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Abstract: The complement of the intersection graph of subgroups of a group G,

denoted by I c(G), is the graph whose vertex set is the set of all nontrivial proper

subgroups of G and its two distinct vertices H and K are adjacent if and only if
H ∩ K = 1, where 1 denotes the trivial subgroup of G. In this paper, we classify

all finite groups whose complement of the intersection graph of subgroups is one of

totally disconnected, bipartite, complete bipartite, tree, star graph or C3-free. Also
we characterize all the finite groups whose complement of the intersection graph of

subgroups is planar.
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graph.
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1. Introduction

Bosak [3] initiated the study of the intersection graph of subsemigroups of a semigroup.

Subsequently, Csákány and Pollák [5] defined the intersection graph of subgroups of a

group. Over the past several years, many significant results on this graph have been

established by several researchers; see, for instance [1, 2, 7, 9, 10, 12–17, 19]. Let G

be a group. The intersection graph of subgroups of a group G, denoted by I (G), is

∗ Corresponding Author



58 Complement of intersection graph of a group

the graph whose vertex set is the set of all nontrivial proper subgroups of G and its

distinct vertices H and K are adjacent if and only if H ∩K 6= 1, where 1 denotes the

trivial subgroup of G.

The complement of the intersection graph of subgroups of a group G, denoted by

I c(G), is the graph whose vertex set is the set of all nontrivial proper subgroups of

G and its distinct vertices H and K are adjacent if and only if H ∩ K = 1. This

graph was considered firstly by Visveswaran and Vadhel in [18]. Therein, they have

studied the connectedness, diameter, girth, clique number, chromatic number and

completeness of this graph.

We use the standard terminology of graphs following [8]. Let G be a simple graph

with vertex set V (G) and edge set E(G). G is said to be bipartite if V (G) can be

partition into two subsets V1 and V2 such that every edge join a vertex of V1 to a

vertex of V2. A complete bipartite graph is a bipartite graph in which every vertex

in one partition is adjacent with all the vertices in the other partition and is denoted

by Km1,m2
, where mi = |Vi|, i = 1, 2. In particular, K1,m is a star. The complete

graph and the cycle graph on n vertices are denoted by Kn and Cn, respectively.

A graph whose edge set is empty is called totally disconnected. A connected graph

with out a cycle is called a tree. A graph is said to be planar if there is a plane

embedding of this graph. The complement of a graph G is denoted by G. For

given two graphs G1 and G2, their join and union are denoted by G1 + G2 and

G1 ∪ G2 respectively. The generalized quaternion group of order 2α(α ≥ 3) is given

by Q2α = 〈a, b | a2α−2

= b4 = e, a2
α−3

= b2, bab−1 = a−1〉. The multiplicative order

of a nonzero element x ∈ Zn is denoted by ordn(x).

This paper is organized as follows. In Section 2, we classify all finite groups whose

complement of the intersection graph of subgroups is one of bipartite, complete bipar-

tite, tree, star graph, totally disconnected and C3-free. In Section 3, we characterize

all finite groups whose complement of intersection graph of subgroups is planar.

2. Groups with specified complement of intersection graph of
subgroups

Theorem 1. Let G be a finite group. Then I c(G) is totally disconnected if and only if
G is isomorphic to either Zpα(α ≥ 1) or Q2α(α ≥ 3), where p is a prime number.

Proof. Suppose |G| = pα1
1 pα2

2 . . . pαkk , where pis are distinct primes and αi ≥ 1 for all

i. If k ≥ 2, then G has at least two subgroups of prime order and so they are adjacent

in I c(G). Now we assume that k = 1. Suppose G has at least two subgroups of

prime order, then they are adjacent in I c(G) and so G must be isomorphic to either

Zpα(α ≥ 1) or Q2α(α ≥ 3). In either case, G has a unique subgroup of prime order

and so all their subgroups intersect non-trivially. It follows that I c(G) is totally

disconnected.
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Theorem 2. Let G be a finite group. Then the following are equivalent.

