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1
Faculty of Economic Sciences and Management, University of Boumerdes, Algeria

r.bourtig@yahoo.fr

2
LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270,

Blida, Algeria
∗m chellali@yahoo.com
†meddahn11@yahoo.fr

Received: 23 December 2022; Accepted: 6 September 2023

Published Online: 10 September 2023

Abstract: A vertex u of a graph G = (V,E) ve-dominates every edge incident to

u as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-

edge dominating set (or a ved-set for short) if every edge of E is ve-dominated by
at least one vertex in S. A ved-set is independent if its vertices are pairwise non-

adjacent. The independent ve-domination number ive(G) is the minimum cardinality

of an independent ved-set and the upper independent ve-domination number βve(G)
is the maximum cardinality of a minimal independent ved-set of G. In this paper, we

are interesting in graphs G such that ive(G) = βve(G), which we call well ve-covered
graphs. We show that recognizing well ve-covered graphs is co-NP-complete, and we

present a constructive characterization of well ve-covered trees.

Keywords: vertex-edge domination, independent vertex-edge domination, well ve-

covered graphs, trees.
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1. Introduction

Let G = (V,E) be a simple graph with vertex set V and edge set E. The order

of a graph G, denoted by n, is the number of its vertices |V | . For every vertex

v ∈ V , the open neighborhood N(v) is the set {u ∈ V | uv ∈ E} and the closed

neighborhood of v is the set N [v] = N(v) ∪ {v}. The open neighborhood of a set

S ⊆ V of vertices is N(S) =
⋃
v∈S N(v), while the closed neighborhood of a set S is
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70 Well ve-covered graphs

the set N [S] =
⋃
v∈S N [v]. Next, an S-external private neighbor of a vertex v ∈ S

is a vertex u ∈ V − S which is adjacent to v but to no other vertex of S. The set

of all S-external private neighbors of v ∈ S is called the S-external private neighbor

set of v and is denoted by epn(v, S). In particular, if |epn(v, S)| = 1, then v is said

to be S-bad. The degree of a vertex v of G is dG(v) = |NG(v)|. A vertex of degree

one is called a leaf and its neighbor is called a support vertex. A star of order n ≥ 2,

denoted by K1,n−1, is a tree with at least n − 1 leaves. A trivial graph is a graph

containing only vertex. Throughout this paper, we only consider nontrivial connected

graphs, called ntc graphs.

A set S ⊆ V of a graph G is a dominating set if every vertex in V − S has at

least a neighbor in S. The domination number γ(G) is the minimum cardinality

of a dominating set of G. As defined in Bange et al. [1], a dominating set S for

which |N [v] ∩ S| = 1 for all v ∈ V is an efficient dominating set. Equivalently, a

set S is an efficient dominating set if S is a dominating set and the vertices in S

are pairwise at distance at least 3 apart in G. As shown in [1], if a graph G has an

efficient dominating set S, then |S| = γ(G), that is, every efficient dominating set is

a minimum dominating set.

A set S ⊆ V is independent if no two vertices in S are adjacent. A graph G is called

well-covered if all maximal independent sets of G have the same size. Well-covered

graphs were introduced by Plummer [8] and are widely studied. We refer the reader

to [9] for a comprehensive survey on well-covered graphs and their properties.

A vertex u ∈ V is said to ve-dominate an edge vw ∈ E if either (i) u = v or u = w, that

is, u is incident to vw or (ii) uv or uw is an edge in G, that is u is incident to an edge

that is adjacent to vw. In other words, a vertex u ve-dominates the edges incident to

vertices in N [u]. A set S ⊆ V is a vertex-edge dominating set (or simply a ved -set) if

for every edge e ∈ E, there exists a vertex v ∈ S such that v ve-dominates e. Clearly,

the property for a subset of V to be ved-set is superhereditary, and hence a ved -set

S is minimal if, for every vertex v ∈ S, S − {v} is not a ved-set in G. The minimum

cardinality of a ved-set of G is called the vertex-edge domination number (or simply

the ve-domination number) and is denoted by γve(G). The concept of vertex-edge

domination was introduced by Peters [7], and further studied in [2, 4–6, 10].

