Polycyclic codes over R

Gowdhaman Karthick
Presidency University, Bangalore, Karnatakka-560064, India
karthygowtham@gmail.com

Received: 28 July 2023; Accepted: 16 November 2023
Published Online: 28 November 2023

Abstract

In this paper, we discuss the structure of polycyclic codes over the ring $R=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q} ; u^{2}=\alpha u, v^{2}=v$ and $u v=v u=0$, where α is an unit element in R. We introduce annihilator self-dual codes, annihilator self-orthogonal codes and annihilator LCD codes over R. Using a Gray map, we define a one to one correspondence between R and \mathbb{F}_{q} and construct quasi polycyclic codes over the \mathbb{F}_{q}.

Keywords: semi-simple ring, polycyclic codes, hamming distances, gray maps, annihilator dual codes.

AMS Subject classification: 05C50; 05C09; 05C92

1. Introduction

An interesting subtype of linear codes are polycyclic codes of length n over a finite field \mathbb{F}_{q} with q elements which are described by ideals of a polynomial rings $\mathbb{F}_{q}[x] /\langle f(x)\rangle$. In 2009, López-Permouth et al. [3] studied polycyclic codes and sequential codes, and showed that a linear code is polycyclic if and only if its Euclidean dual code is sequential which is not always polycyclic. In 2016, Alahmadi et al. [1] introduced the annihilator dual codes over \mathbb{F}_{q} and showed that the annihilator dual codes of polycyclic codes over \mathbb{F}_{q} are also polycyclic. In 2022, Wei Qi study the polycyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ with $u^{2}=u$ and have constructed the annihilator self-dual codes, annihilator self-orthogonal codes and annihilator LCD codes. This motivated us to do the following works.

In this paper, we study Polycyclic codes and Sequential codes over the ring $R=$ $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q} ; u^{2}=\alpha u, v^{2}=v$ and $u v=v u=0$. We have introduced annihilator self-dual codes, annihilator self-orthogonal codes and annihilator LCD codes over R. Using a Gray map, we have defined a one to one correspondance between $\{1, R$ and $\left.\mathbb{F}_{q}^{3}\right\}$ and a few codes are constructed.

2. Preliminaries

Let \mathbb{F}_{q} be a finite field of order q with characteristic p, then we define a ring $R=$ $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$ with $u^{2}=\alpha u, v^{2}=v, u v=v u=0$ where α is an unit element in R. The ring R is a semi-local and Frobenious ring. A linear code C is a R-module. C^{\perp} is the Eucleadean dual of C. Let $e_{1}=\frac{u}{\alpha}, e_{2}=v$ and $e_{3}=\left(1-\frac{u}{\alpha}-v\right)$. Then, we have $e_{i}^{2}=e_{i}, e_{i} e_{j}=0$ and $\sum_{i=1}^{3} e_{i}=1$ where $i=1,2,3$ and $i \neq j$. By using decomposition theorem of rings, we have $R=\bigoplus_{i=1}^{3} e_{i} R \cong \bigoplus_{i=1}^{3} e_{i} \mathbb{F}_{q}$. Therefore, any element in R can be uniquely expressed as $r=\sum_{i=1}^{3} e_{i} r_{i}$ where $r_{i} \in \mathbb{F}_{q}$.

Let C be a linear code of length n over R and $C_{i}=\left\{r_{i} \in \mathbb{F}_{q}^{n} \mid \sum_{i=1}^{3} e_{i} r_{i} \in C\right\}$ for some $r_{j} \in \mathbb{F}_{q}^{n}$ where $j \neq i$. Then C_{i} is a linear code of length n over \mathbb{F}_{q} for $1 \leq i \leq 3$. Hence, C can be expressed as $C=\bigoplus_{i=1}^{3} e_{i} C_{i}$.

Definition 1. Let C be a linear code over R and let $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in R^{n}$ with the condition that a_{0} as a unit element of R

- then C is a-polycyclic code if it satisfies the right polycyclic shift operator given by

$$
\sigma_{a}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=\left(0, c_{1}, c_{2}, \ldots, c_{n-2}\right)+c_{n-1}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)
$$

- then C is a-sequential code if it satisfies the right sequential shift operator given by

$$
\tau_{a}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=\left(c_{1}, c_{2}, \ldots, c_{n-1}, c_{0} a_{0}+c_{1} a_{1}+\cdots+c_{n-1} a_{n-1}\right) .
$$

Hereafter, we denote $R[x] /\left\langle x^{n}-a(x)\right\rangle$ as R^{a}. Then the map $\phi: R^{n} \longrightarrow R^{a}$ defined by

$$
\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}\right) \mapsto c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

is a module isomorphism and we have the following result.