(1) G is isomorphic to one of Zpα(α ≥ 1), Q2α(α ≥ 3) or |G| = pαqβ(α, β ≥ 1) with G has
a unique subgroup of each of distinct prime orders p, q;

(2) I c(G) is bipartite;

(3) I c(G) is C3-free.

Proof. Suppose |G| = pα1
1 pα2

2 . . . pαkk , where pis are pairwise distinct primes and

αi ≥ 1. If k ≥ 3, then G has at least three subgroups of distinct prime orders and

so they form C3 as a subgraph of I c(G). Now we assume that k = 1. If G has a

unique subgroup of order p1, then G ∼= Zpα1
1

(α1 ≥ 1) or Q2α1 (α1 ≥ 3) and so by

Theorem 1, I c(G) is bipartite. Otherwise, G has three subgroups of order p1, so

they form C3 as a subgraph of I c(G). Next we assume that k = 2. Then I c(G)

is bipartite if and only if G has a unique subgroup of each of orders p1 and p2. For

otherwise, the subgroups of prime orders forms C3 as a proper subgraph of I c(G).

In this case, I c(G) is bipartite with bipartition X and Y , where X is the set of all

proper subgroups of G which contains the subgroup of order p1 and Y is the set of

all proper subgroups of G which contains the subgroup of order p2 . So the proof

follows.

Corollary 1. Let G be a finite group. Then the following are equivalent.

(1) G ∼= Zpq, where p and q are distinct prime numbers;

(2) I c(G) is a tree;

(3) I c(G) is complete bipartite;

(4) I c(G) is a star graph.

Proof. We use Theorem 2 to prove this result, since the three type of graphs men-

tioned in this result are bipartite. If G ∼= Zpα(α ≥ 1), Q2α(α ≥ 3), then by

Theorem 1, I c(G) is neither a tree nor complete bipartite. Now we assume that

|G| = pαqβ(α, β ≥ 1) with G has a unique subgroup of each of distinct prime orders

p and q. Suppose G has a subgroup of order pq, then this subgroup is an isolated

vertex in I c(G) and so I c(G) is disconnected. Consequently, I c(G) is neither a

tree nor complete bipartite. Finally, suppose G ∼= Zpq, then I c(Zpq) ∼= K2, which is

a tree and a star graph.

3. Planarity of I c(G)

In this section, we characterize all finite groups whose complement of intersection

graph of subgroups is planar. The well-known Kuratowski’s theorem [8, Theorem
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11.13] states that a graph is planar if and only if it does not contain a subdivision of

K5 or K3,3.

The main result of this section is the following.

Theorem 3. Let G be a finite group. Then I c(G) is planar if and only if G is isomorphic
to one the following groups.

(1) Zpα (α ≥ 1), Zpαqβ (α + β ≤ 5), Zpαqβrγ (α + β + γ ≤ 5), Zpqrs, Z2α × Z2(α ≥ 2),
Z2 × Z2, Z3 × Z3, Q2α(α ≥ 3), S3, Q2α × Zp(α ≥ 3), Q2α × Zp2(α ≥ 3), where p, q, r, s
are distinct primes;

(2) 〈a, b | aq = bp
2

= 1, bab−1 = ai, ordq(i) = p2〉 ∼= Zq o Zp2 , where p, q are distinct primes
with p < q and p2 | (q − 1).

(3) |G| = pαq or pαq2 (α ≥ 3) with G has a unique Sylow q-subgroup; Sylow p-subgroup is
not unique and each of them is isomorphic to Zpα or Q2α and they intersect with each
other non-trivially, where p, q are distinct primes.

To prove this main result, we start with the following.

Proposition 1. If G is a finite group whose order has at least five distinct prime factors,
then I c(G) contains K5.

Proof. By [18, Proposition 3.1], I c(G) contains Kn, n ≥ 5, so the proof follows.

