted by $G \circ H$, is the graph obtained from one copy of G and |V(G)| copies of H and i^{th} vertex of G is joined to every vertex in the i^{th} copy of H.

Let G be a connected graph and let H be a connected induced subgraph of G. Then $\gamma(H)$ may be equal to or less than or greater than $\gamma(G)$.

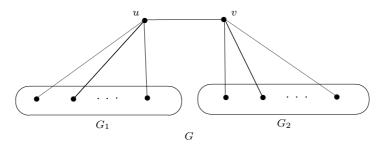


Figure 1. A graph G with all three types of induced subgraphs

Example 1. Consider the graph G given in Figure 1, where G_1 is any graph with $\gamma(G_1) \geq 3$. Clearly $\gamma(G) = 2$. Let $H_1 = G_1$, $H_2 = G_1 + u$, $H_3 = (v_1, u, v, w_1)$, where $v_1 \in V(G_1)$ and $w_1 \in V(G_2)$. Clearly H_1, H_2, H_3 are connected induced subgraphs of G. Also $\gamma(H_1) > \gamma(G)$, $\gamma(H_2) < \gamma(G)$ and $\gamma(H_3) = \gamma(G)$. Thus G contains all three types of induced subgraphs.

The following is a fundamental problem in domination:

Problem 1. Let *H* be a connected induced subgraph of a connected graph *G*. Under what conditions $\gamma(H) \leq \gamma(G)$?

In this paper we introduce the concepts of γ -free set, γ -totally-free set, γ -fixed set and cc- γ -free set in graphs. We use the concept of cc- γ -free set to identify connected induced subgraphs H of a given connected graph G such that $\gamma(H) \leq \gamma(G)$. The significance and use of this concept is given in the concluding section of the paper.

2. γ -free sets

Sampathkumar and Neeralagi introduced the concept of γ -free vertex, γ -totally free vertex and γ -fixed vertex in [5]. We extend this notion to subsets of V and define new parameters based on these concepts.

Definition 1. Let G = (V, E) be a connected graph. A subset S of V is called a γ -free set if there exists a γ -set D of G such that $D \cap S = \emptyset$.

A subset of a γ -free set is γ -free and hence γ -freeness is a hereditary property. A γ -free set S is a maximal γ -free set if and only if $S \cup \{v\}$ is not a γ -free set for all $v \in V - S$.

Definition 2. The minimum cardinality of a maximal γ -free set of G is called the γ -free number of G and is denoted by $\gamma_{fr}(G)$.

Lemma 1. Let G be any connected graph of order n. Then $\gamma_{fr}(G) = n - \gamma(G)$.

Proof. Let D be a γ -set of G and let S = V - D. Since $D \cap S = \emptyset$, S is a γ -free set of G. Also for any $v \in D$, $S_1 = S \cup \{v\}$ is not a γ -free set of G since $|V - S_1| = |D - \{v\}| = \gamma(G) - 1$. Thus S is a maximal γ -free set and $|S| = n - \gamma(G)$. Hence $\gamma_{fr}(G) \leq n - \gamma(G)$. Now, let X be any maximal γ -free set of G. Let D be a γ -set of G such that $D \cap X = \emptyset$. Hence $D \subseteq V - X$. If there exists a vertex $v \in (V - X) - D$, then $X \cup \{v\}$ is a γ -free set which is a contradiction. Thus $\gamma_{fr}(G) \geq n - \gamma(G)$ and hence $\gamma_{fr}(G) = n - \gamma(G)$.

Definition 3. A γ -free set S of G is called a $cc-\gamma$ -free set if the induced subgraph H = G[V - S] is connected.

Lemma 2. Every connected graph G admits a $cc-\gamma$ -free set.

Proof. Let D be a γ -set of G. It follows from Lemma 1 that S = V - D is a maximal γ -free set of G. Let $\mathcal{F} = \{H : H \text{ is a connected induced subgraph of } G$ and $D \subseteq V(H)\}$. Since $G \in \mathcal{F}, \ \mathcal{F} \neq \emptyset$. Choose $H \in \mathcal{F}$, such that |V(H)| is minimum. Since $D \subseteq V(H)$, we have $S_1 = V(G) - V(H) \subseteq S$. Since S is γ -free, S_1 is γ -free and $H = G[V - S_1]$ is connected. Hence S_1 is a $cc-\gamma$ -free set of G.