Theorem 1. Let C be a polycyclic code over the ring R, then the corresponding image sets ϕ is an $R[x]$-module over R^{a}.

Definition 2 ([4]). Let C be a polycyclic code of length n.

1. Let $\alpha(x), \beta(x) \in R^{a}$, then the annihilator product of $\alpha(x)$ and $\beta(x)$ is defined as

$$
\langle\alpha(x), \beta(x)\rangle_{a}=r(0)
$$

where $\alpha(x) \beta(x) \equiv r(x)\left(\bmod x^{n}-a(x)\right)$ and $\operatorname{deg}(r(x)) \leq n-1$.
2. The annihilator dual code C^{\prime} of an a-polycyclic code C is defined to be

$$
C^{\prime}=\left\{\beta(x) \in R^{a} \mid\langle\alpha(x), \beta(x)\rangle_{a}=r(0)=0 \text { for all } \alpha(x) \in C\right\} .
$$

3. The a-polycyclic code C is said to be an annihilator self-orthogonal code (resp., annihilator self-dual code, annihilator LCD code) provided that $C \subseteq C^{\prime}$ (resp., $\left.C=C^{\prime}, C \cap C^{\prime}=\{0\}\right)$.
4. The annihilator of C is

$$
\operatorname{Ann}(C)=\left\{\beta(x) \in R_{a} \mid \alpha(x) \beta(x)=0 \in R^{a} \text { for all } \alpha(x) \in C\right\}
$$

Theorem 2. [[4]] Let C be an a-polycyclic code of length n over \mathbb{F}_{q}. Let $g(x)$ be the generator polynomial and $h(x)$ the check polynomial of C, then $C^{\prime}=\langle h(x)\rangle$.

Lemma 1 ([1]). Let $a=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \in \mathbb{F}_{q}^{n}$ with $a_{0} \neq 0, C$ be an a-polycyclic code of length n over \mathbb{F}_{q}, then $\alpha(x) \beta(x)$ is non-degenerate, and thus $C^{\prime}=\operatorname{Ann}(C)$.

Lemma 2 ([1]). Let C_{1} and C_{2} be a-polycyclic codes over $\mathbb{F}_{q}, g_{1}, g_{2}$ their generator polynomials, respectively, then $C_{1} \subseteq C_{2}$ if and only if $g_{2} \mid g_{1}$.

Lemma 3 ([1]). Let C be an a-polycyclic code over \mathbb{F}_{q}, then C is an annihilator selforthogonal code if and only if $h(x) \mid g(x)$ where $g(x)$ and $h(x)$ are the generator polynomial and check polynomial of C, respectively.

Lemma 4 ([1]). Let C be an a-polycyclic code over \mathbb{F}_{q}, then C is an annihilator LCD code if and only if $\operatorname{gcd}(g(x), h(x))=1$ where $g(x)$ and $h(x)$ are the generator polynomial and check polynomial of C, respectively.

3. Codes over the ring R

A unique representation of an element in R is defined as $r=r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}$. Each coordinate a_{j} in $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ can be written as $a_{j}=a_{j}^{1} e_{1}+a_{j}^{2} e_{2}+a_{j}^{3} e_{3}, 1 \leq$ $j \leq n-1$ in a unique way and c_{j} in $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$ as $c_{j}=c_{j}^{1} e_{1}+c_{j}^{2} e_{2}+$ $c_{j}^{3} e_{3}, 1 \leq j \leq n-1$. On applying the polycyclic operator,

