Antipodal number of Cartesian products of complete graphs with cycles

Kush Kumar* and Pratima Panigrahi ${ }^{\dagger}$
Department of Mathematics, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India
*kushsingh029@gmail.com
\dagger pratima@maths.iitkgp.ac.in

Received: 30 May 2023; Accepted: 3 October 2023
Published Online: 15 October 2023

Abstract

Let G be a simple connected graph with diameter d, and $k \in[1, d]$ be an integer. A radio k-coloring of graph G is a mapping $g: V(G) \rightarrow\{0\} \cup \mathbb{N}$ satisfying $|g(u)-g(v)| \geq 1+k-d(u, v)$ for any pair of distinct vertices u and v of the graph G, where $d(u, v)$ denotes distance between vertices u and v in G. The number $\max \{g(u): u \in V(G)\}$ is known as the span of g and is denoted by $r c_{k}(g)$. The radio k-chromatic number of graph G, denoted by $r c_{k}(G)$, is defined as $\min \left\{r c_{k}(g): g\right.$ is a radio k-coloring of $\left.G\right\}$. For $k=d-1$, the radio k-coloring of graph G is called an antipodal coloring. So $r c_{d-1}(G)$ is called the antipodal number of G and is denoted by $a c(G)$. Here, we study antipodal coloring of the Cartesian product of the complete graph K_{r} and cycle $C_{s}, K_{r} \square C_{s}$, for $r \geq 4$ and $s \geq 3$. We determine the antipodal number of $K_{r} \square C_{s}$, for even $r \geq 4$ with $s \equiv 1(\bmod 4)$; and for any $r \geq 4$ with $s=4 t+2, t$ odd. Also, for the remaining values of r and s, we give lower and upper bounds for $a c\left(K_{r} \square C_{s}\right)$.

Keywords: Radio k-coloring, Antipodal coloring, Antipodal number, Cartesian Product, Complete graph, Cycle.

AMS Subject classification: 05C15, 05C78, 05C90

1. Introduction

An important motivation for coloring of graphs is the frequency assignment problem. In this problem, radio transmitters are assigned frequencies in a manner that prevents interference. One of the natural reasons for the interference is that when nearer transmitters receive closer frequencies. Frequency bands are defined simultaneously for all wireless networks based on usage type and relevance. The primary goal is,

[^0]therefore, to allocate radio frequencies for transmitters at various places with the least possible spread and without causing interference, as demonstrated in [3]. So the frequency assignment problem can be considered as an allocation of numbers (color numbers) to vertices of G so that color numbers of nearer vertices have desired separation, where vertices of G are the transmitters and two of them are adjacent if they have close proximity. So for a simple and connected graph G having diameter d and an integer $k \in[1, d]$, a radio k-coloring of G is a mapping $g: V(G) \rightarrow\{0\} \cup \mathbb{N}$ satisfying $|g(u)-g(v)| \geq 1+k-d(u, v)$, for any pair of distinct vertices u and v of the graph G, where $d(u, v)$ denotes distance between vertices u and v in G. The largest positive integer (or color number) allocated by g, termed as the span of g, and is denoted by $\operatorname{span}(g)$ or $r c_{k}(g)$. The notation $r c_{k}(G)$ stands for radio k-chromatic number of the graph G, and is defined by
$$
r c_{k}(G)=\min \left\{r c_{k}(g): g \text { is a radio } k \text {-coloring of } \mathrm{G}\right\}
$$

Throughout the paper, we consider simple and connected graphs only. Chartrand et al. [1] proposed the idea of radio k-coloring of graphs. It may be noted that for $k=1$, the radio k-coloring problem coincides with the usual proper coloring of graphs. For particular values of k, there are specific names of a radio k-coloring, such as, if $k=d$, then this coloring is simply known as radio coloring; and if $k=d-1$ then it is known as an antipodal coloring. So $r c_{d}(G)$ and $r c_{d-1}(G)$ are respectively called the radio number (also represented by $r n(G)$) and antipodal number (also represented by $a c(G)$) of graph G. A radio k-coloring g of a graph G is called a minimal radio k-coloring if $r c_{k}(g)=r c_{k}(G)$.

The definition below is useful in the paper.
Definition 1. For a graph G of order r, and a radio k-coloring g of G, let $v_{1}, v_{2}, \ldots, v_{r}$ be an arrangement of vertices in such a way that $g\left(v_{j}\right) \leq g\left(v_{j+1}\right)$, for all $j=1,2, \ldots, r-1$. Then $\epsilon_{j}, j=2,3, \ldots, r$, is defined as $\epsilon_{j}=g\left(v_{j}\right)-g\left(v_{j-1}\right)-\left(1+k-d\left(v_{j}, v_{j-1}\right)\right)$. We note that ϵ_{j} are non-negative integers.

The lemma presented below gives information about the radio k-chromatic number of any arbitrary graph.