Proposition 2. Let G be a group of order pα1
1 pα2

1 pα3
3 pα4

4 , where pis are pairwise distinct
prime numbers and αi ≥ 1 for i = 1, 2, 3, 4. Then I c(G) is planar if and only if G ∼=
Zp1p2p3p4 .

Proof. Suppose G is nilpotent. Then G is the direct product of Sylow pi-subgroups

for i = 1, 2, 3, 4. If αi ≥ 2 for some i; with out loss of generality, we assume that

α1 ≥ 2. Then I c(G) contains K3,3 as a subgraph with bipartition (X,Y ), where X

is a set of three subgroups of G whose orders are pα1
1 , p1, p2, respectively and Y is a

set of three subgroups of G whose orders are p3, p4, p3p4, respectively. If αi = 1 for

every i = 1, 2, 3, 4, then G ∼= Zp1p2p3p4 and so I c(G) is planar as shown in Figure 1,

where Hi, i = 1, 2, . . . , 14 are the subgroups of G of order p1, p2, p3, p4, p1p2, p1p3,

p1p4, p2p3, p2p4, p3p4, p1p2p3, p1p2p4, p1p3p4, p2p3p4 respectively.

Next, suppose G is non-nilpotent. With out loss of generality, we may assume that

Sylow p1-subgroup of G is not unique. Then G has at least three Sylow p1-subgroups.

In this case, I c(G) contains K3,3 as a subgraph with bipartition (X,Y ), where X is

a set of three Sylow p1-subgroups of G and Y is a set of three subgroups of G whose

orders are pα2
2 , pα3

3 , pα4
4 , respectively.

Proposition 3. Let G be a group of order pα1
1 pα2

2 pα3
3 , where pis are pairwise distinct

prime numbers and αi ≥ 1 for i = 1, 2, 3. Then I c(G) is planar if and only if G ∼=
Zpα1

1 p
α2
2 p

α3
3

with α1 + α2 + α3 ≤ 4.
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Figure 1. I c(Zp1p2p3p4 )

Figure 2. I c(Z
p21p2p3

)

Proof. Suppose G is nilpotent. Then G is the direct product of Sylow pi-subgroups

for i = 1, 2, 3. Then we have three cases to consider.

Case 1. If α1 + α2 + α3 ≤ 4, then G is abelian. If G is cyclic, then I c(G) is planar

as shown in Figure 2, where Hi, i = 1, 2, . . . , 10 are subgroups of G of order p1, p21,

p2, p3, p1p2, p1p3, p2p3, p21p3, p21p3, p1p2p3 respectively. If G is non-cyclic, then G has

at least five subgroups of prime orders and so they form K5 as a subgraph of I c(G).

Case 2. If α1 ≥ 3, α2 = α3 = 1, then I c(G) contains K3,3 as a proper subgraph

with bipartition (X,Y ), where X is a set of three subgroups of G whose orders are

p1, p21, p31, respectively and Y is a set of three subgroups of G whose orders are p2,

p3, p2p3, respectively.

Case 3. If α1 ≥ 2, α2 ≥ 2, α3 = 1, then G has subgroups Hi, i = 1, 2, . . . , 7 of

order p1, p21, p2, p22, p3, p2p3, p1p3, respectively. It follows that I c(G) contains a

subdivision of K5 as shown in Figure 3.

Next, suppose G is non-nilpotent. With out loss of generality, we may assume that

Sylow p1-subgroup of G is not unique. Then G has at least three Sylow p1- subgroups.

It follows that I c(G) contains K3,3 as a subgraph with bipartition (X,Y ), where X

is a set of three Sylow p1-subgroups of G and Y is a set of three subgroups of G whose

orders are p2, p3, p
i
2p
j
3, respectively.
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Figure 3. A subdivision of K5 in I c(G)

Proposition 4. Let G be an abelian group of order either pα1
1 or pα1

1 pα2
2 , where p1, p2 are

distinct prime numbers and α1, α2 ≥ 1. Then I c(G) is planar if and only if G is isomorphic
to either Zpα1

1
, Zpα1

1 p
α2
2

(α1 + α2 ≤ 5), Z2α1 × Z2, α1 ≥ 1 or Z3 × Z3.