$$
\begin{aligned}
\sigma_{a}(c)= & \left(0, c_{1}, c_{2}, \ldots, c_{n-2}\right)+c_{n-1}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \\
= & \left(0, c_{1}^{1} e_{1}+c_{1}^{2} e_{2}+c_{1}^{3} e_{3}, c_{2}^{1} e_{1}+c_{2}^{2} e_{2}+c_{2}^{3} e_{3}, \ldots, c_{n-2}^{1} e_{1}+c_{n-2}^{2} e_{2}+c_{n-2}^{3} e_{3}\right) \\
& +\left(c_{n-1}^{1} e_{1}+c_{n-1}^{2} e_{2}+c_{n-1}^{3} e_{3}\right)\left(a_{0}^{1} e_{1}+a_{0}^{2} e_{2}+a_{0}^{3} e_{3}, a_{1}^{1} e_{1}+a_{1}^{2} e_{2}+a_{1}^{3} e_{3}, \cdots,\right. \\
& \left.a_{n-1}^{1} e_{1}+a_{n-1}^{2} e_{2}+a_{n-1}^{3} e_{3}\right) \\
= & \left(0, c_{1}^{1} e_{1}, e_{1} c_{2}^{1}, \ldots, e_{1} c_{n-2}^{1}\right)+e_{1} c_{n-1}^{1}\left(a_{0}^{1} e_{1}, a_{1}^{1} e_{1}, \ldots, a_{n-1}^{1} e_{1}\right) \\
& +\left(0, c_{1}^{2} e_{2}, e_{2} c_{2}^{2}, \ldots, e_{2} c_{n-2}^{2}\right)+e_{2} c_{n-1}^{2}\left(a_{0}^{2} e_{2}, a_{1}^{2} e_{2}, \ldots, a_{n-1}^{2} e_{2}\right) \\
& +\left(0, c_{1}^{3} e_{3}, e_{3} c_{2}^{3}, \ldots, e_{3} c_{n-2}^{3}\right)+e_{3} c_{n-1}^{3}\left(a_{0}^{3} e_{3}, a_{1}^{3} e_{3}, \ldots, a_{n-1}^{3} e_{3}\right) \\
= & e_{1}\left(\left(0, c_{1}^{1}, c_{2}^{1}, \ldots, c_{n-2}^{1}\right)+c_{n-1}^{1}\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{n-1}^{1}\right)\right) \\
& +e_{2}\left(\left(0, c_{1}^{2}, c_{2}^{2}, \ldots, c_{n-2}^{2}\right)+c_{n-1}^{2}\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{n-1}^{2}\right)\right) \\
& +e_{3}\left(\left(0, c_{1}^{3}, c_{2}^{3}, \ldots, c_{n-2}^{3}\right)+c_{n-1}^{3}\left(a_{0}^{3}, a_{1}^{3}, \ldots, a_{n-1}^{3}\right)\right) \\
= & e_{1}\left(\sigma_{a_{1}}\left(c^{1}\right)\right)+e_{2}\left(\sigma_{a_{2}}\left(c^{2}\right)\right)+e_{3}\left(\sigma_{a_{3}}\left(c^{3}\right)\right) .
\end{aligned}
$$

Thus, $\sigma_{a_{1}}\left(c^{1}\right) \in C_{1}, \sigma_{a_{2}}\left(c^{2}\right) \in C_{2}$ and $\sigma_{a_{3}}\left(c^{3}\right) \in C_{3}$ and vice versa. Thus, we have the following Theorem.

Theorem 3. Let C be a linear code over R of length n, then C is an a-polycyclic code of length n if and only if every C_{i} is an a_{i}-polycyclic codes over $\mathbb{F}_{q}(1 \leq i \leq 3)$.

Theorem 4. Let C be a linear code of length n over R, then C is a-sequential over R if and only if every C_{i} is a_{i}-sequential over \mathbb{F}_{q}.

Proof. Proof is similar to that of Theorem 3.
Lemma 5. Let C be an a-polycyclic code of length n over \mathbb{F}_{q}, then C is a principal ideal $\langle g(x)\rangle$ of $\mathbb{F}_{q}[x] /\left\langle x^{n}-a(x)\right\rangle$ generated by some monic polynomial and a divisor of $x^{n}-a(x)$. In this case, $g(x)$ is said to be a generator polynomial of C.

Theorem 5. Let $C=\bigoplus_{i=1}^{3} e_{i} C_{i}$ be a a-polycyclic code of length n over R, then $C=$ $\left\langle g(x)=e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)\right\rangle$ of $R[x] /\left\langle x^{n}-a(x)\right\rangle$ where $g_{i}(x)=\left\langle C_{i}\right\rangle, g_{i}(x) \mid x^{n}-$ $a_{i}(x), 1 \leq i \leq 3$ over \mathbb{F}_{q}.

Proof. Let $C=\bigoplus_{i=1}^{3} e_{i} C_{i}$ be an a-polycyclic code over R. Let $c(x) \in C=$ $\bigoplus_{i=1}^{3} e_{i} C_{i}$, then there exists $p_{i}(x) \in \mathbb{F}_{q}[x] /\left\langle x^{n}-a_{i}(x)\right\rangle$ such that

$$
\begin{gathered}
\sum_{i=1}^{3} e_{i} p_{i}(x) g_{i}(x)=c(x) \\
\left(\sum_{i=1}^{3} e_{i} p_{i}(x)\right)\left(\sum_{i=1}^{3} e_{i} g_{i}(x)\right)=c(x)
\end{gathered}
$$

