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Abstract: For n ≥ 2t + 1 where t ≥ 1, the circulant graph Cn(1, 2, . . . , t) consists

of the vertices v0, v1, v2, . . . , vn−1 and the edges vivi+1, vivi+2, . . . , vivi+t, where i =
0, 1, 2, . . . , n − 1, and the subscripts are taken modulo n. We prove that the metric

dimension dim(Cn(1, 2, . . . , t)) ≥
⌈
2t
3

⌉
+ 1 for t ≥ 5, where the equality holds if and

only if t = 5 and n = 13. Thus dim(Cn(1, 2, . . . , t)) ≥
⌈
2t
3

⌉
+ 2 for t ≥ 6. This bound

is sharp for every t ≥ 6.
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1. Introduction

The distance d(u, v) between two vertices u and v in a graph G is the number of edges

in a shortest path between u and v. The diameter of G is the distance between any

two farthest vertices in G. For an ordered set of z vertices W = {w1, w2, . . . , wz}, we

investigate the representation of distances of v with respect to W :

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wz)).

∗ Corresponding Author



2 Metric dimension of circulant graphs

If every two vertices of G have distinct representations, then W is a resolving set of

G. The number of vertices in a smallest resolving set is the metric dimension dim(G).

Various modifications of the metric dimension such as the edge metric dimension (see

[9]) and the 2-dimension (see [6]) have been studied, however the metric dimension is

the main, most well-known and the most studied invariant in the area.

Due to their symmetries, circulant graphs are very interesting. For n ≥ 2t + 1 where

t ≥ 1, the circulant graph Cn(1, 2, . . . , t) consists of the vertices v0, v1, v2, . . . , vn−1
and the edges vivi+1, vivi+2, . . . , vivi+t, where i = 0, 1, 2, . . . , n−1, and the subscripts

are taken modulo n. The graphs Cn(1, 2, . . . , t) are complete for n = 2t+ 1, therefore

we usually consider n ≥ 2t + 2.

Let n = 2(d − 1)t + 1 + r, where d ≥ 2, t ≥ 1 and 1 ≤ r ≤ 2t. Then Cn(1, 2, . . . , t)

has diameter d. The metric dimension of Cn(1, 2, . . . , t) for general t was studied in

[2], [3], [5], [11], [10] and [12].

Let us present known results on dim(Cn(1, 2, . . . , t)) for small t (and n ≥ 2t+2). The

case t = 1 is trivial since Cn(1) is a cycle. For cycles,

dim(Cn(1)) = 2 =

⌈
2t

3

⌉
+ 1. (1)

For t = 2, by [1] and [8],

dim(Cn(1, 2)) =

{
3 =

⌈
2t
3

⌉
+ 1 if 1 ≤ r ≤ 3,

4 =
⌈
2t
3

⌉
+ 2 if r = 4.

(2)

For t = 3, by [1] and [7],

dim(Cn(1, 2, 3)) =

{
4 =

⌈
2t
3

⌉
+ 2 if 1 ≤ r ≤ 5,

5 =
⌈
2t
3

⌉
+ 3 if r = 6.

(3)

For t = 4 where n 6∈ {11, 19}, by [4],

dim(Cn(1, 2, 3, 4)) =


4 =

⌈
2t
3

⌉
+ 1 if r = 3,

5 =
⌈
2t
3

⌉
+ 2 if r = 1, 2, 4, 5,

6 =
⌈
2t
3

⌉
+ 3 if r = 6, 7, 8,

(4)

and

dim(C11(1, 2, 3, 4)) = dim(C19(1, 2, 3, 4)) = 4. (5)

By [10], for n ≥ t2 + 1 where t ≥ 2,

dim(Cn(1, 2, . . . , t)) ≥ t.
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In [12], it was shown that for small n and t ≥ 9, dim(Cn(1, 2, . . . , t)) can be less than

t by proving that for every t ≥ 7, there exists an n ∈ [2t + 5, 2t + 8] such that

dim(Cn(1, 2, . . . , t)) ≤
⌈

2t

3

⌉
+ 2.

In [12], the authors also presented the following conjecture.

Conjecture 1. [12] For every t ≥ 6,

dim(Cn(1, 2, . . . , t)) ≥
⌈
2t

3

⌉
+ 2.

In this paper, we prove Conjecture 1 by showing that

dim(Cn(1, 2, . . . , t)) ≥
⌈

2t

3

⌉
+ 1

for t ≥ 5, where the equality holds if and only if t = 5 and n = 13. From this result

and (1) – (5), we can see that dim(Cn(1, 2, . . . , t)) ≥
⌈
2t
3

⌉
+ 1 holds for every t ≥ 1.

2. Results

Let n = 2(d− 1)t + 1 + r, where 1 ≤ r ≤ 2t. Then Cn(1, 2, . . . , t) has diameter d and

for every vertex vi there are exactly r vertices at distance d from vi. We present lower

bounds on dim(Cn(1, 2, . . . , t)) in terms of the number of vertices and diameter.

Theorem 2. Let n = 2(d− 1)t+ 1 + r, where d ≥ 2, t ≥ 1 and 1 ≤ r ≤ 2t. Then

dim(Cn(1, 2, . . . , t)) ≥

{
n

2d−2
if r = 1,

n
2d−1

if r > 1.

Proof. Let W be a resolving set in Cn(1, 2, . . . , t) and let vi ∈W . Then

vi−t, vi−t+1, . . . , vi−1; vi+1, vi+2, . . . , vi+t

are the vertices at distance 1 from vi,

vi−2t, vi−2t+1, . . . , vi−t−1; vi+t+1, vi+t+2, . . . , vi+2t

are the vertices at distance 2 from vi (if n ≥ 3t+1), etc. Hence, vertices at distance j

from vi, where j < d, form two sets of consecutive vertices. The pairs of consecutive

vertices

vi+t, vi+t+1; vi+2t, vi+2t+1; . . . ; vi+(d−1)t, vi+(d−1)t+1,
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as well as

vi−t, vi−t−1; vi−2t, vi−2t−1; . . . ; vi−(d−1)t, vi−(d−1)t−1

have different distances from vi, so they are resolved by vi, and we call them bor-

dering pairs with respect to vi. However, if r = 1, then vi−(d−1)t−1 = vi+(d−1)t+1

since there is a unique vertex at distance d from vi. In this case we do not call the

pairs vi+(d−1)t, vi+(d−1)t+1 and vi−(d−1)t, vi−(d−1)t−1 bordering. Instead, the vertex

vi+(d−1)t+1 is called a singleton.