Lemma 1. [9] Consider a graph G with order r. Then for any radio k-coloring g of G, we have

$$
\begin{equation*}
r c_{k}(g)=(r-1)(k+1)-\sum_{j=2}^{r} d\left(v_{j}, v_{j-1}\right)+\sum_{j=2}^{r} \epsilon_{j} \tag{1.1}
\end{equation*}
$$

where the vertices $v_{j}, j=1,2, \ldots, r$, are arranged in the order given in Definition 1.
Remark 1. In equation (1.1), for a particular k and a fixed graph G, the term $(k+1)(r-1)$ is a constant. So a radio k-coloring g of graph G becomes a minimal coloring if $\sum_{j=2}^{r} d\left(v_{j-1}, v_{j}\right)$ and $\sum_{j=2}^{r} \epsilon_{j}$ attain respectively the maximum and minimum value simultaneously among all possible radio k-colorings of G.

The notation $G_{1} \square G_{2}$ stands for Cartesian product of any two graphs G_{1} and G_{2}. The vertex set of $G_{1} \square G_{2}$ is $V\left(G_{1}\right) \times V\left(G_{2}\right)$, and any two arbitrary vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \square G_{2}$ if and only if $u_{1}=u_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is an edge in G_{2}, or $v_{1}=v_{2}$ and $\left\{u_{1}, u_{2}\right\}$ is an edge in G_{1}. A complete graph K_{r} is a simple and connected graph with r vertices so that there is an edge between every two distinct vertices in it. Kchikech et al. [5] obtained some upper bounds for $r c_{k}(G)$, whenever G is the Cartesian product of two graphs. The same authors found lower and upper bounds for $r c_{k}\left(P_{n} \square P_{n}\right)$ when $k \geq 2 n-3$. Kim et al. [8] determined the radio number for Cartesian product of a complete graph with a path. The radio number of $G P(n, 1)$ is obtained by Kola and Panigrahi [10]. The radio number of toroidal grid $C_{s} \square C_{s}$ is determined by Morris-Rivera et al. [13]. Saha and Panigrahi [15] determined $r n\left(C_{s} \square C_{r}\right)$ whenever $s r$ is even. For an arbitrary graph G, Kola and Panigrahi [11] have given a lower bound of $r c_{k}(G)$. Additionally, they have proved that for some values of r, the above lower bound agrees with $r n\left(C_{r} \square P_{2}\right)$. Chartrand et al. [2] have obtained the antipodal number of some classes of paths, and for an arbitrary graph G, they have also found bounds for $a c(G)$ in terms of the antipodal number of paths. The same authors had conjectured about the antipodal number of paths and this has been proved by Khennoufa and Togni [6]. Khennoufa and Togni [7] have determined $\operatorname{ac}\left(Q_{n}\right)$, where Q_{n} is the n-dimensional hypercube. Juan and Liu [4] obtained the antipodal number of a cycle. Saha and Panigrahi [14] obtained the antipodal number of powers of cycles.
In this research article, we compute the antipodal number of $K_{r} \square C_{s}$, for an even integer $r \geq 4$ with $s \equiv 1(\bmod 4)$; and for any $r \geq 4$ with $s=4 t+2, t$ odd. Then, for the rest of the values of r and s, we give lower and upper bounds for $\operatorname{ac}\left(K_{r} \square C_{s}\right)$.

2. Antipodal number of $K_{r} \square C_{s}$

To determine a lower bound for $a c\left(K_{r} \square C_{s}\right)$, we need the theorem below, given by Kola and Panigrahi [11].

Theorem 1. [11] Let G be a simple and connected graph having order r with diameter d. If $d(x, y)+d(x, z)+d(y, z) \leq M$, for every triplet of vertices x, y and z of G, then

$$
r c_{k}(G) \geq \begin{cases}\frac{(r-1)(3(k+1)-M)}{(r-1)(3(k+1)-M+1)} 4 & \text { if } r \text { is odd and } M \not \equiv k(\bmod 2), \\ \frac{(r-2)(3(k)+1)-M)}{4}+k-d+1 & \text { if } r \text { is odd even and } M \equiv k(\bmod 2), \\ \frac{(r-1)}{(r-2)(3(k+1)-M+1)} 4(\bmod 2), \\ \frac{(4)}{4}+k-d+1 & \text { if } r \text { is even and } M \equiv k(\bmod 2) .\end{cases}
$$

Definition 2. The smallest integer M for which $d(x, y)+d(x, z)+d(y, z) \leq M$ for every triplet of vertices x, y and z of a graph G, is known as the triameter of the graph G, and denoted by $\operatorname{tr}(G)$.

Lemma 2. [11] For connected graphs G_{1} and G_{2}, we have $\operatorname{tr}\left(G_{1} \square G_{2}\right)=\operatorname{tr}\left(G_{1}\right)+$ $\operatorname{tr}\left(G_{2}\right)$.

Since $\operatorname{tr}\left(K_{r}\right)=3$ and $\operatorname{tr}\left(C_{s}\right)=s$ (Saha and Panigrahi [14]), the following lemma is immediate from Lemma 2.

Lemma 3. For $r \geq 3$ and $s \geq 3$, the triameter of $K_{r} \square C_{s}$ is $s+3$.

The lemma below gives the diameter of the Cartesian product between two graphs in terms of the diameter of the individual graphs.