Proof. Proof is divided in to two cases.

Case 1. Suppose G is cyclic. If |G| = pα1
1 , then by Theorem 1, I c(G) is planar. If

|G| = pα1
1 pα2

2 , then the subgroups of G are Hi, Kj , Nij , where |Hi| = pi1, |Kj | = pj2,

|Nij | = pi1p
j
2 for i = 1, 2, . . . , α1, j = 1, 2, . . . , α2. It can be seen that I c(G) ∼=

Kα1,α2 ∪Kα1α2−1. Therefore, I c(G) is planar only when α1 + α2 ≤ 5.

Case 2. Suppose G is non-cyclic.

Subcase 2a. If G ∼= Zp1 × Zp1 , then I c(G) ∼= Kp1+1 and so it is planar only when

p = 2, 3.

Subcase 2b. If G ∼= Zp21 × Zp1 , then from the subgroup lattice of G, it can be seen

that

I c(G) ∼= K1 ∪ (Kp1 +Kp1+1) (1)

and so it is planar only when p = 2.

Subcase 2c. If G ∼= Zp1p2 ×Zp1 , then G has exactly p1 + 2 subgroups of prime order

and they have trivial intersection with each other. The remaining subgroups of G

have non-trivial intersection with each other. It follows that I c(G) is planar only

when p1 = 2.

Subcase 2d. If G ∼= Zpα1
1
× Zp1 , then from the subgroup lattice of G, we have

I c(G) ∼= Kα1−2 ∪ (Kp1 +K(α1−2)p1+1) (2)

It follows that I c(G) is planar only when p = 2.

Subcase 2e. If G ∼= Zp21 × Zp21 := 〈a, b | ap21 = bp
2
1 = 1, ab = ba〉. Then K3,3 is a

subgraph of I c(G) with bipartition {〈a〉, 〈a, b2〉, 〈a2〉} and {〈a, b〉, 〈a2, b〉, 〈a3, b〉}.
Subcase 2f. If G ∼= Zp21p2×Zp1 or Zp1×Zp1×Zp1 , then G has at least five subgroups

of prime order and so I c(G) contains K5.
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Subcase 2g. If G ∼= Zpα1
1
× Zpα2

2
× · · · × Zpαkk , k ≥ 2, then G has one of Zp21 × Zp21 ,

Zp21p2 × Zp1 or Zp1 × Zp1 × Zp1 as a subgroup. Then by Subcases 2e and 2f, I c(G)

contains either K3,3 or K5.

Proposition 5. Let G be a non-abelian group of order pα, where p is a prime number
and α ≥ 3. Then I c(G) is planar if and only if G ∼= Q2α or M2α .

Proof. Suppose α = 3. Up to isomorphism, there are four groups of order p3,

including the group Q8. Except Q8, the remaining three groups have at least five

subgroups of prime order and so they form K5 as a subgraph of I c(G).

Suppose p > 2. Then G has a non-cyclic subgroup H of order pα−1. So by the above

argument and Proposition 4, I c(H) is non-planar.

Suppose p = 2 and α ≥ 4. If G � Q2α , Q2α−1 × Z2 and M2α , then either G contains

a non-cyclic subgroup, say H of order 2α−1 or it contains at least five subgroups of

order 2. So by above argument and Proposition 4, I c(H) is non-planar or I c(G)

contains K5. Next we investigate the remaining possibilities.

If G ∼= Q2α , then by Proposition 1, I c(Q2α) is planar.