Bordering pairs define a border between them, so a border splits vertices at distance

j from those at distance j + 1, where 1 ≤ j < d (or j < d− 1 if r = 1). Observe that

vi defines 2(d− 1) borders if r > 1 and 2(d− 2) borders if r = 1.

Consider pairs of consecutive vertices of Cn(1, 2, . . . , t). If vx and vx+1 are resolved

and none of them is a singleton or in W , then there must be a vertex vi ∈ W for

which vx, vx+1 is a bordering pair. Denote |W | = `. Then borders split the vertices of

Cn(1, 2, . . . , t) into at most ` ·2(d−1) sets (into at most ` ·2(d−2) sets if r = 1) which

we call states. If each state contains exactly one vertex, then all pairs of consecutive

vertices are resolved. If there are more vertices in a state, say k, then they are resolved

only if k− 1 of them are among singletons or in W . Thus, since W is a resolving set,

n ≤ 2`(d− 1) + ` = `(2d− 1) if r > 1 and

n ≤ 2`(d− 2) + 2` = `(2d− 2) if r = 1,

which gives ` ≥ n
2d−1 if r > 1, and ` ≥ n

2d−2 if r = 1.

We present two corollaries of Theorem 2.

Corollary 1. Let n = 2(d− 1)t+2, where d ≥ 2 and t ≥ 1. Then dim(Cn(1, 2, . . . , t)) ≥
t+ 1.

Proof. We use n = 2(d − 1)t + 2 in Theorem 2 and get dim(Cn(1, 2, . . . , t)) ≥⌈
2(d−1)t+2

2d−2

⌉
= t + 1.

Corollary 2. Let n = 2(d− 1)t+ 1 + r, where d ≥ 2, t ≥ 1 and 2 ≤ r ≤ 2t. Then

dim(Cn(1, 2, . . . , t)) ≥ t+

⌈
r − t+ 1

2d− 1

⌉
.

Proof. By Theorem 2, we have

dim(Cn(1, 2, . . . , t)) ≥
⌈
2(d−1)t+r+1

2d−1

⌉
=
⌈
(2d−1)t−t+r+1

2d−1

⌉
= t+

⌈
r−t+1
2d−1

⌉
.
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For given t, let us consider circulant graphs Cn(1, 2, . . . , t) with the smallest possi-

ble number of vertices. Clearly, dim(Cn(1, 2, . . . , t)) = 2t for n = 2t + 1, because

C2t+1(1, 2, . . . , t) are complete graphs. By Corollary 2.8 presented in [2], we obtain

dim(Cn(1, 2, . . . , t)) = t+ 1 for n = 2t+ 2 (observe that t+ 1 ≥ d 2t3 e+ 2 if t ≥ 3). So,

we study Cn(1, 2, . . . , t) for n ≥ 2t + 3.

In Lemmas 1, 2 and 3, we study the cases r = 2, r = 3 and r = 4, where n = 2t+1+r

(which means that the diameter is 2). Note that these cases were considered in [2]

and the authors of [2] assumed that dim(Cn(1, 2, . . . , t)) = t; see their Theorem 2.16.

However, in the proof of Theorem 2.16, they use their lower bound from Theorem

2.15, which does not hold. Easy counterexamples are the cases t = 10, 11, 14 for

2t + 3 ≤ n ≤ 2t + 5. For these cases, we have

dim(Cn(1, 2, . . . , 10)) = 9, dim(Cn(1, 2, . . . , 11)) = 10 and dim(Cn(1, 2, . . . , 14)) = 12.

For example {v0, v1, v6, v7, v9, v10, v14, v15, v16} is a resolving set of C23(1, 2, . . . , 10)

and {v0, v1, v2, v4, v6, v10, v12, v13, v14, v22, v24, v26} is a resolving set of

C32(1, 2, . . . , 14).

In the proofs of Lemmas 1, 2 and 3, we denote a minimum resolving set in

Cn(1, 2, . . . , t) by W . A vertex in W is denoted by ◦, a vertex which is not in W

is denoted by ×. If it is not determined whether a vertex is in W or not, then it is

denoted by ·. We use parentheses in figures. Vertices inside parentheses have distance

2 from a particular vertex in W . Parentheses create borders and sets of vertices which

are not separated by any parenthesis are called states. Outer states are states which

are not inside any parentheses.

Lemma 1. Let n = 2t+ 3 where t ≥ 5. Then

dim(Cn(1, 2, . . . , t)) ≥
4t+ 4

5
.

Proof. For any vi ∈W , there are two vertices at distance 2 from vi, therefore there

are two vertices inside one set of parentheses. Observe that a vertex outside W which

is inside no parentheses, has distance 1 from all the vertices of W . Therefore, there

can be at most one vertex outside parentheses which is not in W .

A vertex in W determines the situation (··). Since the two vertices inside parentheses

must be resolved, we have either (◦·) (or equivalently (·◦)) or (·(·)·). Hence, if we

want to resolve as many vertices as possible, the first situation can be described by

a diagram (◦×) and the second situation by (×(×)×) ◦ ◦. In the first situation, we

use one vertex of W and we resolve one vertex which is not in W , while in the second

situation we use two vertices of W and we resolve three vertices which are not in W .

So, if we want to have |W | as small as possible, the second situation is preferable and

it gives n ≤ 5
2 |W |+ 1 because one vertex outside the parentheses does not have to be

in W . Thus
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dim(Cn(1, 2, . . . , t)) = |W | ≥
2n− 2

5
=

2(2t+ 3)− 2

5
=

4t+ 4

5
.

In Lemma 2, we present a lower bound for dim(Cn(1, 2, . . . , t)), where n = 2(d−1)t+

1 + r, d = 2 and r = 3. Let us note that the proof of Lemma 2 for r = 3 is more

complicated than the proof of Lemma 3 for r = 4.

Lemma 2. Let n = 2t+ 4 where t ≥ 5. Then dim(Cn(1, 2, . . . , t)) ≥
⌈
2t
3

⌉
+ 2.