Lemma 4. [15] If G_{1} and G_{2} are simple and connected graphs then $\operatorname{diam}\left(G_{1} \square G_{2}\right)=$ $\operatorname{diam}\left(G_{1}\right)+\operatorname{diam}\left(G_{2}\right)$.

Since the diameter of cycle C_{s} is $\left\lfloor\frac{s}{2}\right\rfloor$ and the diameter of complete graph K_{r} is 1 , the following lemma is immediate from Lemma 4.

Lemma 5. The diameter of $K_{r} \square C_{s}$ is given by

$$
\operatorname{diam}\left(K_{r} \square C_{s}\right)= \begin{cases}\frac{s+1}{2} & \text { if } s \text { odd } \\ \frac{s}{2}+1 & \text { if } s \text { even } .\end{cases}
$$

The theorem below gives a lower bound for $a c\left(K_{r} \square C_{s}\right)$.
Theorem 2. For the even positive integer r,

$$
a c\left(K_{r} \square C_{s}\right) \geq \begin{cases}\frac{1}{8}\left(s^{2} r-2 s\right) & \text { if } s \equiv 0(\bmod 4), \\ \frac{1}{8}\left(s^{2} r-s r-2 s+2\right) & \text { if } s \equiv 1(\bmod 4), \\ \frac{1}{8}\left(s^{2} r+2 s r-2 s-4\right) & \text { if } s \equiv 2(\bmod 4), \\ \frac{1}{8}\left(s^{2} r-3 s r-2 s+6\right) & \text { if } s \equiv 3(\bmod 4) .\end{cases}
$$

Proof. By Lemma 3, the triameter of $K_{r} \square C_{s}$ is $M=s+3$. Depending on values of s, we consider four cases.

Case I. $s \equiv 0(\bmod 4)$.
Here $\operatorname{diam}\left(K_{r} \square C_{s}\right)=\frac{s}{2}+1$, by Lemma 5. In this case $M=s+3$ is odd integer and $\frac{s}{2}$ is even integer. So $M \not \equiv \frac{s}{2}(\bmod 2)$. Then by Theorem 1, we get

$$
a c\left(K_{r} \square C_{s}\right) \geq \frac{(s r-2)\left[3\left(\frac{s}{2}+1\right)-s-3\right]}{4}+d-1-d+1=\frac{1}{8}\left(s^{2} r-2 s\right) .
$$

Case II. $s \equiv 1(\bmod 4)$.
In this case $\operatorname{diam}\left(K_{r} \square C_{s}\right)=\frac{s+1}{2}$, by Lemma 5. Also both $\frac{s-1}{2}$ and $M=s+3$ are even integers, so we get $M \equiv \frac{s-1}{2}(\bmod 2)$. Then by Theorem 1 , we have

$$
a c\left(K_{r} \square C_{s}\right) \geq \frac{(s r-2)\left[3\left(\frac{s+1}{2}\right)-s-3+1\right]}{4}+d-1-d+1=\frac{1}{8}\left(s^{2} r-s r-2 s+2\right) .
$$

Case III. $s \equiv 2(\bmod 4)$.
In this case $\operatorname{diam}\left(K_{r} \square C_{s}\right)=\frac{s}{2}+1$, by Lemma 5 . Also both $\frac{s}{2}$ and $M=s+3$ are odd integers, so we get $M \equiv \frac{s}{2}(\bmod 2)$. Then by Theorem 1, we have

$$
a c\left(K_{r} \square C_{s}\right) \geq \frac{(s r-2)\left[3\left(\frac{s}{2}+1\right)-s-3+1\right]}{4}+d-1-d+1=\frac{1}{8}\left(s^{2} r+2 s r-2 s-4\right) .
$$

Case IV. $s \equiv 3(\bmod 4)$.
In this case $\operatorname{diam}\left(K_{r} \square C_{s}\right)=\frac{s+1}{2}$, by Lemma 5 . Here $\frac{s-1}{2}$ is an odd and $M=s+3$ is an even integer. So $M \not \equiv \frac{s}{2}(\bmod 2)$. Then by Theorem 1, we get

$$
a c\left(K_{r} \square C_{s}\right) \geq \frac{(s r-2)\left[3\left(\frac{s+1}{2}\right)-s-3\right]}{4}+d-1-d+1=\frac{1}{8}\left(s^{2} r-3 s r-2 s+6\right) .
$$

Theorem 3. For odd positive integer r,

$$
a c\left(K_{r} \square C_{s}\right) \geq \begin{cases}\frac{1}{8}\left(s^{2} r-2 s\right) & \text { if } s \equiv 0(\bmod 4), \\ \frac{1}{8}\left(s^{2} r-s r-s+1\right) & \text { if } s \equiv 1(\bmod 4), \\ \frac{1}{8}\left(s^{2} r+2 s r-2 s-4\right) & \text { if } s \equiv 2(\bmod 4), \\ \frac{1}{8}\left(s^{2} r-3 s r-s+3\right) & \text { if } s \equiv 3(\bmod 4) .\end{cases}
$$

Proof. By Lemma 3, the triameter of $K_{r} \square C_{s}$ is $M=s+3$. Depending on values of s, we consider four cases.