If G ∼= Q2α−1 × Z2, then we split the set of all non-trivial proper subgroups of G in

to five mutually disjoint subsets: The first subset consist of subgroups 〈a2α−3

c〉 and

〈c〉, where c denotes the generator of Z2. The second subset consists of the subgroups

〈ac〉, 〈a2c〉, . . ., 〈a2α−4

c〉, 〈bc〉, 〈abc〉, 〈a2bc〉, . . ., 〈a2α−3−3c〉. The third subset consists

of the subgroup 〈a2α−3〉. The fourth subset consists of all the subgroups of Q2α−1

except {e}. The fifth subset consists of the remaining subgroups of G. It can be seen

that any two subgroups in the union of these subsets, except the first subset intersect

non-trivially. Each subgroup in the first subset intersect trivially with the subgroups

in the second, third and fourth subsets; at the same time it intersect non-trivially

with the subgroups in the fifth subset. Also the two subgroups in the first subset

intersect trivially. From the above description, it is easy to see that the structure of

I c(G) as shown in Figure 4 and so it is planar.

If G ∼= M2α then its subgroup lattice is isomorphic to the subgroup lattice of Z2α×Z2.

By Theorem 4, I c(G) is planar and

I c(M2α) ∼= Kα−2 ∪ (K2 +K2α−4). (3)

This completes the proof.

Proposition 6. Let G be the non-abelian group of order pq, where p and q are distinct
primes with p < q and p divides q − 1. Then I c(G) is planar if and only if G ∼= S3.

Proof. Since G has q + 1 subgroups of prime order and these are the only proper

subgroups of G, it follows that I c(G) ∼= Kq+1. Therefore, I c(G) is planar if and

only if q = 3.
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Figure 4. The structure of I c(Q2α−1 × Z2)

Proposition 7. Let G be a non-abelian group of order p2q, where p, q are distinct

primes. Then I c(G) is planar if and only if G ∼= 〈a, b | aq = bp
2

= 1, bab−1 = ai, ordq(i) =
p2〉 ∼= Zq o Zp2 , where p, q are distinct primes with p < q and p2 | (q − 1).

Proof. According to [4], there are eight groups of order p2q. It can be seen that all

these groups, except Zq oZp2 have at least five subgroups of prime order and so they

form K5 as a subgraph of I c(G). If G ∼= Zq o Zp2 = 〈a, b | aq = bp
2

= 1, bab−1 =

ai, ordq(i) = p2〉, where p, q are distinct primes with p < q and p2 | (q− 1). Then 〈a〉,
〈bp〉, 〈abp〉 and 〈aib〉, where i = 1, 2, . . . , q are the only nontrivial proper subgroups of

G. Here 〈bp〉 is contained in these subgroups, except 〈a〉. Also 〈a〉 is a subgroup of

〈abp〉. It follows that

I c(Zq o Zp2) ∼= K1 ∪K1,q+1. (4)

Therefore, I c(Zq o Zp2) is planar.

Proposition 8. Let G be a non-abelian group of order pαq, where p, q are distinct primes
and α ≥ 3. Then I c(G) is planar if and only if G ∼= Q2α × Zq or G has a unique Sylow
q-subgroup; Sylow p-subgroup is not unique and each of them is isomorphic to Zpα or Q2α

and they intersect with each other non-trivially.

Proof. Let P and Q be a Sylow p-subgroup and a Sylow q-subgroup of G, respec-

tively. Suppose I c(P ) is non-planar, then I c(G) is so. Therefore, it is enough to

consider the cases when I c(P ) is planar. By Propositions 4 and 5, P ∼= Zpα , Z2αoZ2,

Mpα , Q2α−1 × Z2 or Q2α .
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Figure 5. A subdivision of K5 in I c(G)

Case 1. Suppose Sylow q-subgroup of G is not unique. Then I c(G) has K3,3 as a

subgraph with bipartition (X,Y ), where X is a set of three subgroups of G whose

orders are p, p2, p3, respectively and Y is a set of three subgroups of G whose orders

are q, q, q, respectively.

Case 2. Suppose Sylow q-subgroup of G is unique.

If P ∼= Q2α−1 ×Z2, then 〈c〉, 〈ac〉, 〈a2α−3

c〉, 〈a2α−3〉 are subgroups of P as mentioned

in the proof of Proposition 5. These four subgroups together with Q, 〈c〉Q forms a

subdivision of K5 in I c(G), which is shown in Figure 5. So I c(G) is non-planar.