Proof. Since t ≥ 5, we have n ≥ 14. By Theorem 2, dim(Cn(1, 2, . . . , t)) ≥ n
2d−1 =

2t+4
3 = 2t+1

3 + 1. So if t ≡ 0 (mod 3), then dim(Cn(1, 2, . . . , t)) ≥ d 2t3 e + 2. If

t ≡ 1 (mod 3) or t ≡ 2 (mod 3), then dim(Cn(1, 2, . . . , t)) ≥ d 2t3 e+ 1. We prove that

dim(Cn(1, 2, . . . , t)) ≥ d 2t3 e+ 2.

Assume to the contrary that dim(Cn(1, 2, . . . , t)) = d 2t3 e + 1. So t ≡ 1 (mod 3) or

t ≡ 2 (mod 3). Since dim(Cn(1, 2, . . . , t)) = d 2t3 e + 1, the vertices of a minimum

resolving set W form 2(d 2t3 e+ 1) parentheses, and hence 2(d 2t3 e+ 1) states. In these

states, there are n − (d 2t3 e + 1) vertices which are not in W . If t ≡ 1 (mod 3), then

2(d 2t3 e+ 1) = 2t+ 4− (d 2t3 e+ 1), and so all the states must contain a vertex which is

not in W . (Recall that no state can contain two vertices outside W .) On the other

hand, if t ≡ 2 (mod 3), then 2(d 2t3 e+ 1) = 2t + 4− (d 2t3 e+ 1) + 1, and so there is at

most one state without a vertex outside W . This implies that there are at most two

outer states (because two vertices not in W in two different outer states cannot be

resolved). Observe that since an empty state does not contain a vertex outside W ,

there can be at most one empty state.

In the reasoning we often use the following fact. Suppose that there is a collection

of consecutive states with at least three consecutive vertices, finished by a closing

parenthesis, such that every state in the collection contains exactly one vertex outside

W . Moreover, suppose that there cannot be (another) empty state in the collection.

Then the finishing closing parenthesis bounds an outer state. The typical examples

are (◦ × ◦) or (×(× ◦ ×) × ), although in these cases also the left-hand side final

parenthesis bounds an empty state.

In figures we describe situations on opposite sides of a cycle (v0, v1, . . . , v2t+4). We

distinguish several cases.

Case 1: There is an empty state.

This situation is depicted in Figure 1.1. Note that all the states except for the empty

state must contain a vertex outside W and there is at most one outer state different

from the empty one.

First suppose that the underlined vertices in Figure 1.1 are in W , see Figure 1.2.

Since there is at most one empty state, there cannot be another parentheses between

the bold ones in the upper line of Figure 1.2. So the bold parentheses bound outer

states. But since there is an empty state, there is at most one outer state (otherwise

two outer states contain vertices outside W and these vertices are not distinguished).
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Thus the bold parentheses bound the unique outer state and all the parentheses are

already present in Figure 1.2. Since n ≥ 14, the outer state contains exactly four

vertices from W and at least four vertices outside W , a contradiction.

(· · ·)(· · ·) ( · (·(·)(·)·) · ) (· · (×)(··)×) (··(×)(×(×)×)× )
◦··◦ ◦ ◦ ◦◦ ◦ ◦ ×◦ · · ◦ ◦ ◦ × ◦

Figure 1.

Now suppose that one of the underlined vertices in Figure 1.1 is in W and the other

one is not in W . By symmetry, we may assume the situation depicted in Figure 1.3.

If the underlined vertices are in different states, then we have the situation depicted

in Figure 1.4. Observe that the bold parenthesis bounds the unique outer state (since

the empty state is not outer in this case). In the upper line there are five consecutive

vertices which are not in W , so the underlined vertices in the bottom line are in an

outer state. But then the underlined vertices in the upper line must be outside W ,

since otherwise there will be another parentheses on the right-hand side of already

determined vertices in the bottom line of Figure 1.4, which means that there will

be two different outer states, one starting with the bold parenthesis in the upper

line of Figure 1.4, and the other containing the three consecutive vertices of W in the

bottom line, a contradiction. Consequently, the nonempty outer state contains all five

determined vertices in the bottom line including the vertex outside W . Moreover, the

underlined vertices in the upper line must be in different states, which gives a situation

depicted in Figure 2.1. And in the outer state must be all determined vertices in the

bottom line including two vertices outside W , a contradiction.

(· · (×)× (×)(×(×)×)× ) (· · (×)(◦×)×) (· · (×)(×◦)× ) (· · ·)(· · ·)
· · ◦ ◦ ◦ × ◦ × ◦ ( ◦ ◦ × )◦ (· ◦ ◦)× ◦· ◦××◦

Figure 2.

If the underlined vertices in Figure 1.3 are in a common state, then one is in W and

one is not in W . If the left-hand side vertex is in W , then we have the situation

depicted in Figure 2.2. Then the bold parentheses bound two different outer states,

and each of them must contain a vertex which is not in W , a contradiction. So the

right-hand side vertex is in W , see Figure 2.3. Then the bold parentheses bound the

nonempty outer state. Moreover, the underlined vertex cannot be in W , since then

there would be another empty state. Hence, the underlined vertex is not in W . But

since no state contains two vertices which are not in W , the underlined vertex cannot

exist (or in other words, it must coincide with the vertex × on the right-hand side of

the upper line). Thus n = 10, a contradiction.

Finally, suppose that none of the underlined vertices in Figure 1.1 is in W , see Figure

2.4. Since underlined vertices cannot belong to a common state, by symmetry we
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(· ◦ ·)(· × ·) (· ◦ ◦)(· × ·) (· ◦ ×)(· × ·) (·(·◦)×)(· × ·)
◦ × (× ◦ ·) ◦(×(×◦) · ) ◦ × (× ◦ ·) ◦ × (× ◦ ◦)

Figure 3.

may assume the situation depicted in Figure 3.1. In this figure the symmetric vertex

in the upper line (that one which is denoted by ×) cannot be in W since that would

give another empty state. Now suppose that the underlined vertex is in W . That

gives a situation depicted in Figure 3.2. But then the underlined vertex is not in

W and by bold parentheses we have denoted boundaries of two different outer states

(since every state except the unique empty one must contain a vertex outside W ), a

contradiction.

Hence the underlined vertex in Figure 3.1 is not in W , see Figure 3.3. Now if the

underlined vertex is in W , then we get the situation depicted in Figure 3.4. Here

the underlined vertices are not in W and bold parentheses bound two different outer

states, a contradiction.

Hence the underlined vertex in Figure 3.3 is not in W , which means that the vertices

in the parentheses in the bottom line must be in two different states. We consider

three subcases.