Case I. $s \equiv 0(\bmod 4)$.
Here $\operatorname{diam}\left(K_{r} \square C_{s}\right)=\frac{s}{2}+1$, by Lemma 5 . In this case $M=s+3$ is odd integer and $\frac{s}{2}$ is even integer. So $M \not \equiv \frac{s}{2}(\bmod 2)$. Then by Theorem 1, we get

$$
a c\left(K_{r} \square C_{s}\right) \geq \frac{(s r-2)\left[3\left(\frac{s}{2}+1\right)-s-3\right]}{4}+d-1-d+1=\frac{1}{8}\left(s^{2} r-2 s\right) .
$$

Case II. $s \equiv 1(\bmod 4)$.
In this case $\operatorname{diam}\left(K_{r} \square C_{s}\right)=\frac{s+1}{2}$, by Lemma 5. Also both $\frac{s-1}{2}$ and $M=s+3$ are even integers, so we get $M \equiv \frac{s-1}{2}(\bmod 2)$. Then by Theorem 1 , we have

$$
\begin{aligned}
a c\left(K_{r} \square C_{s}\right) & \geq \frac{(s r-1)\left[3\left(\frac{s+1}{2}\right)-s-3+1\right]}{4} \\
& =\frac{1}{8}\left(s^{2} r-s r-s+1\right) .
\end{aligned}
$$

Case III. $s \equiv 2(\bmod 4)$.
In this case $\operatorname{diam}\left(K_{r} \square C_{s}\right)=\frac{s}{2}+1$, by Lemma 5 . Also both $\frac{s}{2}$ and $M=s+3$ are odd integers, so we get $M \equiv \frac{s}{2}(\bmod 2)$. Then by Theorem 1 , we have

$$
a c\left(K_{r} \square C_{s}\right) \geq \frac{(s r-2)\left[3\left(\frac{s}{2}+1\right)-s-3+1\right]}{4}+d-1-d+1=\frac{1}{8}\left(s^{2} r+2 s r-2 s-4\right) .
$$

Case IV. $s \equiv 3(\bmod 4)$.
In this case $\operatorname{diam}\left(K_{r} \square C_{s}\right)=\frac{s+1}{2}$, by Lemma 5 . Here $\frac{s-1}{2}$ is an odd and $M=s+3$ is an even integer. So $M \not \equiv \frac{s}{2}(\bmod 2)$. Then by Theorem 1 , we get

$$
a c\left(K_{r} \square C_{s}\right) \geq \frac{(s r-1)\left[3\left(\frac{s+1}{2}\right)-s-3\right]}{4}=\frac{1}{8}\left(s^{2} r-3 s r-s+3\right) .
$$

The following lemma gives an ordering of vertices of $K_{r} \square C_{s}$, for r even and $s \equiv 1$ $(\bmod 4)$, with some distance separation among them. This ordering of vertices is useful to give antipodal coloring.

Lemma 6. For the even integer $r, r \geq 4$, and $s \equiv 1(\bmod 4)$, there is an ordering $v_{1}, v_{2}, \ldots, v_{s r}$ of vertices of $K_{r} \square C_{s}$ such that $d\left(v_{2 j}, v_{2 j-1}\right)=\frac{s+1}{2}$ for $j=1,2, \ldots, \frac{s r}{2}$, and $d\left(v_{2 j+1}, v_{2 j}\right)=\frac{s+3}{4}$ for $j=1,2, \ldots, \frac{s r}{2}-1$. Moreover, $d\left(v_{j}, v_{j-2}\right)=\frac{s+3}{4}$ for $j=3,4, \ldots, s r$.

Proof. In $K_{r} \square C_{s}$, there are r copies of cycle C_{s}, say, $C_{s}^{(0)}, C_{s}^{(1)}, \ldots, C_{s}^{(r-1)}$. For $i=0,1, \ldots, r-1$, let $x_{0}^{(i)}, x_{2}^{(i)}, \ldots, x_{s-1}^{(i)}$ be the vertices of $C_{s}^{(i)}$. Now we define an ordering of the vertices of $K_{r} \square C_{s}$ as

$$
v_{2 j+1}=x_{\left(j\left(\frac{s-1}{4}\right)\right)(\bmod s)}^{((2 j)(\bmod r))}
$$

and

$$
v_{2 j+2}=x_{\left(j\left(\frac{s-1}{4}\right)+\frac{s-1}{2}\right)((\bmod s)}^{((2 j+1)(\bmod r))}
$$