Then $c(x) \in\langle g(x)\rangle,\langle g(x)\rangle \subseteq \bigoplus_{i=1}^{3} e_{i} C_{i}$.
Let $C=\bigoplus_{i=1}^{3} e_{i} C_{i}$ be a a-polycyclic code over R, then by Theorem 3, C_{i} is a_{i} polycyclic code of length n over \mathbb{F}_{q}. So by Lemma 5, we have $g_{i}(x)=\left\langle C_{i}\right\rangle$ and $g_{i}(x) \mid x^{n}-a_{i}(x)$. Then there exists $h_{i}(x) \in R[x] /\left\langle x^{n}-a_{i}(x)\right\rangle$ such that $g_{i}(x) h_{i}(x)=$ $x^{n}-a_{i}(x)$. Therefore $e_{i} g_{i}(x) h_{i}(x)=e_{i}\left(x^{n}-a_{i}(x)\right)$ and hence

$$
\begin{aligned}
\sum_{i=1}^{3} e_{i} g_{i}(x) h_{i}(x) & =x^{n}-a(x) \\
\left(\sum_{i=1}^{3} e_{i} g_{i}(x)\right)\left(\sum_{i=1}^{3} e_{i} h_{i}(x)\right) & =x^{n}-a(x) .
\end{aligned}
$$

Thus, we have $C=\left\langle\sum_{i=1}^{3} e_{i} g_{i}(x) h_{i}(x)\right\rangle$.
Theorem 6 ([2]). If $f(0) \neq 0$, then the bilinear form $\langle.,$.$\rangle is non degenerate.$
Theorem 7. Let $\alpha(x), \beta(x) \in R^{a}$. Then $\langle\alpha(x), \beta(x)\rangle$ is a non-degenerate symmetric R-bilinear form.

Proof. For any $\alpha, \beta, \gamma \in R^{n}, k \in R,\langle k(\alpha+\beta), \gamma\rangle=r(0)$,

$$
\begin{aligned}
\text { where }[k(\alpha+\beta) \gamma](x) & \equiv r(x)\left(\bmod x^{n}-a(x)\right) \\
k[\alpha(x) \gamma(x)]+k[\beta(x) \gamma(x)] & \equiv r(x)\left(\bmod x^{n}-a(x)\right)
\end{aligned}
$$

on the other hand,

$$
\begin{aligned}
\langle k \alpha(x), \gamma(x)\rangle & =r_{1}(0) \text { where } k[\alpha(x) \gamma(x)] \equiv r_{1}(0) \bmod x^{n}-a(x), \\
\langle k \beta(x), \gamma(x)\rangle & =r_{1}(x) \text { where } k[\beta(x) \gamma(x)] \equiv r_{2}(x) \bmod x^{n}-a(x),
\end{aligned}
$$

using the property compatibility with addition, we have $r(x)=r_{1}(x)+r_{2}(x)$. Thus, $\langle k(\alpha+\beta), \gamma\rangle=k\langle\alpha, \gamma\rangle+k\langle\beta, \gamma\rangle$ is bilinear. Since the ring R is commutative, we have $\langle\beta, \gamma\rangle=\langle\gamma, \beta\rangle$. To show $\langle.,$.$\rangle is non-degenerate, it is enough to show that the$ Radicals of R is $\{0\}$. Suppose not, that is, there exists $\beta \neq 0 \in R\left(R^{n}\right)$ such that $\langle\alpha, \beta\rangle=0$ for all $\alpha \in R$. Since $\alpha, \beta \in R^{n}$, it can be uniquely represented by $\alpha=$ $e_{1} \alpha_{1}+e_{2} \alpha_{2}+e_{3} \alpha_{3}, \alpha=e_{1} \beta_{1}+e_{2} \beta_{2}+e_{3} \beta_{3}$. Therefore, by using the bilinear property, one can write $\langle\alpha, \beta\rangle=0$ as

$$
\langle\alpha, \beta\rangle=\sum_{i=1}^{3} e_{i}\left\langle\alpha_{i}, \beta_{i}\right\rangle=0
$$

which contradicts 6 . Thus, $\langle., .\rangle_{a}$ is a non-degenrate symmetric R-bilinear form.
Theorem 8. Let C be an a-polycyclic code over S and let $\epsilon_{1}=(1,0, \cdots, 0), \epsilon_{2}=$ $(0,1, \cdots, 0), \cdots, \epsilon_{n}=(0,0, \cdots, 1)$ and $A=\left(\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle_{a}\right) 1 \leq i, j \leq n$. Let $C A=\{c A \mid c \in C\}$. Then $C^{\prime}=(C A)^{\perp}$. Consequently, $\left(C^{\prime}\right)^{\prime}=C$.

Proof. Note that $\langle u, v\rangle_{a}=u A v^{t}=\langle u, A v\rangle_{a}$. Thus $C^{\prime}=(C A)^{\perp}$. Using the equality, $C^{\prime}=(C A)^{\perp}$. Since A is invertible, it follows that $\left(C^{\prime}\right)^{\prime}=\left(C^{\prime} A\right)^{\perp}=\left(C^{\prime}\right)^{\perp} A^{-1}=$ $\left((C A)^{\perp}\right)^{\perp} A^{-1}=C$.