(· ◦ ×)(◦ × ·) (◦ ◦ ×)(×× ·) ◦(× ◦ ×)(×× ·) (· ◦ (×) ◦ ×)(×× ·)
( ◦ ×(×) ◦ ×) ◦ × (× (◦×)·) ◦ × (× ◦ (×) · ·) ◦ × (× ◦(×) ◦ ·)

Figure 4.

The situation in the first subcase is depicted in Figure 4.1. Here the bold parentheses

bound two different nonempty outer states, a contradiction.

The situation in the second subcase is depicted in Figure 4.2. Here the underlined ver-

tex must be outside W and again the bold parentheses bound two different nonempty

outer states, a contradiction.

The situation in the third subcase is depicted in Figure 4.3. Here the underlined

vertices cannot be in a common state, so we have a situation depicted in Figure 4.4.

The underlined vertices must be outside W and bold parentheses bound two different

nonempty outer states, a contradiction.

Thus, we can exclude the empty state in the following consideration, which means

that there is no vi ∈W such that also vi+3 ∈W .

Case 2: There is a state containing a unique vertex which is from W .

Then all the remaining states must contain a vertex outside W , which means also

that there is at most one outer state. In this case there are three subcases. The first

one is described in Figure 5.1. Here the underlined vertex must be outside W , and

so the bold parentheses bound two different outer states, a contradiction.

The second subcase is in Figure 5.2. By Case 1, the underlined vertices must be
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(· · (◦) · ·) (· · ·) ◦ (· · ·) (· ◦ ·) ◦ (· · ·) (· ◦ (·) ◦ (·) · ·)
( ◦ · ◦ ) ◦(· · ·)◦ ◦(×·(×) ◦ ·) ◦(× ◦(×) ◦ ·)

Figure 5.

outside W . Hence, they must be in different states. Since there cannot be another

state containing no vertex outside W , by symmetry we have a situation depicted in

Figure 5.3. Now if the underlined vertex is in W , then the situation is depicted in

Figure 5.4 where the underlined vertex is not in W . Hence the bold parentheses

bound two different outer states, a contradiction. So the underlined vertex in Figure

5.3. is not in W . Since every state contains at most one vertex which is not in W ,

we have the situation depicted in Figure 6.1. Here the underlined vertices are not in

W , so the bold parentheses bound two different outer states, a contradiction.

(· ◦ ·) ◦ (· ◦ ·) (◦(··)·) ( ◦ (×(×)·) · ) ( · (◦(×)×) · )
(· ◦ (×)× (×) ◦ ·) ◦(◦ · ·) ◦ ◦ (◦ · ·) ◦(◦ ◦ ·)

Figure 6.

The third subcase is depicted in Figure 6.2. If the underlined vertices are in a com-

mon state, then one of them must be in W . However, then there is another state

which contains a unique vertex and this vertex is in W , a contradiction. Hence, the

underlined vertices are outside W and they are in different states. We have two pos-

sibilities. The first one is depicted in Figure 6.3, where bold parentheses bound two

different outer states, a contradiction. The second one is depicted in Figure 6.4, where

again bold parentheses bound two different outer states, a contradiction.

Case 3: There is a state containing exactly two vertices and both of them are from

W .

Also now, the remaining states must contain a vertex outside W , and there is at most

one outer state. Again, we have three subcases. The first one is depicted in Figure

7.1. But there are two states without a vertex outside W , a contradiction.

The second subcase is in Figure 7.2. From Case 1 we know that the underlined vertices

are outside W , so they must be in different states. By symmetry, we can assume the

situation depicted in Figure 7.3. But then the bold parentheses bound two different

outer states, a contradiction.

(·(◦◦)·) (· · ·) ◦ ◦(· · ·) (· · ◦) ◦ ◦(· · ·) (◦ ◦ (·) · ·)
(·(◦◦)·) ◦(·(··)·)◦ ◦( · (×(×)·) ◦ ) ◦(·(◦·)·)

Figure 7.

The third subcase is depicted in Figure 7.4. Here the underlined vertices must be

outside W and so the bold parentheses bound two different outer states, a contradic-
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tion.

Case 4: There is a state containing at least three vertices and all of them are from

W .

Four consecutive vertices from W imply that there is an empty state, so we need to

consider a possibility of a state containing exactly three consecutive vertices, all from

W . Observe that the remaining states must contain a vertex outside W , and there is

at most one outer state.

We have two subcases. The first one is depicted in Figure 8.1. But there are two

states without a vertex outside W , a contradiction.

The second subcase is in Figure 8.2. Here the bold parentheses bound an outer state.

Consequently n = 8, a contradiction.

(◦ ◦ ◦) (· · ·) ◦ ◦ ◦ (· · ·) ( · (·(·)·) · ) (·(··)·)
(·(·(◦)·)·) ◦( · (·(·)·) · )◦ ◦ ◦ ◦ × ◦ ◦×

Figure 8.

From Cases 1, 2, 3 and 4 it follows that there is no state which does not contain

vertices outside W , which implies that there is at most one outer state, and every

state contains exactly one vertex which is not in W .

Case 5: W contains three consecutive vertices.

This situation is depicted in Figure 8.3. Then all the vertices inside the bold paren-

theses are outside W , and bold parentheses bound an outer state. This outer state

is unique, so there are no other parentheses, and hence there are only three vertices

in W . Since n ≥ 14, the outer state contains at least ten vertices outside W , a

contradiction.

Case 6: W contains two but not three consecutive vertices.

This situation is depicted in Figure 8.4. Then the underlined vertices are in a common

state, so one of them is in W . By symmetry, we may assume that the left-hand side

one is in W , see Figure 9.1. But then the bold parentheses bound two different outer

states, a contradiction.

( · (◦×) · ) (· · (·)··) (· · (×) ◦ ×) ( · ◦(×) ◦ ×)
×( ◦ ◦ × ) × ◦ × ◦ × (× ◦ ×) ◦ × (× ◦(×) ◦ ×)

Figure 9.

Case 7: W contains no pair of consecutive vertices, but vi, vi+2 ∈W for some i.

This situation is depicted in Figure 9.2. We distinguish three subcases with respect

to the underlined vertices in Figure 9.2. First suppose that the left-hand side one is

in W . Then the other is outside W , see Figure 9.3. Now the underlined vertices must

be in distinct states for which we have two possibilities. The first one is described in

Figure 9.4, where bold parentheses bound distinct outer states, a contradiction. The
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second one is described in Figure 10.1, where bold parentheses bound an outer state

which has at least four vertices since n ≥ 14. So in this outer state there are either

two consecutive vertices from W (which was considered in the previous cases) or two

vertices not from W , a contradiction.