for all $j \in\left\{0,1, \ldots, \frac{s r}{2}-1\right\}$. From the above ordering of the vertices of $K_{r} \square C_{s}, v_{j}$ and v_{j-2} lie on different cycles with $d\left(v_{j}, v_{j-2}\right)=\frac{s-1}{4}+1$ for all $j=3,4, \ldots, s r$. Also, $d\left(v_{j}, v_{j+1}\right)=\frac{s-1}{2}+1$ for all $j=1,3, \ldots, s r-1$, and $d\left(v_{j+1}, v_{j+2}\right)=\frac{s-1}{4}+1$ for all $j=1,3, \ldots, s r-3$. Since s and $\frac{s-1}{4}$ are co-prime. So all the vertices of $C_{s}^{(0)}, C_{s}^{(2)}, \ldots, C_{s}^{(r-2)}$ are covered by the ordering of the vertices $v_{1}, v_{3}, \ldots, v_{s r-1}$, and the vertices of $C_{s}^{(1)}, C_{s}^{(3)}, \ldots, C_{s}^{(r-1)}$ are covered by the ordering of the vertices $v_{2}, v_{4}, \ldots, v_{s r}$. Therefore, we obtain an ordering of the vertices of $K_{r} \square C_{s}$ as $v_{1}, v_{2}, \ldots, v_{s r}$ so that the sequence $\left.\left\{d\left(v_{j}, v_{j+1}\right)\right)\right\}_{j=1}^{s r-1}$ is an alternating sequence of $\frac{s+1}{2}$ and $\frac{s+3}{4}$ with $d\left(v_{j}, v_{j-2}\right)=\frac{s+3}{4}$ for all $j=3,4, \ldots, s r$.

Theorem 4. For even integer $r \geq 4$, and $s \equiv 1(\bmod 4)$, the antipodal number of $K_{r} \square C_{s}$ is given by

$$
a c\left(K_{r} \square C_{s}\right)=\frac{1}{8}\left(s^{2} r-s r-2 s+2\right) .
$$

Proof. We consider the ordering $v_{1}, v_{2}, \ldots, v_{s r}$ of vertices of $K_{r} \square C_{s}$ as given in Lemma 6. Now, we define a mapping $g: V\left(K_{r} \square C_{s}\right) \rightarrow \mathbb{N} \cup\{0\}$ such that $g\left(v_{1}\right)=0$ and $g\left(v_{j}\right)=g\left(v_{j-1}\right)+\left(\frac{s+1}{2}\right)-d\left(v_{j}, v_{j-1}\right), 2 \leq j \leq s r$. We show that g is an antipodal coloring of $K_{r} \square C_{s}$. Clearly, for $4 \leq l \leq s r, l+1 \leq j \leq s r$, the pair of vertices v_{j} and v_{j-l} satisfy the antipodal coloring condition. So we need to show that g satisfies antipodal coloring condition for the pair of vertices v_{j} and $v_{j-2}, 3 \leq j \leq s r$; and v_{j} and $v_{j-3}, 4 \leq j \leq s r$. When j is odd, $d\left(v_{j}, v_{j-1}\right)=\frac{s+3}{4}, d\left(v_{j-1}, v_{j-2}\right)=\frac{s+1}{2}$ and $d\left(v_{j}, v_{j-2}\right)=\frac{s+3}{4}$. Therefore

$$
\begin{aligned}
g\left(v_{j}\right)-g\left(v_{j-2}\right) & =g\left(v_{j}\right)-g\left(v_{j-1}\right)+g\left(v_{j-1}\right)-g\left(v_{j-2}\right) \\
& =\left(\frac{s+1}{2}\right)-d\left(v_{j}, v_{j-1}\right)+\left(\frac{s+1}{2}\right)-d\left(v_{j-1}, v_{j-2}\right) \\
& =\left(\frac{s+1}{2}\right)-\left(\frac{s+3}{4}\right) \\
& =1+\frac{s-1}{2}-d\left(v_{j}, v_{j-2}\right) . \\
g\left(v_{j}\right)-g\left(v_{j-3}\right) & =g\left(v_{j}\right)-g\left(v_{j-2}\right)+g\left(v_{j-2}\right)-g\left(v_{j-3}\right) \\
& =\frac{s-1}{4}+\left(\frac{s+1}{2}\right)-d\left(v_{j-2}, v_{j-3}\right) \\
& =\left(1+\frac{s-1}{2}\right)-1 \\
& \geq 1+\frac{s-1}{2}-d\left(v_{j}, v_{j-3}\right),
\end{aligned}
$$

as $d\left(v_{j}, v_{j-3}\right) \geq 1$.
When j is even, $d\left(v_{j}, v_{j-1}\right)=\frac{s+1}{2}, d\left(v_{j-1}, v_{j-2}\right)=\frac{s+3}{4}$ and $d\left(v_{j}, v_{j-2}\right)=\frac{s+3}{4}$. Therefore

$$
\begin{aligned}
g\left(v_{j}\right)-g\left(v_{j-2}\right) & =g\left(v_{j}\right)-g\left(v_{j-1}\right)+g\left(v_{j-1}\right)-g\left(v_{j-2}\right) \\
& =\left(\frac{s+1}{2}\right)-d\left(v_{j}, v_{j-1}\right)+\left(\frac{s+1}{2}\right)-d\left(v_{j-1}, v_{j-2}\right) \\
& =\left(\frac{s+1}{2}\right)-\left(\frac{s+3}{4}\right) \\
& =1+\frac{s-1}{2}-d\left(v_{j}, v_{j-2}\right) \\
g\left(v_{j}\right)-g\left(v_{j-3}\right) & =g\left(v_{j}\right)-g\left(v_{j-2}\right)+g\left(v_{j-2}\right)-g\left(v_{j-3}\right) \\
& =\frac{s-1}{4}+\left(\frac{s+1}{2}\right)-d\left(v_{j-2}, v_{j-3}\right) \\
& =\left(1+\frac{s-1}{2}\right)-\left(\frac{s+3}{4}\right) \\
& \geq 1+\frac{s-1}{2}-d\left(v_{j}, v_{j-3}\right) .
\end{aligned}
$$