Theorem 9. Let C be a polycyclic code of length n. Then $C^{\prime}=e_{1} C_{1}^{\prime} \bigoplus e_{2} C_{2}^{\prime} \oplus e_{3} C_{3}^{\prime}$.

Proof. Since every element in $d \in R$ can be represented as $d=e_{1} d_{1}+e_{2} d_{2}+e_{3} d_{3}$, it can be written as a matrix A uniquely as $A=e_{1} A_{e_{1}}+e_{2} A_{e_{2}}+e_{3} A_{e_{3}}$ where every $A_{e_{i}}$ is a matrix over \mathbb{F}_{q}. Consider

$$
\begin{aligned}
\left(C^{\prime}\right) & =\left(e_{1} C_{1} \bigoplus e_{2} C_{2} \bigoplus e_{3} C_{3}\right)^{\perp}\left(e_{1} A_{e_{1}}+e_{2} A_{e_{2}}+e_{3} A_{e_{3}}\right)^{-1} \\
& =\left(e_{1} C_{1} A_{e_{1}} \bigoplus e_{2} C_{2} A_{e_{2}} \bigoplus e_{3} C_{3} A_{e_{3}}\right) \\
& =e_{1} C_{1}^{\prime} \bigoplus e_{2} C_{2}^{\prime} \bigoplus e_{3} C_{3}^{\prime}
\end{aligned}
$$

Thus, $C^{\prime}=e_{1} C_{1}^{\prime} \oplus e_{2} C_{2}^{\prime} \oplus e_{3} C_{3}^{\prime}$.

Theorem 10. Let C be a linear code over R. Then C is a-polycyclic if and only if C^{\prime} is a-polycyclic.

Proof. Since C is a polycyclic code over R, by Theorem 3, every C_{i} is a polycyclic codes over \mathbb{F}_{q}. Then, by [[2], Proposition 3], we have C_{i}^{\prime} as polycyclic code over \mathbb{F}_{q} and again by Theorem 3 it is obvious that C^{\prime} is a polycyclic codes.

Theorem 11. Let C be a linear code of length n over R. Then C is an a-polycyclic code over R if and only if C^{\perp} is an a-sequential code over R.

Proof. By Theorem 3 if C is an a-polycyclic codes then every C_{i} is a a_{i}-polycyclic code over \mathbb{F}_{q}. By Theorem[3.2] in [3], every C_{i} is a a_{i}-polycyclic code over \mathbb{F}_{q} if and only if every C_{i}^{\perp} is a $a_{i^{-}}$sequential code over \mathbb{F}_{q}. Thus by from Theorem $4 C^{\perp}$ is an a-sequential code.

Theorem 12. Let C be an a-polycyclic code over R generated by $g(x)$. Suppose $h(x)$ is a check polynomial of C. Then C^{\prime} is an a-polycyclic code generated by $h(x)$.

Proof. It follows from the proof of Theorems 10 and 5.

4. Gray map

In this section, we define a Gray map from R to \mathbb{F}_{q}^{3}. We have shown that Gray map enjoy certain properties. Let $x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3} \in R$, then we define $\phi: R \longrightarrow \mathbb{F}_{q}^{3}$ by

$$
\phi\left(x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}\right)=\left(x_{1}, x_{2}, x_{3}\right)
$$

It can be easily extended to any length n. Define $\Phi: R^{n} \mapsto \mathbb{F}_{q}^{3 n}$ by

$$
\text { by } \Phi\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=\left(\phi\left(c_{0}\right), \phi\left(c_{1}\right), \ldots, \phi\left(c_{n-1}\right)\right)
$$

The Gray weight w_{G} of $c \in R^{n}$ is defined by $w_{G}(c)=\sum_{i=0}^{n-1} w_{G}\left(c_{i}\right)=$ $\sum_{i=0}^{n-1} w_{H}\left(\phi\left(c_{i}\right)\right)$, where w_{H} is the Hamming weight in \mathbb{F}_{q}, and the distance between two codewords $c, d \in C$ is $d_{G}(c, d)=w_{G}(c-d)$. The minimum Gray distance of C is

$$
d_{G}(C)=\min \left\{w_{G}(c) \mid 0 \neq c \in C\right\} .
$$

For any two elements $c, d \in R^{n}, d_{G}(c, d)=w_{G}(c-d)=w_{H}(\Phi(c-d))=w_{H}(\Phi(c)-$ $\Phi(d))=d_{H}(\Phi(c), \Phi(d))$. Hence, Φ is a linear distance preserving map from $\left(R^{n}, d_{G}\right)$ to $\left(F_{q}^{3 n}, d_{H}\right)$.