(· · (×) ◦ ×)◦ (· · (×)× ◦) ( ◦ ·(×)× ◦) ◦(··(×)× ◦)
(· · (×) ◦ ×) ◦ × (· × ◦)× ◦ × (· × ◦)× (◦ × ·) (· × ◦)× ◦(× ··)

Figure 10.

Now suppose that the right-hand side underlined vertex in Figure 9.2 is in W , see

Figure 10.2. The underlined vertices cannot belong to a common state. So we have

either the situation depicted in Figure 10.3, where bold parentheses bound two distinct

outer states, a contradiction, or the situation depicted in Figure 10.4. Due to Cases 1

and 6, underlined vertices in Figure 10.4 must be outside W . Hence, bold parentheses

bound two distinct outer states, a counterexample.

Finally, suppose that the underlined vertices in Figure 9.2 are in different states. Since

consecutive vertices cannot be in W , we have the situation depicted in Figure 11.1.

Now we can consider underlined vertices in Figure 11.1 analogously as those on Figure

9.2. By previous two subcases, we may assume that they are in different states. And

this procedure can be repeated n−4
2 times until we obtain the other end of the upper

line. Then there are n
2 vertices in W . These n

2 vertices create n parentheses which

bound n states, all of which contain single vertices. But then half of the states do not

contain vertices outside W , a contradiction.

(· · (·) · (·)··) ( · · · )
× ◦ × ◦ × ◦ × ××× ◦ ×××

Figure 11.

Case 8: If vi ∈W , then vi−3, vi−2, vi−1, vi+1, vi+2, vi+3 /∈W .

This situation is depicted in Figure 11.2. Then the bold parentheses bound the outer

state. Since n ≥ 14, this outer state contains at least ten vertices which is not in W ,

a contradiction.

In Lemma 3, we present a lower bound for dim(Cn(1, 2, . . . , t)), where n = 2(d−1)t+

1 + r, d = 2 and r = 4.

Lemma 3. Let n = 2t+ 5 where t ≥ 5. Then

dim(Cn(1, 2, . . . , t)) ≥
⌈
2t

3

⌉
+ 2.

Proof. Since t ≥ 5, we have n ≥ 15. By Theorem 2, dim(Cn(1, 2, . . . , t)) ≥ n
2d−1 =

2t+5
3 = 2t+2

3 +1. So dim(Cn(1, 2, . . . , t)) ≥ d 2t3 e+2 if t ≡ 0 (mod 3) or t ≡ 1 (mod 3),
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and dim(Cn(1, 2, . . . , t)) ≥ d 2t3 e+ 1 if t ≡ 2 (mod 3). Thus, if dim(Cn(1, 2, . . . , t)) =

d 2t3 e+ 1, then t ≡ 2 (mod 3) and every state contains exactly one vertex which is not

in W . We show that such a situation cannot occur.

Assume to the contrary that dim(Cn(1, 2, . . . , t)) = d 2t3 e + 1. So t ≡ 2 (mod 3).

Since dim(Cn(1, 2, . . . , t)) = d 2t3 e+1, the vertices of a minimum resolving set W form

2(d 2t3 e + 1) states. In these states there are n − (d 2t3 e + 1) vertices which are not in

W . Since t ≡ 2 (mod 3), we have then 2(d 2t3 e + 1) = 2t + 5 − (d 2t3 e + 1), and so all

the states must contain exactly one vertex which is not in W . This implies that there

is at most one outer state and there cannot be an empty state.

Analogously as in the proof of Lemma 2, we use the following fact. Suppose that there

is a collection of consecutive states with at least four consecutive vertices, finished

by a closing parenthesis, such that every state in the collection contains exactly one

vertex outside W . Then (recall that there is not an empty state) the finishing closing

parenthesis bounds an outer state.

We distinguish several cases.

Case 1: W contains three consecutive vertices.

This situation is depicted in Figure 12.1. If there are four consecutive vertices in

W , then the situation is depicted in Figure 12.2 and bold parentheses bound the

outer state. That means that all parentheses are already present in Figure 12.2, since

the outer state is unique. So |W | = 4. Since t ≥ 5, we have |W | < d 2t3 e + 1, a

contradiction.

(·(·(··)·)·) ( · (·(·(·)·)·) · )
◦ ◦ ◦ ◦ ◦ ◦◦

Figure 12.

So there are exactly three consecutive vertices in W , see Figure 13.1. But the under-

lined vertices must be resolved, so one of them is in W . By symmetry, we assume

that the left-hand side one is in W , see Figure 13.2. Since every state contains one

vertex outside W , the thick parentheses bound outer states. These outer states are

different, since inbetween there are some other states (see the upper lilne of Figure

13.2). Thus, there are at least two outer states, contradiction.

(·(·(··)·)·) (×(×(◦×)×)×) (·(· · ·)·) (×(··(×)×) · ·)
× ◦ ◦ ◦ × ×( ◦ ◦ ◦ ×) × ◦ ◦× ◦ × ◦ ◦ ×

Figure 13.

Case 2: W contains two but not three consecutive vertices.

This situation is depicted in Figure 13.3. The underlined vertices on Figure 13.3

cannot belong to a common state because then the outer parentheses in the upper

line of Figure 13.3 bound an outer state (recall that there is not an empty state). This
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outer state is unique, so it contains all the vertices, except the five in the upper line

of Figure 13.3. Since n ≥ 15, it contains also both vertices outside W in the bottom

line of Figure 13.3, a contradiction.

So there is a vertex of W neighbouring the chain ×◦ ◦× in the bottom line of Figure

13.3. By symmetry, we may assume that this vertex is on the left-hand side of the

chain, see Figure 13.4. But the underlined vertices must be resolved, so we consider

three subcases.

(· · (×(×)× (×)×) · ·) (· × (×(×)× (×)×) ◦ ×) ◦(×× (×(×)× (×)×) ◦ ×)

◦ × ◦◦ × ◦ (· · ◦ × ) ◦ ◦ × ◦· (· · ◦ × ) ◦ ◦ × ◦(×

Figure 14.