For $j=4,5, \ldots, s r$, the vertices v_{j}, v_{j-2} and v_{j-3} all lie on different cycles, we get $d\left(v_{j}, v_{j-3}\right) \geq d\left(v_{j-2}, v_{j-3}\right)-d\left(v_{j}, v_{j-2}\right) \geq \frac{s+1}{2}-\frac{s+3}{4}+1=\frac{s+3}{4}$. Hence g is an antipodal coloring. From the definition of the mapping g and ordering of the vertices v_{j}, we get

$$
\sum_{j=2}^{s r} d\left(v_{j}, v_{j-1}\right)=\frac{s r}{2}\left(\frac{s+1}{2}\right)+\left(\frac{s r}{2}-1\right)\left(\frac{s+3}{4}\right) \text { and } \sum_{j=2}^{s r} \epsilon_{j}=0 .
$$

From Lemma 1 we get,

$$
\begin{aligned}
\operatorname{span}(g) & =g\left(v_{s r}\right) \\
& =(s r-1)\left(\frac{s+1}{2}\right)-\frac{s r}{2}\left(\frac{s+1}{2}\right)-\left(\frac{s r}{2}-1\right)\left(\frac{s+3}{4}\right) \\
& =\frac{1}{8}\left(s^{2} r-s r-2 s+2\right) .
\end{aligned}
$$

So $a c\left(K_{r} \square C_{s}\right) \leq \operatorname{span}(g)=\frac{1}{8}\left(s^{2} r-s r-2 s+2\right)$. This upper bound matches the lower bound found in Case II of Theorem 2, and so the result follows.

The example below illustrates Lemma 6 and Theorem 4.

Example 1. Here we consider the graph $K_{6} \square C_{5}$. So $r=6$ and $s=5$. Figure 1 represents ordering of vertices given in Lemma 6, and Figure 2 gives the antipodal coloring obtained in Theorem 4 with span 14.

Figure 1. Ordering of vertices $K_{6} \square C_{5}$ as described in Lemma 6

In the lemma below, we give an ordering of the vertices of $K_{r} \square C_{s}$, for any positive integer $r \geq 4$ and $s=4 t+2$ with t odd. This ordering of vertices will be useful to determine a minimal antipodal coloring.

Figure 2. The antipodal coloring of $K_{6} \square C_{5}$ as described in Theorem 4 with span 14.

Lemma 7. For any positive integer $r \geq 4$ and $s=4 t+2$ with t odd, there is an arrangement $v_{1}, v_{2}, \ldots, v_{s r}$ of vertices of $K_{r} \square C_{s}$ such that $d\left(v_{2 j}, v_{2 j-1}\right)=\frac{s}{2}+1$ for $j=$ $1,2, \ldots, \frac{s r}{2}$, and $d\left(v_{2 j+1}, v_{2 j}\right)=\frac{s+2}{4}$ for $j=1,2, \ldots, \frac{s r}{2}-1$. Moreover, $d\left(v_{j}, v_{j-2}\right)=\frac{s+2}{4}+1$ for $j=3,4, \ldots, s r$.

Proof. In $K_{r} \square C_{s}$, there are s copies of cycle K_{r}, say, $K_{r}^{(0)}, K_{r}^{(1)}, \ldots, K_{r}^{(s-1)}$. For $i=0,1, \ldots, s-1$, let $x_{0}^{(i)}, x_{2}^{(i)}, \ldots, x_{r-1}^{(i)}$ be the vertices of $K_{r}^{(i)}$. Now we define an ordering of the vertices of $K_{r} \square C_{s}$ as

$$
v_{2 j+1}=x_{j(\bmod r)}^{\left(j\left(\frac{s+2}{4}\right)\right)(\bmod s)}
$$

and

$$
v_{2 j+2}=x_{(j+3)(\bmod r)}^{\left(j\left(\frac{s+2}{4}\right)+\frac{s}{2}\right)(\bmod s)}
$$

for all $j \in\left\{0,1, \ldots, \frac{s r}{2}-1\right\}$. From the above ordering of the vertices of $K_{r} \square C_{s}, v_{j}$ and v_{j-2} lie on different cycles with $d\left(v_{j}, v_{j-2}\right)=\frac{s+2}{4}+1$ for all $j=3,4, \ldots, s r$. Also, $d\left(v_{j}, v_{j+1}\right)=\frac{s}{2}+1$ for all $j=1,3, \ldots, s r-1$, and $d\left(v_{j+1}, v_{j+2}\right)=\frac{s+2}{4}$ for all $j=1,3, \ldots, s r-3$. Since s and $\frac{s+2}{4}$ are co-prime, all the vertices of $K_{r}^{(0)}, K_{r}^{(2)}, \ldots, K_{r}^{(s-2)}$ are covered by the ordering of the vertices $v_{1}, v_{3}, \ldots, v_{s r-1}$, and the vertices of $K_{r}^{(1)}, K_{r}^{(3)}, \ldots, K_{r}^{(s-1)}$ are covered by the ordering of the vertices $v_{2}, v_{4}, \ldots, v_{s r}$. Thus we obtain an ordering of the vertices of $K_{r} \square C_{s}$ as $v_{1}, v_{2}, \ldots, v_{s r}$ so that the sequence $\left.\left\{d\left(v_{j}, v_{j+1}\right)\right)\right\}_{j=1}^{s r-1}$ is an alternating sequence of $\frac{s}{2}+1$ and $\frac{s+2}{4}$ with $d\left(v_{j}, v_{j-2}\right)=\frac{s+2}{4}+1$ for all $j=3,4, \ldots, s r$.