Definition 4. Let G be a connected graph. Then $\max\{|S|: S \text{ is a } cc-\gamma\text{-free set of } G\}$ is called the $cc-\gamma\text{-free number of } G$ and is denoted by $cc\gamma_{fr}(G)$.

Example 2. For the path $P_6 = (v_1, v_2, v_3, v_4, v_5, v_6)$, $D = \{v_2, v_5\}$ is the unique γ -set and hence any γ -free set is a subset of $V - D = \{v_1, v_3, v_4, v_6\}$. Clearly $S_1 = \{v_1, v_6\}$ is a γ -free set of P_6 and $H = P_6[V - S_1] = P_4$. Thus $cc\gamma_{fr}(P_6) = 2$ and $\gamma_{fr}(P_6) = 4$.

Theorem 1. Let G be a connected graph. Then $cc\gamma_{fr}(G) \leq \gamma_{fr}(G)$ and equality holds if and only if $\gamma(G) = \gamma_c(G)$, where $\gamma_c(G)$ is the connected domination number of G.

Proof. Let S be a cc- γ -free set of G. Since S is a γ -free set, there exists a γ -set D of G such that $D \cap S = \emptyset$. Hence $cc\gamma_{fr}(G) = |S| \leq |V - D| = n - \gamma(G) = \gamma_{fr}(G)$. Thus $cc\gamma_{fr}(G) \leq \gamma_{fr}(G)$. Now, suppose $cc\gamma_{fr}(G) = \gamma_{fr}(G) = n - \gamma(G)$. Let S be a cc- γ -free set of G. Since $|S| = n - \gamma(G)$, it follows that S = V - D, where D is a γ -set of G. Also G[V - S] = G[D] is connected and hence D is a connected dominating set of G. Hence $\gamma(G) = \gamma_c(G) = |D|$. The converse is obvious.

Example 3. Let G be a connected graph of order n with $V(G) = \{v_1, v_2, \ldots, v_n\}$. Let H_i be any graph of order $k_i, 1 \le i \le n$. Then the graph G^* obtained from G by joining v_i to all the vertices of H_i is called a generalized corona of G and is denoted by $G \circ (H_1, H_2, \ldots, H_n)$. Clearly $\gamma(G^*) = \gamma_c(G^*) = |V(G)| = n$. Hence $cc\gamma_{fr}(G^*) = \gamma_{fr}(G^*)$.

Also for the path P_n with $n \leq 4$, the cycle C_n with $n \leq 4$, the complete graph K_n and the complete k-partite graph $K_{n_1,n_2,...,n_k}$ with $n_i \geq 2$ for all i, we have $\gamma = \gamma_c$. Hence for all these graphs, $cc\gamma_{fr}(G) = \gamma_{fr}(G) = n - \gamma(G)$. We now proceed to determine $cc\gamma_{fr}(G)$ for graphs with $\gamma \neq \gamma_c$.

Theorem 2. Let T be any tree of order n. Then $cc\gamma_{fr}(T) = k$, where k is the number of pendant vertices of T.

Proof. Let L and A denote respectively the set of all pendant vertices and the set of all support vertices of T. Clearly L is cc- γ -free set of T. Now let $v \in A$ and let $u \in L$ be the leaf adjacent to v. Since any γ -set D of T contains one of the vertices u, v, it follows that $L \cup \{v\}$ is not a γ -free set. Also if $w \in V - (L \cup A)$, then $T[V - (L \cup \{w\})]$ is not connected and hence $L \cup \{w\}$ is not a cc- γ -free set of T. Thus L is a maximal cc- γ -free set of T and hence $cc\gamma_{fr}(T) \geq |L| = k$. Now, let S be any maximal cc- γ -free set of T. If $u \in L$, $v \in A$ and $uv \in E(T)$, then S contains exactly one of the vertices u and v. Hence we may assume without loss of generality that $L \subseteq S$ and $S \cap A = \emptyset$. Since S is a cc- γ -free set; it follows that S = L. Hence $cc\gamma_{fr}(T) = k$.