First, suppose that the underlined vertices in Figure 13.4 are in different states. Since

there are not three consecutive vertices in W , we have a situation depicted on Figure

14.1. Here underlined vertices must be in the outer state, due to the vertices outside W

in the upper line. But the outer state must contain a vertex outside W . By symmetry,

we may assume that it is the right-hand side neighbour of underlined vertices, which

gives a situation depicted on Figure 14.2, where bold parentheses bound the outer

state. The underlined vertex in Figure 14.2 cannot be in W since that would give an

empty state. But since the outer state contains exactly one vertex outside W , in the

bottom line we have either (· · ◦ × ) ◦ ◦ × (◦× or (· · ◦ × ) ◦ ◦ × ◦(×. The first case

is impossible, since the last vertex before outer state is outside W in the upper line

of Figure 14.2, while in the first case it is in W (see the underlined vertex). So we

have the second case which is depicted in Figure 14.3. Here three bold parentheses

bound the outer state. Since it is unique, the two bold parentheses on the right-hand

side must coincide, which gives n = 15. Thus, all vertices are already in the diagram.

Hence, when splitting the vertices between consecutive vertices of W , the situation is

◦(× ◦(×× (×(×)× (×)×) ◦ ×) ◦ ×◦

and there are two vertices outside W in a common state, a contradiction.

So now suppose that the underlined vertices in Figure 13.4 are in a common state.

Then one of them must be in W . Suppose that it is the right-hand side one, see Figure

15.1. Since every state must contain one vertex outside W , the bold parenthesis

bounds the outer state. We have two possibilities for the underlined vertex in Figure

15.1. First suppose that it is in W , see Figure 15.2. Then its neighbour must be

outside W since every state must contain a vertex outside W , and for the same reason

the bold parentheses bound the outer state. However, due to the bottom line, there are

at least two different outer states, a counterexample. So suppose that the underlined

vertex in Figure 15.1 is not in W , see Figure 15.3. Then the bold parenthesis in the

bottom line bounds an outer state due to three consecutive vertices outside W in the

upper line. But since there is not an empty state, the underlined vertices cannot be

in W . Hence, the underlined vertices are split by the bold parenthesis of the upper

line which gives n = 13, a contradiction.
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(× (× ◦ (×)×)··) (× (× ◦ (×)×) ◦ ×) (× (× ◦ (×)×)× ·) (× (◦ × (×)×) · ·)
◦(× ◦ ◦×) (· · ◦(×) ◦ ◦×) ·· ◦ (× ◦ ◦ ×) · ◦ ×( ◦ ◦ × ·)

Figure 15.

Finally, suppose that the left-hand side underlined vertex on Figure 13.4 is in W , see

Figure 15.4. Since every state must contain vertex outside W , the bold parentheses

bound the outer state. But for the same reason underlined vertex in Figure 15.4

cannot be in W . Hence, this vertex cannot be in the outer state, since this state

already has a vertex outside W . So the outer state contains exactly two vertices and

n = 11, a contradiction.

Case 3: W contains no pair of consecutive vertices, but vi, vi+2 ∈W for some i.

This situation is depicted in Figure 16.1. Since W contains no consecutive vertices,

underlined vertices in Figure 16.1 belong to a common state. Hence, one of them is

in W . By symmetry, we may assume that the right-hand side one is in W , see Figure

16.2.

(· · (··) · ·) (··(×◦) · ·) (· · ·(×)× (×◦) · ·) (× ◦ ×(×)× (×◦) · ·)
× ◦ × ◦ × (× ◦ ×◦)× (× ◦ × ◦ )× ·◦ (× ◦ × ◦ )× (× ◦ ×·)

Figure 16.

First suppose that the underlined vertices in Figure 16.2 belong to different states.

This gives the situation depicted on Figure 16.3 since consecutive vertices are not

in W and every state contains a vertex outside W . Moreover, the bold parenthesis

bounds an outer state due to three consecutive vertices outside W in the upper line.

Since W does not have consecutive vertices, the underlined vertex in Figure 16.3 is

outside W . And since there cannot be two vertices outside W in a state, we must

have a situation depicted in Figure 16.4. Due to four consecutive vertices outside

W , we have an outer state with a single vertex outside W , see Figure 16.4. Since

underlined vertices must be in different states, we get a situation depicted in Figure

17.1. But then the underlined vertices are in a common state, so one is in W , see

Figure 17.2. Then the bold parenthesis in the upper line bounds another outer state,

a contradiction.

· ◦ (× ◦ ×(×)× (×◦) · ·) (× ◦(×◦)× (×)× (×◦) · ·)
(× ◦ × ◦ )× (× ◦(×·) · ·) (× ◦ × ◦ )× (× ◦(×◦)× ·)

Figure 17.

So the underlined vertices in Figure 16.2 belong to a common state. But the left-hand

side one cannot be in W , since then there will be a state without a vertex outside W .

So we get the situation depicted in Figure 18.1. Now underlined vertices in Figure
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18.1 cannot be in W since that will give a state without a vertex outside W . So

they are outside W and hence belong to different states, see Figure 18.2. Since every

state contains exactly one vertex outside W , the bold parentheses bound the outer

state. And since there cannot be an empty state, the underlined vertices in Figure

18.3 are outside W . Hence, the outer state contains at least two vertices outside W ,

a contradiction.

(× ◦ (×◦)··) (× ◦(×◦)× (×) · ··) ·(× ◦(×◦)× (×) · ··)
(× ◦ (×◦)× ·) ◦ · (× ◦(×◦)× ·) ◦·(× ◦(×◦)××) · ··

Figure 18.

Case 4: If vi, vj ∈W , then |i− j| ≥ 3 and there is k such that vk, vk+3 ∈W .

This situation is depicted in Figure 19.1. By previous cases, at most one of the

underlined vertices in Figure 19.1 can be in W , and so these vertices cannot all

belong to a common state. By our restrictions, there must be parenthesis separating

the right-hand side vertex, see Figure 19.2. Now we can repeat the arguments and

we get n = 3k for some k. Observe that k = |W |. Since n = 2t + 5, the value k is

odd, and so considering the vertices opposite to vi (those in the upper line of Figure

19.2), we get that the situation is ×× (◦)××(◦)××, a contradiction.

(· · ·(·)· · ·) (· · ·(·) · ·(·) · ··) ( · · · ·)
×× ◦ ×× ◦ ×× ×× ◦ ×× ◦ × × ◦ × × ××× ◦ ×××

Figure 19.

Case 5: If vi ∈W , then vi−3, vi−2, vi−1, vi+1, vi+2, vi+3 /∈W .