Theorem 5. For any positive integer $r \geq 4$ and $s=4 t+2$ with t odd, the antipodal number of the graph $K_{r} \square C_{s}$ is given by

$$
a c\left(K_{r} \square C_{s}\right)=\frac{1}{8}\left(s^{2} r+2 s r-2 s-4\right) .
$$

Proof. We consider the ordering $v_{1}, v_{2}, \ldots, v_{s r}$ of vertices of $K_{r} \square C_{s}$ as given in Lemma 7. Now, we define a mapping $g: V\left(K_{r} \square C_{s}\right) \rightarrow \mathbb{N} \cup\{0\}$ such that $g\left(v_{1}\right)=0$ and $g\left(v_{j}\right)=g\left(v_{j-1}\right)+\left(\frac{s}{2}+1\right)-d\left(v_{j}, v_{j-1}\right), 2 \leq j \leq s r$. We can show that g is an antipodal coloring of $K_{r} \square C_{s}$. By Lemma 1,

$$
\begin{aligned}
\operatorname{span}(g) & =g\left(v_{s r}\right) \\
& =(s r-1)\left(\frac{s}{2}+1\right)-\frac{s r}{2}\left(\frac{s}{2}+1\right)-\left(\frac{s r}{2}-1\right)\left(\frac{s+2}{4}\right) \\
& =\frac{1}{8}\left(s^{2} r+2 s r-2 s-4\right)
\end{aligned}
$$

So $a c\left(K_{r} \square C_{s}\right) \leq \frac{1}{8}\left(s^{2} r+2 s r-2 s-4\right)$. This upper bound coincides with the lower bound obtained in Case III of Theorems 2 and 3, and hence the result follows.

Example 2. Here we consider the graph $K_{5} \square C_{6}$. So $r=5$ and $s=6$. Figure 3 represents ordering of vertices given in Lemma 7, and Figure 4 gives the antipodal coloring obtained in Theorem 5 with span 28.

Figure 3. Ordering of vertices $K_{5} \square C_{6}$ as described in Lemma 7

Figure 4. The antipodal coloring of $K_{5} \square C_{6}$ as described in Theorem 5 with span 28.

We give an upper bound of $a c\left(K_{r} \square C_{s}\right)$, for the remaining values of r and s, applying the following result by Kchikech et al. [5], which holds true for radio and antipodal numbers only.

Theorem 6. [5] For two graphs G_{1} and G_{2} of order $r \geq 2$ and s respectively, and for any integer $k \geq \operatorname{diam}\left(G_{1} \square G_{2}\right)-1$,

$$
r c_{k}\left(G_{1} \square G_{2}\right) \leq s\left(r c_{k}\left(G_{1}\right)\right)+(s-1) k-\sum\left(G_{2}\right),
$$

where $\sum\left(G_{2}\right)=\max _{\pi} \sum_{j=0}^{s-2} d_{G_{2}}(\pi(j+1), \pi(j))$, and π is a permutation on vertex set $V\left(G_{2}\right)=$ $\{0,1, \ldots, s-1\}$.

The following result is due to Liu and Zhu [12].
Lemma 8. [12] For cycle $C_{s}, s \geq 3$, the radio number rn $\left(C_{s}\right)$ is

$$
r n\left(C_{s}\right)=\left\{\begin{array}{lll}
\frac{1}{8}\left(s^{2}+6 s-8\right) & \text { if } s \equiv 0 & (\bmod 4), \\
\frac{1}{8}\left(s^{2}+2 s-3\right) & \text { if } s \equiv 1 & (\bmod 4), \\
\frac{1}{8}\left(s^{2}+4 s-4\right) & \text { if } s \equiv 2 & (\bmod 4), \\
\frac{1}{8}\left(s^{2}+4 s-5\right) & \text { if } s \equiv 3 & (\bmod 4) .
\end{array}\right.
$$

Since the distance between every pair of distinct vertices of the complete graph K_{r} is 1 , we get $\sum\left(K_{r}\right)=r-1$. Then we obtain the result of Theorem 7 below by applying Theorem 6 and Lemma 8.