Next we investigate the remaining possibilities.

Subcase 2a. Suppose Sylow p-subgroup is not unique and these subgroups intersect

with each other trivially. Then G has subgroups Hi, i = 1, 2, . . . , 6 of order pα, pα,

pα, q, p, p2, respectively such that H6 is a subgroup of H1; but not a subgroup of H2

and H3. These subgroups form a subdivision of K5 in I c(G), which is isomorphic to

the graph shown in Figure 5.

Subcase 2b. Suppose Sylow p-subgroup is not unique and these subgroups intersect

with each other non-trivially. If P ∼= Z2α × Z2 or M2α , then by (2), I c(G) has K2,3

as a subgraph. Since Zq is adjacent with all the vertices of I c(P ), it follows that

I c(G) has K3,3 as a subgraph. If P ∼= Zpα or Q2α , then G has exactly two subgroups,

one having order 2 and the other having order q; subgroups of Zpα are adjacent with

Zq and the remaining subgroups of G intersect non-trivially. It follows that I c(G) is

planar.

Subcase 2c. Suppose Sylow p-subgroup is unique. Then G is the direct product of

its Sylow p-subgroup and Sylow q-subgroup. If P ∼= Zpα , Z2α ×Z2, then G is abelian,

which is not possible. So it forces that P ∼= M24 or Q2α . If G ∼= M24×Zq, then by (2)

and by the above argument, I c(G) has K3,3 as a subgraph. If G ∼= Q2α × Zq, then

G has exactly two subgroups, one of which has order 2 other has order q; and so the

remaining subgroups of G intersect non-trivially. It follows that I c(G) is planar.

Proposition 9. Let G be a non-abelian group of order p2q2, where p, q are distinct prime
numbers. Then I c(G) is non-planar.



66 Complement of intersection graph of a group

Proof. According to [11], there are four subgroups of order p2q2 when (p, q) 6= (3, 2)

and nine groups of order 36 when (p, q) = (3, 2). Using the subgroups information of

these groups given in [6, pages 40-43], it can be directly seen that the complement of

intersection graph of subgroups of these groups have K5 as a subgraph, except the

following two groups, which have to be considered separately.

The first group is (Zp × Zp) o Zq2 := 〈a, b, c | ap = bp = cq
2

= 1, ab = ba, cac−1 =

aibj , cbc−1 = akbl〉, where
(
i j
k l

)
has order q2 in GL2(p) and the second group is

(Zp ×Zp)o (Zq ×Zq) where (p, q) 6= (3, 2). Notice that in each of these groups p ≥ 5

and it has Zp × Zp as its subgroup, so by Proposition 4, I c(Zp × Zp) is non-planar.

Consequently, the complement of the intersection graph of subgroups of these two

groups are non-planar.

Proposition 10. Let G be a non-abelian group of order pαq2, where p, q are distinct
prime numbers, α ≥ 3. Then I c(G) is planar if and only if G ∼= Q2α × Zq2 or G has a
unique Sylow q-subgroup; Sylow p-subgroup is not unique and each of them is isomorphic to
Zpα or Q2α and they intersect with each other non-trivially.

Proof. Let P and Q be a Sylow p-subgroup and a Sylow q-subgroup of G, respec-

tively. Suppose either I c(P ) or I c(Q) is non-planar, then I c(G) is so. Therefore, it

is enough to consider the cases when both I c(P ) and I c(Q) are planar. By Propo-

sitions 4 and 5, P ∼= Zpα , Z2α × Z2, M2α , Q2α−1 × Z2 or Q2α and Q ∼= Zq2 , Z2 × Z2,

or Z3 × Z3.

Case 1. Suppose Q is not unique. Then I c(G) contains K3,3 as a subgraph with

bipartition (X,Y ), where X is a set of three subgroups of G whose orders are p3,

p2, p, respectively and Y is a set of three subgroups of G whose orders are q, q, q2,

respectively.

Case 2. Suppose Q is unique.