A set S ⊆ V is an independent vertex-edge dominating set (or simply an independent

ved-set) if S is both independent and ve-dominating. The independent vertex-edge

domination number (or simply the independent ve-domination number) ive(G) of G is

the minimum cardinality of an independent ved-set and the upper independent vertex-

edge domination number (or simply the upper independent ve-domination number)

βve(G) is the maximum cardinality of a minimal independent ved-set of G. An

independent ved -set of G with cardinality βve (G) is called a βve (G)-set, and an

ive (G)-set is defined similarly.

In this paper, by similarity to well covered graphs, we introduce the well ve-covered

graphs G, i.e. those graphs G such that ive(G) = βve(G). We show in the last

section that recognizing well ve-covered graphs is co-NP-complete. Furthermore, a

constructive characterization of well ve-covered trees is provided in Section 3.
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2. Preliminary results

In this section, we gather some known results as well as some additional definitions

which will be useful in the sequel of our work. Since any dominating set of an ntc

graph is a ved -set, we have the following.

Observation 1. For every ntc graph G, γve(G) ≤ γ(G).

Lewis et al. [5] were interested in the characterization of trees T such that γve(T ) =

γ(T ) where both a descriptive and a constructive characterizations of those trees were

given. Let T be the family of trees that can be obtained from r disjoint stars, each

of order at least three, by first adding r− 1 edges so that they are incident only with

leaves of the stars and the resulting graph is a tree in which every center vertex of a

star remains a support vertex.

Theorem 2 ([5]). For any tree T of order at least three, the following statements are
equivalent:

1) γve(T ) = γ(T ).

2) T has an efficient dominating set S where each vertex in S is a support vertex in T.

3) T ∈ T .

Restricted to the class of trees, the bound in Observation 1 has been improved by

Boutrig et al. [2] who have shown that the domination number is an upper bound for

the independent ve-domination number.

Theorem 3 ([2]). For every nontrivial tree T , γve (T ) ≤ ive (T ) ≤ γ (T ) .

It is worth noting that the domination number may be smaller or larger than the

upper independent ve-domination number even for trees. Indeed, for the path P9,

one can easily see that γ(P9) = 3 < βve(P9) = 4, while for the tree T illustrated in

Figure 1, we have γ(T ) = 8 > βve(T ) = 7. However, in the next section we shall show

that for well ve-covered trees T , γ(T ) = βve(T ).

A vertex v ∈ S ⊆ V has a private edge e = uw ∈ E with respect to a set S, if (i) v

is incident to e or v is adjacent to either u or w, and (ii) for all vertices x ∈ S − {v},
x is not incident to e and x is not adjacent to either u or w. In other words, v ve-

dominates the edge e and no other vertex in S ve-dominates e. Let pe(v, S) denote

the set of private edges of v with respect to S.

The following result on the minimality of ved-sets was given in [2].

Proposition 1 ([2]). Let S be a ved-set of an ntc graph G. Then S is a minimal ved-set
if and only if for every vertex v ∈ S, we have pe(v, S) 6= ∅.
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Figure 1. A tree T with γ(T ) = 8 and βve(T ) = 7

Since a private edge of any vertex v of a minimal ved-set S may be incident with

either v or a vertex adjacent to v, we can consider further the set pe1(v, S) as the

set of all private edges of v with respect to S that are incident with v. Next, let

pe2(v, S) =pe(v, S)−pe1(v, S), and let AS(v) be the set of vertices in N(v) that are

incident with edges in pe2(v, S). Notice that AS (v) ⊆ epn(v, S). In addition, if G is a

triangle-free, let BS (v) be the set of vertices that are incident with edges in pe2(v, S)

chosen so that each vertex in AS (v) is adjacent to exactly one vertex in BS (v) . Hence

|AS (v)| = |BS (v)| .
Now, we are ready to state the following result which will be very helpful in the sequel.

Proposition 2. If T is well ve-covered tree, then there is a βve(T )-set D such that
pe(v,D) = pe1(v,D) for every v ∈ D.

Proof. Let T be a tree such that ive(T ) = βve(T ). Suppose to the contrary that

for every βve(T )-set D, there exists a vertex v ∈ D such that |pe2(v,D)| ≥ 1. Among

all βve(T )-sets, let D be one chosen so that ϕ(D) =
∑
t∈D |pe2(t,D)| is as small as

possible.