Theorem 13. Let $C=\bigoplus_{i=1}^{3} e_{i} C_{i}$ be a linear code with parameter $\left[n, k, d_{G}\right]$, then $\Phi(C)$ is a linear code over $\mathbb{F}_{q}^{3 n}$ with the parameter $\left[3 n, k, d_{H}\right]$.

Definition 3. Let C be a linear code and let $a=a^{1} e_{1}+a^{2} e_{2}+a^{3} e_{3} \in R$, then C is called a-quasicyclic code of index 3 over \mathbb{F}_{q} if it satisfies the shift operator given by

$$
\begin{aligned}
\tau^{3}\left(x_{0}, x_{1}, \ldots x_{n-1}, y_{0}, y_{1}, \ldots y_{n-1}, z_{0}, z_{1}, \ldots z_{n-1}\right)= & \left(\left(0, x_{1}, x_{2}, \ldots, x_{n-2}\right)+x_{n-1}\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{n-1}^{1}\right),\right. \\
& \left(0, y_{1}, y_{2}, \ldots, y_{n-2}\right)+y_{n-1}\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{n-1}^{2}\right), \\
& \left.\left(0, z_{1}, z_{2}, \ldots, z_{n-2}\right)+z_{n-1}\left(a_{0}^{3}, a_{1}^{3}, \ldots, a_{n-1}^{3}\right)\right) .
\end{aligned}
$$

Theorem 14. Let C be a linear code over R of length $3 n$. Then C is an a-polycyclic code if and only if $\Phi(C)$ is a-quasi cyclic code over $\mathbb{F}_{q},\left(\tau^{3}(\Phi(c))=\Phi\left(\sigma_{a}(c)\right)\right)$.

Proof. Let C be an a-polycyclic code of length n, then it satisfies the cyclic shift operator for every $c \in C$,

$$
\begin{aligned}
\sigma_{a}(c)= & \left(0, c_{1}, c_{2}, \ldots, c_{n-2}\right)+c_{n-1}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \\
= & \left(0, c_{1}^{1} e_{1}+c_{1}^{2} e_{2}+c_{1}^{3} e_{3}, c_{2}^{1} e_{1}+c_{2}^{2} e_{2}+c_{2}^{3} e_{3}, \ldots, c_{n-2}^{1} e_{1}+c_{n-2}^{2} e_{2}+c_{n-2}^{3} e_{3}\right) \\
& +\left(c_{n-1}^{1} e_{1}+c_{n-1}^{2} e_{2}+c_{n-1}^{3} e_{3}\right)\left(a_{0}^{1} e_{1}+a_{0}^{2} e_{2}+a_{0}^{3} e_{3}, a_{1}^{1} e_{1}+a_{1}^{2} e_{2}+a_{1}^{3} e_{3}, \cdots,\right. \\
& \left.a_{n-1}^{1} e_{1}+a_{n-1}^{2} e_{2}+a_{n-1}^{3} e_{3}\right) \\
= & \left(0, c_{1}^{1} e_{1}, e_{1} c_{2}^{1}, \ldots, e_{1} c_{n-2}^{1}\right)+e_{1} c_{n-1}^{1}\left(a_{0}^{1} e_{1}, a_{1}^{1} e_{1}, \ldots, a_{n-1}^{1} e_{1}\right) \\
& +\left(0, c_{1}^{2} e_{2}, e_{2} c_{2}^{2}, \ldots, e_{2} c_{n-2}^{2}\right)+e_{2} c_{n-1}^{2}\left(a_{0}^{2} e_{2}, a_{1}^{2} e_{2}, \ldots, a_{n-1}^{2} e_{2}\right) \\
& +\left(0, c_{1}^{3} e_{3}, e_{3} c_{2}^{3}, \ldots, e_{3} c_{n-2}^{3}\right)+e_{3} c_{n-1}^{3}\left(a_{0}^{3} e_{3}, a_{1}^{3} e_{3}, \ldots, a_{n-1}^{3} e_{3}\right) \\
= & e_{1}\left(\left(0, c_{1}^{1}, c_{2}^{1}, \ldots, c_{n-2}^{1}\right)+c_{n-1}^{1}\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{n-1}^{1}\right)\right) \\
& +e_{2}\left(\left(0, c_{1}^{2}, c_{2}^{2}, \ldots, c_{n-2}^{2}\right)+c_{n-1}^{2}\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{n-1}^{2}\right)\right) \\
& +e_{3}\left(\left(0, c_{1}^{3}, c_{2}^{3}, \ldots, c_{n-2}^{3}\right)+c_{n-1}^{3}\left(a_{0}^{3}, a_{1}^{3}, \ldots, a_{n-1}^{3}\right)\right) \\
\Phi\left(\sigma_{a}(c)\right)= & \left(\left(0, c_{1}^{1}, c_{2}^{1}, \ldots, c_{n-2}^{1}\right)+c_{n-1}^{1}\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{n-1}^{1}\right),\right. \\
& \left(0, c_{1}^{2}, c_{2}^{2}, \ldots, c_{n-2}^{2}\right)+c_{n-1}^{2}\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{n-1}^{2}\right), \\
& \left.\left(0, c_{1}^{3}, c_{2}^{3}, \ldots, c_{n-2}^{3}\right)+c_{n-1}^{3}\left(a_{0}^{3}, a_{1}^{3}, \ldots, a_{n-1}^{3}\right)\right) .
\end{aligned}
$$