If P ∼= Q2α−1 ×Z2, then 〈c〉, 〈ac〉, 〈a2α−3

c〉, 〈a2α−3〉 are subgroups of P as mentioned

in the proof of Proposition 5. These four subgroups together with Q, 〈c〉Q forms a

subdivision of K5 in I c(G), which is shown in Figure 5. So I c(G) is non-planar.

Next we investigate the remaining possibilities.

Subcase 2a. Suppose P is unique. Then G ∼= P ×Q and so by the above argument,

G is isomorphic to one of Q2α × Zq2 , Q2α × Z3 × Z3, M2α × Zq2 or M2α × Z3 × Z3.

If G ∼= Q2α × Z3 × Z3, then G has five subgroups of prime order and so they form

K5 as a subgraph of I c(G). If G ∼= Q2α × Zq2 , then G contains unique subgroups

H1 and H2 of order 2 and 3, respectively. Here H1 and H2 are adjacent with all

the subgroups of Zp2 and Q2α , respectively. The remaining proper subgroups of G

contains H1 and H2. It follows that I c(G) is planar. If G ∼= M2α ×Zq2 , then by (2),

I c(M2α) has K2,3 as a subgraph. Notice that Zp2 has a trivial intersection with the

subgroups corresponding to the vertices of K2,3 and so I c(G) has K3,3 as a subgraph.

If G ∼= M2α×Z3×Z3, then by a similar argument as above, it can be seen that I c(G)

has K3,3 as a subgraph.
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Subcase 2b. Suppose P is not unique and Sylow p-subgroups of G mutually intersect

non-trivially.

Suppose Q ∼= Zq2 . If P ∼= Zpα or Q2α , then G contains unique subgroups of each of

orders p and q and these subgroups are contained in the remaining proper subgroups

of G. Therefore, I c(G) is planar. If P ∼= Z2α×Z2 or M2α , then by (2), I c(M2α) has

K2,3 as a subgraph. Here Zp2 is adjacent with all the vertices of K2,3 and so I c(G)

contains K3,3 as a subgraph.

Suppose Q ∼= Z2 × Z2. Then I c(G) has K3,3 as a proper subgraph with bipartition

(X,Y ), where X is a set of three subgroups of G each having order 2 and Y is a set of

three subgroups of G whose orders are p, p2, p3, respectively. Suppose Q ∼= Z3 × Z3,

then G has four subgroups each having order 3 and has a subgroup of order p. These

five subgroups form K5 as a subgraph of I c(G).

Subcase 2c. Suppose P is not unique and Sylow p-subgroups of G mutually intersect

trivially.

If Q ∼= Zq2 , then G contains distinct subgroups of order p, p, p2, p3, q, q2. They form

a subdivision of K5 in I c(G), which is isomorphic to the graph shown in Figure 5.

For the remaining cases, we can apply the same argument as in Subcase 2b and obtain

that I c(G) contains either K5 or K3,3.

Proposition 11. Let G be a non-abelian group of order pαqβ, where p, q are distinct
prime numbers, α, β ≥ 3, α+ β ≥ 6. Then I c(G) is non-planar.

Proof. Here I c(G) has K3,3 as a subgraph with bipartition (X,Y ), where X is a

set of three subgroups of G whose orders are pα, p, p2, respectively and Y is a set of

three subgroups of G whose orders are qα, q, q2, respectively.

Proof of Theorem 3: Combining all the results that have been established thus far in

this section, we arrive at the desired outcome.

Notice that Zq ot Zpα := 〈a, b | aq = bp
α

= 1, bab−1 = ai, ordq(i) = pt〉, where

pt | (q − 1) and Zq2 ot Zpα := 〈a, b | aq2 = bp
α

= 1, bab−1 = ai, ordq2(i) = pt〉,
where pt | (q2 − 1) shows the existence of groups of order pαq and pαq2, respectively

satisfying the condition (2) of Theorem 3. However, classifying these groups seems to

be a challenging issue that requires more research.
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