Let us make the following three remarks. First, D is also an ive(T )-set, and since

D is independent, |pe1(v,D)| ≥ 1 for every vertex v ∈ D. Also, for two vertices

u, v ∈ D, an edge in pe2(u,D) may be adjacent to an edge in pe2(v,D), and clearly

in that case we may have BD(u) ∩ BD(v) 6= ∅. For the third remark, if x and y are

two D-bad vertices of D with unique private neighbors x′ and y′, respectively, then

x′y′ /∈ E(T ), for otherwise {x′} ∪ D − {x, y} is an independent ve-dominating set

smaller than D which leads to a contradiction. Hence the set of all private neighbors

of D-bad vertices is an independent set. Before going further, we need to show the

following useful claim.

Claim: Let v ∈ D. Then

(i)- no vertex of BD(v) is adjacent to the unique private neighbor of a D-bad vertex.

(ii)- no vertex of epn(v,D) is adjacent to the unique private neighbor of a D-bad

vertex u with AD(u) 6= ∅.
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(iii)- if AD(v) 6= ∅ and t is a vertex of epn(v,D)−AD(v), then t is adjacent to some

unique private neighbor of a D-bad vertex.

Proof of the claim: For the proof of the first two items, let u be a D-bad

vertex with epn(u,D) = {x}. Note that |AD(u)| ≤ 1.

(i)- Assume that there is a vertex y ∈ BD(v) adjacent to x. Consider the set D∗ =

{x} ∪ D − {u} and notice that D∗ is an ive(T )-set. Observe that the edge xy ∈
pe2(x,D) while pe2(x,D∗) = ∅. Moreover, since no new private edges are produced

for ϕ(D∗), we have ϕ(D∗) < ϕ(D), contradicting our choice of D.

(ii)- If AD(u) 6= ∅, then pe2(u,D) 6= ∅ and thus the set D∗ = {x} ∪ D − {u} is an

ive(T )-set in which the edges in pe2(u,D) are no longer included in the calculation

of ϕ(D∗), and since no new private edges are produced for ϕ(D∗), we conclude that

ϕ(D∗) < ϕ(D), contradicting our choice of D.

(iii)- If t is a leaf, then by item (i), the set (D − {v}) ∪ BD (v) ∪ {t} is a minimal

independent ve-dominating set of T larger than D, a contradiction. Thus t is not

a leaf. Now assume that t is not adjacent to any unique private neighbor of a D-

bad vertex. Then as before, (D − {v}) ∪ BD (v) ∪ {t} is a minimal independent

ve-dominating set of T larger than D, a contradiction. This completes the proof of

the claim.

Now let v be a vertex of D such that pe2(v,D) 6= ∅. Hence |AD(v)| ≥ 1 and thus

|BD (v)| ≥ 1. By item (i) of the previous claim with T being a tree, we conclude that

every vertex z ∈ D−{v} has at least one edge in pe1(z,D) which is not ve-dominated

by any vertex of BD(v). Consider the following two cases.

Case 1. No private edge in pe2(v,D) is adjacent to a private edge of any other vertex

in D − {v}.
Accordingly, BD(v)∩BD(u) = ∅ for every u ∈ D−{v}. Assume first that epn(v,D)−
AD(v) = ∅. If |BD (v)| ≥ 2, then as remarked above, the set D′ = (D−{v})∪BD (v)

is a minimal independent ved -set of T larger than D, a contradiction. Hence assume

|BD (v)| = 1, and thus |AD(v)| = 1. Let AD(v) = {x}, and consider the set D′ =

(D − {v}) ∪ {x}. Then D′ is an independent ve-dominating set of T and thus an

ive(T )-set in which pe2(x,D′) = ∅ yielding ϕ(D′) < ϕ(D), a contradiction.

In the sequel, we can assume that epn(v,D)− AD(v) 6= ∅. Let epn(v,D)− AD(v) =

{v1, v2, . . . , vk}. By item (iii) of the Claim, each vi is adjacent to some unique private

neighbor xi of a D-bad vertex ui. Note that by item (ii) of the Claim, AD(ui) = ∅ for

each i. Also, since T is a tree, for any two distinct vertices vi and vj we have xi 6= xj .