Let $c^{\prime} \in \Phi(C)$, then there exists an $c \in C$ such that $\Phi(c)=c^{\prime}$. Consider

$$
\begin{aligned}
\Phi(c)= & \left(c_{0}^{1}, c_{1}^{1}, \ldots, c_{n-1}^{1}, c_{0}^{2}, c_{1}^{2}, \ldots, c_{n-1}^{2}, c_{0}^{3}, c_{1}^{3}, \ldots, c_{n-1}^{3}\right) \\
\tau^{3}(\Phi(c))= & \left(\left(0, c_{1}^{1}, c_{2}^{1}, \ldots, c_{n-2}^{1}\right)+c_{n-1}^{1}\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{n-1}^{1}\right),\right. \\
& \left(0, c_{1}^{2}, c_{2}^{2}, \ldots, c_{n-2}^{2}\right)+c_{n-1}^{2}\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{n-1}^{2}\right), \\
& \left.\left(0, c_{1}^{3}, c_{2}^{3}, \ldots, c_{n-2}^{3}\right)+c_{n-1}^{3}\left(a_{0}^{3}, a_{1}^{3}, \ldots, a_{n-1}^{3}\right)\right) \\
\text { Hence, } \tau^{3}(\Phi(c))= & \Phi\left(\sigma_{a}(c)\right) .
\end{aligned}
$$

Definition 4. Let C be an a-quasi polycyclic code of length n over \mathbb{F}_{q}.

1. Let $\alpha_{a_{i}}(x), \beta_{a_{i}}(x) \in \mathbb{F}_{q}^{a_{i}}$, then the annihilator product is defined as

$$
\sum_{i=1}^{3}\left\langle\alpha_{a_{i}}(x), \beta_{a_{i}}(x)\right\rangle_{a_{i}}=\sum_{i=1}^{3} r_{a_{i}}(0)
$$

where $\alpha_{a_{i}}(x), \beta_{a_{i}}(x) \equiv r_{a_{i}}(x)\left(\bmod x^{n}-a_{i}(x)\right)$ and $\operatorname{deg}\left(r_{a_{i}}(x)\right) \leq n-1$
2. The annihilator dual code C^{\prime} of an a-quasi polycyclic code C is defined to be $C^{\prime}=\left\{\left(\beta_{a_{1}}(x), \beta_{a_{2}}(x), \beta_{a_{3}}(x)\right) \in\left(\mathbb{F}_{q}^{a_{1}}, \mathbb{F}_{q}^{a_{2}}, \mathbb{F}_{q}^{a_{3}}\right) \mid \sum_{i=1}^{3}\left\langle\alpha_{a_{i}}(x), \beta_{a_{i}}(x)\right\rangle_{a_{i}}=\sum_{i=1}^{3} r_{a_{i}}(0)=\right.$ 0 for all $\left.\alpha_{a_{i}}(x) \in C_{i}\right\}$

Theorem 15. Let C be a polycyclic code. If C^{\prime} is annihilator dual of C, then $\Phi\left(C^{\prime}\right)$ is annihilator dual for an a-quasi cyclic code $\Phi(C)$.

Proof. Let $\beta(x) \in C^{\prime}$, then for every $\alpha(x) \in C,\langle\alpha(x), \beta(x)\rangle_{a}=r(0)=0$. Since $\alpha(x), \beta(x)$ is an element of $R^{a}, \alpha(x)=\sum_{i=1}^{3} e_{i} \alpha_{a_{i}}(x), \beta(x)=\sum_{i=1}^{3} e_{i} \beta_{a_{i}}(x)$.