Theorem 7. For positive integer $r \geq 2$ and $s \geq 3$,
$a c\left(K_{r} \square C_{s}\right)=a c\left(C_{s} \square K_{r}\right) \leq \begin{cases}\frac{1}{8}\left(s^{2} r+10 s r-16 r-4 s+8\right) & \text { if } s \equiv 0(\bmod 4), \\ \frac{1}{8}\left(s^{2} r+6 s r-15 r-4 s+12\right) & \text { if } s \equiv 1(\bmod 4), \\ \frac{1}{8}\left(s^{2} r+8 s r-12 r-4 s+8\right) & \text { if } s \equiv 2(\bmod 4), \\ \frac{1}{8}\left(s^{2} r+8 s r-17 r-4 s+12\right) & \text { if } s \equiv 3(\bmod 4) .\end{cases}$

One sees that bounds given in Theorems 2 and 3 are sharp for many values of r and s as proved in Theorems 4 and 5. The example below gives some light on the sharpness of bounds for remaining values of r and s.

Example 3. We obtain that antipodal number of $K_{2} \square C_{5}$ and $K_{2} \square C_{6}$ are 8 and 15 respectively, see Figure 5 and 6 . However from Theorems 2 and 3 one gets that the lower bounds for $a c\left(K_{2} \square C_{5}\right)$ and $a c\left(K_{2} \square C_{6}\right)$ are 4 and 10 respectively. We find that antipodal number of $K_{3} \square C_{6}$ is 16 , as given in Figure 7. This number coincides with the lower bound given in Theorem 3 for $a c\left(K_{3} \square C_{6}\right)$.

We have also checked that lower bound obtained in Theorem 3 is sharp for $r=3$ and several values of s when $s \equiv 2(\bmod 4)$. Hence we state the open problem below.

Figure 5. Minimal antipodal coloring of $K_{2} \square C_{5}$ with span 8

Figure 6. Minimal antipodal coloring of $K_{2} \square C_{6}$ with span 15

Figure 7. Minimal antipodal coloring of $K_{3} \square C_{6}$ with span 16

Open Problem 1. Lower bound obtained in Theorem 3 is sharp for $r=3$ and $s \equiv 2$ $(\bmod 4)$.

Example 4. From Theorem 7, we obtain the upper bound of $a c\left(K_{2} \square C_{5}\right)$ and $a c\left(K_{2} \square C_{6}\right)$ as 9 and 16 respectively. However we have seen in Example 3 that the antipodal numbers of $K_{2} \square C_{5}$ and $K_{2} \square C_{6}$ are 8 and 15 respectively. Hence the bounds given in Theorem 7 are very close to the exact numbers for some values of r and s.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] G. Chartrand, D. Erwin, F. Harary, and P. Zhang, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001), 77-85.
[2] G. Chartrand, D. Erwin, and P. Zhang, Radio antipodal colorings of graphs, Math. Bohem. 127 (2002), no. 1, 57-69
http://dx.doi.org/10.21136/MB.2002.133978.
[3] W. K. Hale, Frequency assignment: Theory and applications, Proceedings of the IEEE 68 (1980), no. 12, 1497-1514 https://doi.org/10.1109/PROC.1980.11899.
[4] J.S. Juan and D.D. Liu, Antipodal labelings for cycles., Ars Combin. 103 (2012), 81-96.
[5] M. Kchikech, R. Khennoufa, and O. Togni, Radio k-labelings for Cartesian products of graphs, Discuss. Math. Graph Theory 28 (2008), no. 1, 165-178 https://doi.org/10.7151/dmgt.1399.
[6] R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohem. 130 (2005), no. 3, 277-282
http://dx.doi.org/10.21136/MB.2005.134100.
[7] , The radio antipodal and radio numbers of the hypercube., Ars Combin. 102 (2011), 447-461.
[8] B.M. Kim, W. Hwang, and B.C. Song, Radio number for the product of a path and a complete graph, J. Comb. Optim. 30 (2015), 139-149
https://doi.org/10.1007/s10878-013-9639-3.
[9] S. R. Kola and P. Panigrahi, An improved lower bound for the radio k-chromatic number of the hypercube Q_{n}, Comput. Math. Appl. 60 (2010), no. 7, 2131-2140 https://doi.org/10.1016/j.camwa.2010.07.058.
[10] __, Radio numbers of some classes of $G P(n, 1)$ and $\operatorname{Cin}(1, r)$, Annual IEEE India Conference, IEEE, 2011, pp. 1-6 https://doi.org/10.1109/INDCON.2011.6139450.
[11] S.R. Kola and P. Panigrahi, A lower bound for radio k-chromatic number of an arbitrary graph, Contrib. Discrete Math. 10 (2015), no. 2, 45-56 https://doi.org/10.11575/cdm.v10i2.62253.
[12] D.D. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (2005), no. 3, 610-621 https://doi.org/10.1137/S0895480102417768.
[13] M. Morris-Rivera, M. Tomova, C. Wyels, and A. Yeager, The radio number of $C_{n} \square C_{n}$, Ars Combin. 120 (2015), 7-21.
[14] L. Saha and P. Panigrahi, Antipodal number of some powers of cycles, Discrete Math. 312 (2012), no. 9, 1550-1557
https://doi.org/10.1016/j.disc.2011.10.032.
[15] _ On the radio number of toroidal grids., Australas. J. Combin. 55 (2013), 273-288.

[^0]: * Corresponding author