This situation is depicted in Figure 19.3. Due to two collections of three consecutive

vertices outside W in the bottom line, bold parentheses bound the outer state. This

state is unique (so there cannot be another parentheses in the diagram) and it contains

n − 4 vertices. Since n ≥ 15 and only one of the n − 4 vertices is in W , the outer

state contains at least ten vertices outside W , a contradiction.

In Lemma 4, we present a lower bound for dim(Cn(1, 2, . . . , t)), where n = 2(d−1)t+

1 + r and t = 5. Lemma 4 is used in the proof of Theorem 3. Note that the set of

vertices adjacent to v is the neighbourhood of v and it is denoted by N(v).

Lemma 4. Let n = 10(d−1)+1+r where d ≥ 6 and 3 ≤ r ≤ 4. Then dim(Cn(1, 2, 3, 4, 5))
≥ 6.

Proof. By way of contradiction, suppose that dim(Cn(1, 2, 3, 4, 5)) ≤ 5. So, there

exists a resolving set containing (at most) five vertices. Take one vertex from the

resolving set of Cn(1, 2, 3, 4, 5), say vx, and consider its neighbourhood. In Figure

20 we have the vertices of N(vx) as a sequence vx−5, vx−4, . . . vx, vx+1, . . . , vx+5, and
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those distinct from vx are denoted by circles. By vertical bars we denote borders

caused by vx and by dots we denote places for possible borders which should appear

due to the other vertices of the resolving set. However, from the two possible borders

between the pairs vx−1vx and vxvx+1, one is sufficient. So, to resolve all the vertices

in Figure 20, we need nine borders. If another vertex from the resolving set appears

in N(vx), then we can regard this vertex as a very specific border, since this specific

border resolves only one vertex. Anyway, such a vertex creates only two borders in

N(vx). And since we need nine borders using only four remaining vertices of the

resolving set, some vertex, say vy, must create three borders in N(vx). But this is

possible only if vertices at distance d from vy form a subset of {vx−4, vx−3, . . . , vx+4}.

∣∣ ◦ . ◦ . ◦ . ◦ . ◦ .vx. ◦ . ◦ . ◦ . ◦ . ◦ ∣∣
Figure 20.

If r = 4, then vertices at distance d from vy must be {vx−4, vx−3, vx−2, vx−1} so

that the third border caused by vy is between vx+4 and vx+5, or they must be

{vx+1, vx+2, vx+3, vx+4}. If r = 3, then we have more choices. Anyway, to resolve all

the vertices in N(vx), the resolving set must contain a vertex (vy in our case) which is

opposite to vx. (It suffices to take just the vertices vz+bn2 c−3, vz+b
n
2 c−2, . . . , vz+b

n
2 c+4

as being oppoite to vz.) Then also vx is opposite to vy. Since we suppose that there

are five vertices in the resolving set (and |N(vx)| is much smaller than n
2 ), there must

be a vertex in the resolving set, say va, which is opposite to two vertices of the resolv-

ing set, say vb and vc. Then the sets of vertices at distance d from vb (from vc) are

contained in va−4, va−3, . . . , va+4. In the following we consider the situation in N(va)

in detail. Borders caused by va are denoted by vertical bars, while borders caused by

vb (by vc) are denoted by “()” (by “[]”), so that the vertex which causes the borders

is not inside the brackets.

Case 1: r = 4.

Up to symmetry vb and vc cause borders as described in Figure 21. However, there

remain six places for the borders which should appear due to remaining two vertices

of the resolving set. But the only possibilities for vertices creating three borders in

N(va) are already occupied by vb and vc, so the resolving set cannot resolve all the

vertices of N(va).

∣∣ ◦ [(◦ ◦ ◦◦)va[◦ ◦ ◦◦]) ◦ ∣∣
Figure 21.

Case 2: r = 3.

Before we proceed to subcases, we introduce one notion. By index distance we mean

the distance of vertices (or edges, i.e. possible borders) in Cn(1). So vi and vi+t
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have index distance t although their distance is 1 in Cn(1, 2, . . . , t). Observe that if a

vertex vx creates two distinct borders, then their index distance is either 5k or 5k+ 1

(if vx is between the borders) or 5k + 3 (if all the vertices at distance d from vx are

between the borders).

We extend Figure 21 to the second neighbourhood of va which is N(N(va)). We use

the fact that n is big enough. Observe that for d ≥ 6, we have n = 10(d−1)+1+r ≥ 54,

so n
2 ≥ 27.

Up to symmetry, we have two possibilities for vb. Thus, we consider four subcases for

the position of vb and vc, see Figure 22.

(i)
∣∣ ◦ (◦[◦.◦, ◦∣∣ ◦ (◦[◦◦)◦]va ◦ ◦◦)◦] ◦ ∣∣◦ : ◦; ◦)◦] ◦ ∣∣

(ii)
∣∣ ◦ [(◦. ◦ . ◦ . ◦ ∣∣ ◦ [(◦ ◦ ◦) ◦ va[◦ ◦ ◦]) ◦ ◦∣∣ ◦ ◦◦]) ◦ ◦∣∣

(iii)
∣∣ ◦ (◦[◦.◦, ◦∣∣ ◦ (◦[◦◦) ◦ va ◦ [◦◦)◦] ◦ ∣∣◦ : ◦; ◦)◦] ◦ ∣∣

(iv)
∣∣ ◦ [◦(◦.◦, ◦∣∣ ◦ [◦(◦ ◦ ◦)va[◦ ◦ ◦]◦) ◦ ∣∣◦ : ◦; ◦]◦) ◦ ∣∣

Figure 22.

First consider the subcase (i). Possible borders denoted by “.” and “,” are at index

distances 14, 15 and 13, 14 to possible borders “:” and “;”, respectively. But index

distance 14 cannot occur as an index distance between two borders caused by a single

vertex of the resolving set. Even if a vertex adjacent to the possible border is in

the resolving set, then consider possible borders between the next five vertices (i.e.

N(N(N(va)))). And if there is the fourth vertex of the resolving set between these

five vertices, then consider the five vertices of N(N(N(va))) on the other side of va.

Observe that here we need 25 = 15 + 5 + 5 < n
2 vertices, which is satisfied for d ≥ 6.

Hence, the borders “.” and “;” (at mutual index distance 15) are caused by one vertex

of the resolving set, say ve, and borders “,” and “:” (at mutual index distance 13)

are caused by vf . But then between “,” and “:” there are vertices at distance d from

vf . Consequently, ve has no vertex which is opposite to it and so N(ve) cannot be

resolved.