Corollary 1. Let T be a tree of order n. Then $2 \leq cc\gamma_{fr}(T) \leq n-1$. Also $cc\gamma_{fr}(T) = 2$ if and only if T is the path P_n and $cc\gamma_{fr}(T) = n-1$ if and only if T is the star $K_{1,n-1}$.

It follows from Theorem 1 that $cc\gamma_{fr}(K_n) = n - 1$. Thus $K_{1,n-1}$ and K_n are two graphs of order n with $cc\gamma_{fr}(G) = n - 1$. The following result gives a characterization of all graphs of order n with $cc\gamma_{fr}(G) = n - 1$.

Theorem 3. Let G be a connected graph of order n. Then $cc\gamma_{fr}(G) = n - 1$ if and only if $\gamma(G) = 1$.

Proof. Suppose $cc\gamma_{fr}(G) = n - 1$. Let S be a cc- γ -free set of G with |S| = n - 1and $V - S = \{v\}$. Since S is a γ -free set of G, it follows that $\{v\}$ is a dominating set of G and hence $\gamma(G) = 1$. Conversely suppose $\gamma(G) = 1$ and let $\{v\}$ be a dominating set of G. Then $V - \{v\}$ is a maximal $cc - \gamma$ -free set of G. Hence $cc\gamma_{fr}(G) = n - 1$. \Box

3. On γ -totally-free sets

Definition 5. A subset S of V is called a γ -totally-free set if $D \cap S = \emptyset$ for all γ -sets D of G. The maximum cardinality of a γ -totally-free set of G is called as the γ -totally-free number of G and is denoted by $\gamma_{tf}(G)$.

Observation 4.

- (i) Let A denote the union of all γ -sets of a graph G. Then G admits a γ -totally-free set if and only if $A \neq V$. In this case V A is a totally γ -free set and $\gamma_{tf}(G) = |V A|$.
- (ii) Since a γ -totally free set is a γ -free set, it follows that $\gamma_{tf}(G) \leq \gamma_{fr}(G) = n \gamma(G)$. Furthermore, $\gamma_{tf}(G) = \gamma_{fr}(G)$ if and only if G has a unique γ -set.
- (iii) If G is a vertex transitive graph, then every vertex of G lies in a γ -set of G and hence G does not admit a γ -totally free set. In particular the complete graph K_m and the cycle C_n do not admit a γ -totally-free set. Also $K_{r,s}$ where $r, s \geq 2$ does not admit a γ -totally-free set.

Theorem 5. A path $P_n = (v_1, v_2, \dots, v_n)$ admits a γ -totally-free set if and only if $n \neq 1 \pmod{3}$. Also

$$\gamma_{tf}(P_n) = \begin{cases} \frac{2n}{3} & \text{if } n \equiv 0 \pmod{3};\\ \lfloor \frac{n}{3} \rfloor & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

Proof. We consider the following cases.

Case 1. $n \equiv 1 \pmod{3}$.

Let n = 3k+1. Then the γ -sets of P_n are given by, $D_1 = \{v_i : i \equiv 2 \pmod{3}\} \cup \{v_n\}, D_2 = \{v_i : i \equiv 1 \pmod{3}\} \cup \{v_{n-2}\}, D_3 = \{v_i : i \equiv \pmod{3}\} \cup \{v_1\} \text{ and } D_4 = \{v_i : i \equiv 1 \pmod{3}\} \cup \{v_3\}.$ Clearly $\cup_{i=1}^4 D_i = V$ and hence P_n does not admit γ -totally-free set.

Case 2. $n \equiv 0 \pmod{3}$.

In this case $D = \{v_i : i \equiv 2 \pmod{3}\}$ is the unique γ -set of P_n and $|D| = \frac{n}{3}$. Hence $\gamma_{tf}(P_n) = n - \frac{n}{3} = \frac{2n}{3}$.

Case 3. $n \equiv 2 \pmod{3}$.