Now, consider the setD′ = (D−{v, u1, u2, . . . , uk})∪{x1, x2, . . . , xk}∪BD(v).Observe

thatD′ is a minimal ve-dominating set of T, and thus to avoidD′ becoming larger than

D we must have |BD(v)| = 1, and thus |AD(v)| = 1. Let AD(v) = {h}. Notice that

h is not adjacent to any private neighbor of a D-bad vertex, for otherwise replacing

in D such a D-bad vertex and v with h provides an independent ve-dominating set

smaller than D, leading to a contradiction. Also, if vi is adjacent to another unique

private neighbor of some D-bad vertex, say y, then (D − {ui, y, v}) ∪ {vi, h} is an

independent ve-dominating set of T smaller than D, a contradiction. Hence xi is
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the unique private neighbor of a D-bad vertex adjacent to vi. Now, the set D∗ =

(D−{v, u1, u2, . . . , uk})∪{h, x1, x2, . . . , xk} is an ive(T ) set for which ϕ(D′) < ϕ(D),

since all edges in pe2(v,D) are no longer included in the calculation of ϕ(D∗) and no

new private edges are produced for ϕ(D∗), a contradiction. This concludes Case 1.

Case 2. A private edge in pe2(v,D) is adjacent to a private edge in pe2(u,D) of

some vertex u ∈ D − {v}.
Let v1v2 ∈ pe2(v,D) and u1v2 ∈ pe2(u,D) be two adjacent edges. We have v1 ∈
AD(v), u1 ∈ AD(u) and thus we can assume that v2 ∈ BD(v) ∩ BD(u). Then u1 ∈
epn(u,D) and by item (i) of the Claim, u is not aD-bad vertex, that is |epn(u,D)| ≥ 2.

Likewise, v is not a D-bad vertex, and consequently each of u and v has degree at

least two.

Assume first that epn(v,D)−AD(v) 6= ∅ and let epn(v,D)−AD(v) = {t1, t2, . . . , tk}.
By item (iii) of the Claim, ti has a neighbor which is a unique private of a D-

bad vertex. Thus, let xi be the unique private neighbor of a D-bad vertex ui
which is adjacent to ti, for i ∈ {1, 2, . . . , k}. Note that by item (ii) of the Claim,

AD(ui) = ∅. Also since T is a tree, all xi’s are distinct. Now, consider the

set D′ = (D − {v, u1, u2, . . . , uk}) ∪ {x1, x2, . . . , xk} ∪ BD(v). Observe that D′ is

a minimal ve-dominating set of T, and thus |D′| = |D| yields that |BD(v)| = 1.

Hence |AD(v)| = 1, and so AD(v) = {v1}. As in Case 1, it can be seen that v1
is not adjacent to any private neighbor of a D-bad vertex. Now, the set D∗ =

(D−{v, u1, u2, . . . , uk})∪{v1, x1, x2, . . . , xk} is an ive(T ) set for which ϕ(D∗) < ϕ(D),

since all edges in pe2(v,D) are no longer included in the calculation of ϕ(D∗) and no

new private edges are produced for ϕ(D∗).

Finally, assume that epn(v,D)− AD(v) = ∅. By symmetry, we can also assume that

epn(u,D) − AD(u) = ∅. Recall that |BD(v)| ≥ 2 and |BD(u)| ≥ 2 since each of v

and u has degree at least two. In this case, (D − {v, u}) ∪ B(v) ∪ B(u) is a minimal

independent ved -set of T larger than D, a contradiction. This complete the proof.

3. Well ve-covered trees

In this section we provide a constructive characterization of well ve-covered trees.

For this purpose, we define the family F of trees that can be obtained from r disjoint

stars, each of order at least three, by adding r − 1 edges so that they are incident

with exactly one leaf of each star and the resulting graph is a tree. Clearly, F is a

subfamily of the family T defined in Theorem 2. However, here is an example of a

tree belonging to T − F which is not well ve-covered. Let T be a tree obtained from

three disjoint stars K1,3, the first one with center a and leaves a1, a2, a3, the second

with center b and leaves b1, b2, b3 and the last one with center c and leaves c1, c2, c3 by

adding two edges a1b1 and a2c1. Then {a, b, c} is both a minimum dominating set of

T and a minimum (independent) ved -set of T, and thus γ(T ) = γve(T ) = ive(T ). But

the set {a1, a2, b3, c3} is a minimal independent ved -set of T, thus yielding βve(T ) ≥
4 > ive(T ). In the remainder of this section, we shall prove the following.
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Theorem 4. A nontrivial tree T is well ve-covered if and only if T = P2 or T ∈ F .