Subcase (ii) is impossible since the four vertices va−9, va−8, va−7, va−6 cannot be re-

solved by the two remaining vertices of the resolving set.

Finally, subcases (iii) and (iv) can be reduced to subcase (i), since they have identical

position of the possible borders “.”, “,”, “:” and “;”, see Figure 22.

In the proof of Theorem 3, we use also the following result of Chau and Gosselin [2].

Lemma 5. Let n = 10(d− 1) + 3 where d ≥ 3. Then dim(Cn(1, 2, 3, 4, 5)) = 6.

Theorem 3 is the main result of this paper.

Theorem 3. For t ≥ 5,

dim(Cn(1, 2, . . . , t)) ≥
⌈
2t

3

⌉
+ 1,
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where the equality holds if and only if t = 5 and n = 13.

Proof. Let n = 2(d− 1)t + 1 + r, where d ≥ 2, t ≥ 5 and 1 ≤ r ≤ 2t. If r = 1, then

by Corollary 1, we get

dim(Cn(1, 2, . . . , t)) ≥ t+ 1 =

⌈
2t

3

⌉
+

⌊
t

3

⌋
+ 1 ≥

⌈
2t

3

⌉
+ 2.

Let r ≥ 2. By Corollary 2, we have

dim(Cn(1, 2, . . . , t)) ≥ t+

⌈
r − t+ 1

2d− 1

⌉
= t−

⌊
t− r − 1

2d− 1

⌋
(6)

≥ t−
⌊
t− 3

3

⌋
= t−

⌊
t

3

⌋
+ 1 =

⌈
2t

3

⌉
+ 1,

where the second inequality is equality if and only if

⌊
t− r − 1

2d− 1

⌋
=

⌊
t− 3

3

⌋
. (7)

We consider several cases.

Case 1: r ≥ 5.

Then from (6), we get

dim(Cn(1, 2, . . . , t)) ≥ t−
⌊
t− r − 1

2d− 1

⌋
≥ t−

⌊
t− 6

3

⌋
=

⌈
2t

3

⌉
+ 2.

Case 2: 2 ≤ r ≤ 4 and d = 2.

Then by Lemmas 1, 2 and 3, we have dim(Cn(1, 2, . . . , t)) ≥ d 2t3 e + 2 (note that

dim(Cn(1, 2, . . . , t)) ≥ 4t+4
5 implies that dim(Cn(1, 2, . . . , t)) ≥ d 2t3 e + 2 for t ≥ 6)

except for the case r = 2 and t = 5. If r = 2 and t = 5 (so n = 13),

then by Lemma 1, we have dim(Cn(1, 2, . . . , t)) ≥ 4t+4
5 = 24

5 which implies

that dim(C13(1, 2, 3, 4, 5)) ≥ 5. Since {v0, v1, v2, v4, v5} is a resolving set of

C13(1, 2, 3, 4, 5), we have dim(C13(1, 2, 3, 4, 5)) = 5 =
⌈
2t
3

⌉
+ 1.

Case 3: r = 2 and d ≥ 3.

Then b t−r−12d−1 c < b
t−3
3 c except for the cases t = 8 where d = 3, and t = 5 (where

d ≥ 3). Note that b t−r−12d−1 c < b
t−3
3 c means that we do not have equality in (7), thus

dim(Cn(1, 2, . . . , t)) ≥ d 2t3 e+ 2.

If t = 5, then by Lemma 5, dim(Cn(1, 2, 3, 4, 5)) = 6 = d 2t3 e + 2. If t = 8 and d = 3,

we have n = 35 and it can be checked by a computer that dim(C35(1, 2, . . . , 8)) =

8 = d 2t3 e + 2 (where the vertices v0, v2, v4, v13, v26, v28, v32, v33 resolve the graph

C35(1, 2, . . . , 8)).
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Case 4: 3 ≤ r ≤ 4 and d ≥ 3.

If t ≥ 6, then ⌊
t− r − 1

2d− 1

⌋
≤
⌊
t− 4

5

⌋
<

⌊
t− 3

3

⌋
,

so we cannot have equality in (7), which implies that dim(Cn(1, 2, . . . , t)) ≥ d 2t3 e+ 2.

If t = 5 and d ≥ 6, then by Lemma 4, dim(Cn(1, 2, 3, 4, 5)) ≥ 6 = d 2t3 e + 2. If t = 5

and 3 ≤ d ≤ 5, then by Table 4 given in [2], we have dim(Cn(1, 2, 3, 4, 5)) = 6 =

d 2t3 e+ 2.

Theorem 3 in combination with (1), (2), (3), (4) and (5) yields Corollary 3.

Corollary 3. Let n = 2(d− 1)t+ 1 + r, where d ≥ 2, t ≥ 1 and 1 ≤ r ≤ 2t. Then

dim(Cn(1, 2, . . . , t)) ≥
⌈
2t

3

⌉
+ 1.

The equality is attained if and only if t = 1, t = 2 and 1 ≤ r ≤ 3, t = 4 and r = 3, t = 4
and n = 11, t = 4 and n = 19, and t = 5 and n = 13.

From Theorem 3, we obtain Corollary 4 which proves Conjecture 1.

Corollary 4. For t ≥ 6,

dim(Cn(1, 2, . . . , t)) ≥
⌈
2t

3

⌉
+ 2.

In [12], the authors have shown that for every t ≥ 7, there exists an n ∈ [2t+5, 2t+8]

such that dim(Cn(1, 2, . . . , t)) ≤
⌈
2t
3

⌉
+ 2, which means that the bound presented in

Corollary 4 is sharp. The bound is sharp also for t = 6, because there exist values of

n for which dim(Cn(1, 2, 3, 4, 5, 6)) = 6 =
⌈
2t
3

⌉
+ 2 (for example {v0, v1, v2, v3, v5,

v6} is a resolving set of C15(1, 2, 3, 4, 5, 6)).
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[10] T. Vetŕık, The metric dimension of circulant graphs, Canad. Math. Bull. 60

(2017), no. 1, 206–216.

https://doi.org/10.4153/CMB–2016–048–1.

[11] , On the metric dimension of directed and undirected circulant graphs,

Discuss. Math. Graph Theory 40 (2020), no. 1, 67–76.

http://doi.org/10.7151/dmgt.2110.
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