Let n = 3k + 2. Any γ -set containing v_n is of the form $\{v_n\} \cup D$, where D is a γ -set of $P_{n-2} = \{v_1, v_2, \ldots, v_{3k}\}$. This path has unique γ -set $\{v_i : i \equiv 2 \pmod{3}\}$. Hence only γ -set containing v_n is $D_1 = \{v_n\} \cup \{v_i : i \equiv 2 \pmod{3}\}$.

Similarly only γ -set containing v_1 is of the form $D_2 = \{v_1\} \cup \{v_i : i \equiv 1 \pmod{3}\}$. Any γ -set containing v_{n-1} is of the form $\{v_{n-1}\} \cup D$, where D is a γ -set of $P_n - \{v_{3k}, v_{3k+1}, v_{3k+2}\}$ or $P_n - \{v_{3k+1}, v_{3k+2}\}$. The only γ -sets containing v_{n-1} are given by, $D_3 = \{v_{n-1}\} \cup \{v_i : i \equiv 1 \pmod{3}\}$ and $D_4 = \{v_{n-1}\} \cup \{v_i : i \equiv 2 \pmod{3}\}$. Similarly the only γ -sets containing v_2 are given by, $D_5 = \{v_2\} \cup \{v_i : i \equiv 1 \pmod{3}\}$ and $D_6 = \{v_2\} \cup \{v_i : i \equiv 2 \pmod{3}\}$. Hence $\bigcup_{i=1}^6 D_i = \{v_i : i \not\equiv 0 \pmod{3}\}$. Therefore $\{v_i : i \equiv 0 \pmod{3}\}$ is a γ -totally-free set of P_n of maximum cardinality. Hence $\gamma_{tf}(P_n) = \lfloor \frac{n}{3} \rfloor$.

Definition 6. A γ -totally-free set S of G is called a cc- γ -totally-free set if G[V - S] is connected.

Example 4. Let *H* be any connected graph with $\gamma(H) \geq 2$ and let $G = H + K_k$, $k \geq 2$. Then V(H) is a *cc*- γ -totally-free set of *G* and $\gamma(H) > \gamma(G)$.

4. On γ -fixed sets

Definition 7. Let G = (V, E) be a connected graph. A subset S of V is called a γ -fixed set if $D \cap S \neq \emptyset$ for all γ -sets D in G.

A superset of a γ -fixed set is γ -fixed and hence γ -fixedness is a super-hereditary property. A γ -fixed set S is a minimal γ -fixed set if and only if $S - \{v\}$ is not a γ -fixed set for all $v \in S$.

Definition 8. The minimum cardinality of a minimal γ -fixed set of G is called the γ -fixed number of G and is denoted by $\gamma_{fi}(G)$. The maximum cardinality of a minimal γ -fixed set of G is called the Γ -fixed number of G and is denoted by $\Gamma_{fi}(G)$.

Theorem 6. A γ -fixed set S of G is a minimal γ -fixed set if and only if for every $v \in S$, there exists a γ -set D such that $D \cap S = \{v\}$.

Proof. Suppose S is a minimal γ -fixed set of G. Hence for all $v \in S$, $S - \{v\}$ is not a γ -fixed set. Therefore there exists a γ -set D of G such that $D \cap (S - \{v\}) = \emptyset$. Hence $D \cap S = \{v\}$. The Converse is obvious.

Example 5. If G is a graph with $\gamma(G) = 1$, then $S = \{v : deg(v) = n - 1\}$ is the only minimal γ -fixed set in G. Hence $\gamma_{fi}(G) = \Gamma_{fi}(G) = |S|$. In particular $\gamma_{fi}(K_n) = \Gamma_{fi}(K_n) = n$.

Example 6. Let $G = K_{r,s}$ be a complete bipartite graph with $r \leq s$. Let V_1 and V_2 be the partite sets of G with $|V_1| = r$ and $|V_2| = s$. Then V_1 and V_2 are minimal γ -fixed sets in G. Hence $\gamma_{fi}(G) = r$ and $\Gamma_{fi}(G) = s$.

Observation 7. If G has a unique γ -set D, then $S = \{v\}$ is a minimal γ -fixed set for any $v \in D$. Hence $\gamma_{fi}(G) = \Gamma_{fi}(G) = 1$.