Proof. Clearly, if T is a path P2, then βve(P2) = ive(P2) = 1, and thus T is well

ve-covered. Hence assume that T ∈ F . Then T is obtained from r disjoint stars, each

of order at least three, by adding r−1 edges so that they are incident with exactly one

leaf of each star and the resulting graph is a tree. Notice that from the construction,

each center vertex of a star remains a support vertex whose all neighbors but one

are leaves. Since T belongs also to T , by Theorem 2, γve(T ) = γ(T ) = r. Moreover,

any minimal independent ved -set of T can contain only one vertex of each star, and

thus βve(T ) ≤ r = γve(T ). By Theorem 3, the equality βve(T ) = ive(T ) follows and

therefore T is well ve-covered.

Conversely, assume that T is a well ve-covered tree. If T is of order 2, then T =

P2. So assume that |V (T )| ≥ 3. By Proposition 2, let D be a βve(T )-set such that

pe(v,D) = pe1(v,D) for every v ∈ D. To show that T ∈ F , we adopt the following

outline of the proof: we first show that D is an efficient dominating, then we show

that every vertex of D is a support vertex, and finally we show that all neighbors but

one of each vertex of D are leaves.

We start by showing that D is an efficient dominating set. Since D is independent,

we only need to see that the vertices in D are pairwise at distance at least 3 apart

in T and V (T ) = N [D], that is any edge of T has its endvertices in N [D]. Suppose

there is a vertex z ∈ N(D) with at least two neighbors in D. Since D is chosen such

that pe2(v,D) = ∅ for every v ∈ D, the set {z} ∪D − (N(z) ∩D) is an independent

ved -set of T smaller than D, a contradiction. Hence no two vertices of D have a

common neighbor. Suppose now that V (T ) 6= N [D], and let y be a vertex not

dominated by D. Let x be a neighbor of y. Since the edge xy is ve-dominated by

D, x ∈ N(D). Also, from the above, x should have a single neighbor in D, say w.

But then xy ∈ pe2(w,D), contradicting the choice of D. Consequently, V (T ) = N [D]

and therefore we conclude that D is an efficient dominating set of D. It follows that

γ(T ) = |D| = ive(T ) = βve(T ).

We now show that each vertex in D is a support vertex in T. To do this, we will

use the same strategy as the one used in [5]. Assume that D = {x1, x2, . . . , xγ(T )}
and consider the partition D1, D2, . . . , Dγ(T ) of V (T ), where Di = N [xi] for every

i ∈ {1, 2, . . . , γ(T )}. Note that this partition is possible because D is an efficient

dominating set of T. Suppose now that xi is not a support vertex. Then each vertex

y ∈ N(xi) has a neighbor in Dj − {xj} for some j. Hence for each vertex in N(xi),

we select exactly one of its neighbors (of course other than xi) that we put in a set

we call Hi. Since T is a tree, no two vertices of N(xi) have the same selected vertex

in Hi, and so |Hi| = |N(xi)| . Moreover, since T is a tree, Hi is an independent

set. Let H∗i = N(Hi) ∩ D and note that |Hi| = |H∗i |. Then one can observe that

Hi ∪ D − (H∗i ∪ {xi}) is an independent ved -set of T of cardinality γ(T ) − 1, a

contradiction. Hence every xi ∈ D is a support vertex, and therefore D is an efficient

dominating set D where each vertex in D is a support vertex in T.