$$
\left\langle\sum_{i=1}^{3} e_{i} \alpha_{a_{i}}(x), \sum_{i=1}^{3} e_{i} \beta_{a_{i}}(x)\right\rangle_{a}=\sum_{i=1}^{3} e_{i}\left\langle\alpha_{a_{i}}(x), \beta_{a_{i}}(x)\right\rangle_{a}=\sum_{i=1}^{3} e_{i} r_{a_{i}}(0)=0
$$

where $\alpha_{a_{i}}(x), \beta_{a_{i}}(x) \equiv r_{a_{i}}(x)\left(\bmod x^{n}-a_{i}(x)\right)$ which shows that $r_{a_{i}}(0)=0$ for all i. To show $\Phi(\beta(x))=\left(\beta_{a_{1}}(x), \beta_{a_{2}}(x), \beta_{a_{3}}(x)\right) \in \Phi\left(C^{\prime}\right)$, let $\alpha_{a_{i}}(x) \in C_{i}$ then

$$
\sum_{i=1}^{3}\left\langle\alpha_{a_{i}}(x), \beta_{a_{i}}(x)\right\rangle_{a_{i}}=\sum_{i=1}^{3} r_{a_{i}}(0)=0 .
$$

Thus, $\Phi(\beta(x))=\left(\beta_{a_{1}}(x), \beta_{a_{2}}(x), \beta_{a_{3}}(x)\right) \in \Phi\left(C^{\prime}\right)$.

Theorem 16. Let C be an a-polycyclic code over R, then

- C is annihilator self-orthogonal if and only if both $C_{a_{1}}, C_{a_{2}}$ and $C_{a_{3}}$ are annihilator self-orthogonal over \mathbb{F}_{q}.
- C is annihilator self-dual if and only if both $C_{a_{1}}, C_{a_{2}}$ and $C_{a_{3}}$ are annihilator self-dual over \mathbb{F}_{q}.
- C is annihilator LCD if and only if $C_{a_{1}}, C_{a_{2}}$ and $C_{a_{3}}$ are annihilator $L C D$ over \mathbb{F}_{q}.

Proof. The proof of this similar to that of Theorem 15.
Example 1. Let $a(x)=4 x^{3}+1$, then $R^{a}=\frac{\mathbb{F}_{5}[x]}{\left\langle x^{6}-a(x)\right\rangle}$. Let $C=\left\langle g_{a_{i}}(x)\right\rangle=\left\langle x^{2}+4 x+4\right\rangle$, then $C^{\prime}=\left\langle h_{a_{i}}(x)\right\rangle=\left\langle\left(x^{2}+3 x+4\right)^{2}\right\rangle$. Since $\left(g_{a_{i}}(x), h_{a_{i}}(x)\right)=1$, there exists a LCD annihilator code of parameter $[18,12,2]_{5}$.

Example 2. Let $a(x)=-\left(x^{4}+x^{6}-1\right)$, then $R^{a}=\frac{\mathbb{F}_{3}[x]}{\left\langle x^{8}-a(x)\right\rangle}$. Let $C=\left\langle g_{a_{i}}(x)\right\rangle=$ $\left\langle x^{4}+2 x^{2}+2\right\rangle$, then $C^{\prime}=\left\langle h_{a_{i}}(x)\right\rangle=\left\langle\left(x^{2}+1\right)^{2}\right\rangle$. Since $\left(g_{a_{i}}(x), h_{a_{i}}(x)\right)=1$, there exists a LCD annihilator code of parameter $[24,15,3]_{3}$.

Example 3. Let $a(x)=-\left(x^{4}-1\right)$, then $R^{a}=\frac{\mathbb{F}_{3}[x]}{\left\langle x^{6}-a(x)\right\rangle}$. Let $C=\left\langle g_{a_{i}}(x)\right\rangle=\left\langle x^{3}+2 x^{2}+\right.$ $x+1\rangle$, then $\left(g_{a_{i}}(x), h_{a_{i}}(x)\right)=1$ and hence there exists a LCD annihilator code of parameter $[18,9,3]_{3}$.

Acknowledgements. The author are thankful to Prof. Gutman and the anonymous referees for their careful reading and the suggestions that improved the article.

Conflict of interest. The author declares no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] A. Alahmadi, S.T. Dougherty, A. Leroy, and P. Solé, On the duality and the direction of polycyclic codes, Adv. Math. Commun. 10 (2016), no. 4, 921-929 https://doi.org/10.3934/amc.2016049.
[2] A. Fotue-Tabue, E. Martínez-Moro, and J.T. Blackford, On polycyclic codes over a finite chain ring., Adv. Math. Commun. 14 (2020), no. 3, 455-466 https://doi.org/10.3934/amc. 2020028.
[3] S.R. López-Permouth, B.R. Parra-Avila, and S. Szabo, Dual generalizations of the concept of cyclicity of codes., Adv. Math. Commun. 3 (2009), no. 3, 227-234 https://doi.org/10.3934/amc.2009.3.227.
[4] W. Qi, On the polycyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$, Adv. Math. Commun., In press https://doi.org/10.3934/amc. 2022015.