Lemma 3. Let G be a graph of order $n \ge 3$ with $\delta = 1$. Then

 $\gamma_{fi}(G) = \begin{cases} 1 & \text{if } G \text{ has a strong support vertex;} \\ 2 & \text{otherwise.} \end{cases}$

Proof. If G has a strong vertex v, let $S = \{v\}$. Otherwise let $S = \{v, u\}$, where v is a support vertex and u is the pendent neighbor of v. Clearly S is a minimal γ -fixed set of G and hence the result follows.

Corollary 2. $\gamma_{fi}(P_n) = \begin{cases} 1 & \text{if } n \leq 3; \\ 2 & \text{otherwise.} \end{cases}$

Corollary 3. Let G be a graph of order $n \ge 2$. Then $\gamma_{fi}(G \circ K_1) = 2$.

Theorem 8. For any graph G, $\gamma_{fi}(G) \leq \delta + 1$. Equality holds if and only if N[v] is a minimal γ -fixed set of G for every vertex v with $deg(v) = \delta$.

Proof. Let $deg(v) = \delta$. Then $D \cap N[v] \neq \emptyset$ for all γ -sets D of G. Hence N[v] is a γ -fixed set. Let $S \subseteq V$ be a minimal γ -fixed set of G. Then $\gamma_{fi}(G) \leq |S| \leq \delta + 1$ and equality holds if and only if N[v] is a minimal γ -fixed set of G.

Definition 9. A subset S of V is said to be a cc- γ -fixed set of G if S is γ -fixed and G[V-S] is connected.

Question 1. Which graphs admit cc- γ -fixed set?

5. Conclusion and scope

Let G be a connected graph and let S be a cc- γ -free set of G. Then the induced subgraph H = G[V - S] is connected and there exists a γ -set D of G such that $D \subseteq V(H)$. Hence it follows that $\gamma(H) \leq \gamma(G)$. Thus cc- γ -free set serves as an useful tool in identifying connected induced subgraphs H of G with $\gamma(H) \leq \gamma(G)$. The queens graph Q_n has vertex set V of order $n^2(\text{in } 1 - 1 \text{ correspondence with the } n^2$ cells of an $n \times n$ chessboard) where two vertices u and v are adjacent if and only if a queen at u can reach v in a single move. Hence $\gamma(Q_n)$ is the minimum number of queens to be placed on an $n \times n$ chessboard such that every cell is either occupied by a queen or attached by a queen. One of the most interesting open problems on $\gamma(Q_n)$ is the following:

Problem 2. Is $\gamma(Q_n) \leq \gamma(Q_{n+1})$?

Though the problem appears to be obviously true, no proof has yet been formed and for a solution to this problem a \$ 100 price is offered by S.T. Hedetniemi ([3], pp 157). This problem is a special case of Problem 1.2. We observe that if it can be proved that $V(Q_{n+1}) - V(Q_n)$ is a cc- γ -free set of Q_{n+1} , then we get an affirmative answer to the above problem. Also similar problems for other domination related parameters such as connected domination number, total domination number [4], independent domination number, super domination number and 2-domination number can be investigated.

References

- G. Chartrand, L. Lesniak, and P. Zhang, *Graphs & digraphs*, CRC, Boca Raton, 2016.
- [2] T.W. Haynes, S.T. Hedetniemi, and P.J. Salter, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [3] S.M. Hedetniemi, S.T. Hedetniemi, and R. Reynolds, *Combinatorial problems on chessboards: II*, Domination in Graphs, Advanced Topics (T.W. Haynes, S.T. Hedetniemi, and P.J. Salter, eds.), Marcel Dekker, Inc., New York, 1998, pp. 133–192.
- [4] N. Jafari Rad, D.A. Mojdeh, R. Musawi, and E. Nazari, *Total domination in cubic kn odel graphs*, Commun. Comb. Optim. 6 (2021), no. 2, 221–230.
- [5] E. Sampathkumar and P.S. Neeralagi, Domination and neighbourhood critical, fixed, free and totally free points, Indian J. Statistics (1992), 403–407.