Lastly, we show that all neighbors but one of each vertex of D are leaves. As before,
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let D = {x1, x2, . . . , xγ(T )} and consider D1, D2, . . . , Dγ(T ) the partition of V (T ),

where Di = N [xi] for every i ∈ {1, 2, . . . , γ(T )}. Since each xi is a support vertex, for

each xi, we select one of its leaf neighbors which we denote by zi. Note that since T is

a tree of order at least three, the degree of each xi is at least two. Now, without loss

of generality, assume that N(x1) contains at least two vertices that are not leaves,

say x and y. Again, without loss of generality, assume that x has a (unique) neighbor

in Di − {xi}, for i = 2, 3, . . . , j, and y has a (unique) neighbor in Di − {xi} for i =

j+ 1, . . . , k, for some k ≤ γ(T ). Now, it follows that {x, y, z2, . . . , zk, xk+1, . . . , xγ(T )}
is a minimal independent ved-set of T of cardinality |D|+ 1, and therefore βve(T ) ≥
|D| + 1 = ive(T ) + 1, a contradiction. Hence for every i, all vertices in Di − {xi}
except one are leaves in T. Consequently, T ∈ F .

4. Complexity result

Our aim in this section is to consider the complexity of the problem of deciding

whether a graph G is well ve-covered. In other words, does there exist an efficient

recognition algorithm for such graphs? We shall show that this problem is co-NP-

complete, that is, the problem of deciding whether a graph G is not well ve-covered

is NP-complete by transforming the 3-satisfiability problem (3-SAT problem) to it

in polynomial time. Recall that the 3-SAT problem specified below was proven to

be NP-complete in [3]. Moreover, it is worth noting that the problems of computing

βve(G) and ive(G) have both been shown in [6] to be NP-complete even for bipartite

graphs G.

3-SAT problem

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set U of

variables such that |Cj | = 3 for j = 1, 2, . . . ,m.

Question: Is there a truth assignment for U that satisfies all the clauses in C?

Theorem 5. Recognizing non well ve-covered graphs is NP-complete.

Proof. Recognizing non well ve-covered graphs G is in NP, since it is enough

to exhibit two independent ve-dominating set of G having different sizes. For the

next, let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance

of the 3-SAT problem, where it is assumed that no clause contains both a literal

and its negation (for otherwise such a clause is obviously satisfiable and thus can

be discarded). We construct in polynomial time, the graph G = (V,E) as follows.

First for each variable ui ∈ U, we associate a path P i6 : xiyiuiuiwizi, and for each

clause Cj = {fj , hj , rj} ∈ C, we associate a single vertex cj and add the edge set

Ej = {cjfj , cjhj , cjrj}. Next, we add all edges between the cj ’s, and we add a

new vertex v attached to each cj . Figure 2 provides an example of the resulting

graph when U = {u1, u2, u3, u4} and C = {C1, C2, C3}, where C1 = {u1, u2, u3},
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C2 = {u1, u2, u4} and C3 = {u2, u3, u4}.
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Figure 2. A construction of the graph G for (u1 ∨ u2 ∨ u3) ∧ (u1 ∨ u2 ∨ u4) ∧ (u2 ∨ u3 ∨ u4)

Note that for every independent ve-dominating set of G must contains two vertices

from each path P6 corresponding to variables, and so every independent ve-dominating

set of G has size at least 2n. Moreover, it is easy to construct a minimal independent

ve-dominating set of G of size 2n+1, for instance put in such a set an arbitrary vertex

cj and all yi’s and wi’s. In addition, one can see that the graph G does not admit

independent ve-dominating sets of size greater than 2n+ 1.

Assume first that C is satisfiable and let t : U −→ {T, F} be a satisfying truth

assignment for C. We construct an independent ve-dominating set D of G of size 2n

as follows. For every i, if t(ui) = T then put ui and wi in D, and if t(ui) = F then

put ui and yi in D. It is easy to check that D has size 2n and it is an independent

ve-dominating set of G. Now since G has a minimal independent ve-dominating set

of size 2n+ 1, we deduce that G is not a well ve-covered graph.

Conversely, assume that G is not well ve-covered. Hence, there is an independent

ve-dominating set D of size 2n. By our earlier observation that every independent ve-

dominating set of G contains two vertices of each P i6, we deduce that D contains no

cj . Consequently, to ve-dominate all edges incident with vertex v, set D must contain

at least one neighbor of each cj corresponding to a literal. Moreover, using the fact

that D cannot contain two vertices corresponding to a literal and its negation, we can

then assign true to the literals corresponding to vertices in D to obtain a satisfying

truth assignment for C.

As a future research topic, it would be interesting to characterize those well

ve-covered graphs in other classes of graphs such as planar or cubic graphs. Also,

design polynomial-time recognition algorithms for well ve-covered graphs.
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