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Abstract: The k-semi equivelar maps, for k ≥ 2, are generalizations of maps on the
surfaces of Johnson solids to closed surfaces other than the 2-sphere. In the present

study, we determine 2-semi equivelar maps of curvature 0 exhaustively on the torus
and the Klein bottle. Furthermore, we classify (up to isomorphism) all these 2-semi

equivelar maps on the surfaces with up to 12 vertices.
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1. Introduction

A map M on a surface S is an embedding of a graph G into S such that: (i) the

closure of each component of S \G is topologically a p-gonal 2-disk Dp (p ≥ 3), which

is called a face of M and (ii) the non-empty intersection of any two distinct faces is

either a vertex or an edge, see [1]. The vertices and edges of the underlying graph

G in a map M are called the vertices and edges of the map. Let M1 and M2 be

two maps with the vertex sets V (M1) and V (M2). Then M1 and M2 are isomorphic,

denoted as M1
∼= M2, if there is a bijective map between V (M1) and V (M2) that
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2 2-semi equivelar maps on the torus and the Klein bottle

sends vertices to vertices, edges to edges and faces to faces, and preserves incidence,

see [11].

The face-sequence of a vertex v ∈ V (M), denoted as fseq(v), is fseq(v) =

(pn1
1 .pn2

2 . . . pnk

k ) if the consecutive n1 numbers of p1-gon, n2 numbers of p2-gon, . . . ,

nk numbers of pk-gon are incident at v in the given cyclic order. The curvature of the

vertex v, denoted as φ(v), is then defined as φ(v) = 1−(
∑k

i=1 ni)/2+
∑k

i=1(ni/pi). We

say that a map M has the combinatorial curvature k if φ(v) = k for every v ∈ V (M).

Some maps of positive curvature are discussed in [12, 19].

A map M having k distinct face-sequences, say f1, f2, . . . , fk, is called a k-semi equiv-

elar map of type [f1 : f2 : · · · : fk]. The 11 Archimedean tilings, 20 2-uniform tilings,

61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings, and 673 6-uniform

tilings on the Euclidean plane provide 1-, 2-, 3-, 4-, 5-, and 6-semi equivelar maps on

the plane respectively, see [3, 8].

In the case when k = 1, the map is referred to as a semi equivelar map. Datta

and Maity [5] described all types of semi equivelar maps on the surfaces of Euler

characteristic 2 (2-sphere S2) and 1 (projective plane RP2). The first author with

Maity and Upadhyay classified some semi equivelar maps on the surface of Euler

characteristic −1, [17, 18]. Karabáš and Nedela [9, 10] have described some semi

equivelar maps on the orientable surfaces of Euler characteristic −2 (double torus),

−4, and −6. Semi equivelar maps have been studied extensively for the surfaces of

Euler characteristic 0, that is, on the torus and Klein bottle. Kurth [11] as well as

Brehm and Kühnel [2] have given a technique to enumerate semi equivelar maps of

type [36], [44] and [63] on the torus. Datta and Nilakantan [6] have classified these

types of maps on the torus and Klein bottle for ≤ 11 vertices. Further, Datta and

upadhyay [7] have extended this classification for ≤ 15 vertices. In [16], the first

author with upadhyay have classified 1-semi equivelar maps of types [34.6], [33.42],

[32.4.3.4], [3.4.6.4], [3.6.3.6], [3.122], [4.6.12], [4.82] on the torus and Klein bottle on at

most 20 vertices. Recentely k-semi-equivelar maps have been also studied for k ≥ 2.

Some 2-semi equivelar maps have been described on the torus, Klein bottle, and plane,

see [13, 14]. In this article, we show:

Theorem 1. If T denotes the type of a 2-semi equivelar map of curvature 0 on the torus
or Klein bottle, then T ∈ {[36 : 34.6], [36 : 33.42], [36 : 32.4.3.4], [36 : 32.4.12], [36 : 32.62],
[34.6 : 3.6.3.6], [33.42 : 32.4.3.4], [33.42 : 3.4.6.4], [33.42 : 44], [32.4.3.4 : 3.4.6.4], [32.62 : 34.6],
[32.62 : 3.6.3.6], [3.42.6 : 3.4.6.4], [3.42.6 : 3.6.3.6], [3.4.6.4 : 4.6.12], [3.122 : 3.4.3.12]}.

Further, we enumerate all the above types of 2-semi equivelar maps on ≤ 12 vertices

and show:

Theorem 2. There are exactly 31 2-semi equivelar maps of curvature 0 on the surfaces
of Euler characteristic 0 on at most 12 vertices; 18 of which are on the torus and 13 are on
the Klein bottle. These 18 are A2(T ), A3(T ), B2(T ), C2(T ), E3(T ), E4(T ), E6(T ), E8(T ),
E11(T ), E12(T ), E13(T ), E14(T ), F2(T ), F3(T ), F5(T ), F6(T ), F7(T ), F9(T ), and 13 are
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A1(K), B1(K) C1(K), D1(K), E1(K), E2(K), E5(K), E7(K), E9(K), E10(K), F1(K), F4(K),
F8(K), given in example Section 3.

This article is organized in the following manner. In Section 2, we give some definitions

and notations that are used in the further sections. In Section 3, we present examples

of 2 semi-equivelar maps on the torus and the Klein bottle. Further, in Section 4,

we describe classification of the above types 2-semi-equivelar maps. We end up this

article by presenting some concluding remarks in Section 5.

2. Definitions and notations

Let M be a map with the vertex set V (M), edge set E(M), and face set F (M).

For v ∈ V (M), consider Kv = {f ∈ F (M) : v ∈ f}. Then the geometric carrier

|Kv| (the union of all the elements in Kv) is a 2-disk with the boundary cycle Cn =

Cn(v1, v2, . . . , vn). The cycle Cn is called the link of the vertex v and is denoted

as lk(v). For example, if v is a vertex with fseq(v) = (36), (33.42) or (32.4.3.4),

then lk(v) = C6(v1, v2, v3, v4, v5, v6), lk(v) = C7(v1,v2, v3, v4, v5, v6,v7) or lk(v) =

C7(v1, v2, v3,v4, v5, v6,v7), respectively (see Figure 1). Here, the bold appearance of

some vi’s means v is not adjacent with these vi’s. We use a similar notation frequently

in Section 4 to express the link of a vertex with a specific face-sequence.

Figure 1: vertex v with face-sequences (36), (33.42) and (32.4.3.4) (see from left)

3. Example: 2-semi-equivelar maps on the torus and Klein
bottle

Here, we present examples of 2-semi equivelar maps on the surfaces of Euler char-

acteristic 0. The notations Ai(T )-[f1 : f2] to Oi(T )-[g1 : g2] represent maps on the

torus of type [f1 : f2] to [g1 : g2] respectively. Similarly, the notations Ai(K)-[f1 : f2]

to Oi(K)-[g1 : g2] represent maps on the Klein bottle of type [f1 : f2] to [g1 : g2]

respectively.

Now, we show the following.

Lemma 1. For the maps given in Section 3, we have:
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a: E3(T ) � E6(T ),

b: Ei(T ) � Ej(T ), for i, j ∈ {4, 8, 11, 12, 13} and i 6= j,

c: F2(T ) � F5(T ),

d: Fi(T ) � Fj(T ), for i, j ∈ {3, 6, 7, 9} and i 6= j,

e: E1(K) � E5(K),

f: Ei(K) � Ej(K), for i, j ∈ {2, 7, 9, 10} and i 6= j,

i: F1(K) � F8(K).
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Proof. A cycle C is called contractible if it bounds a 2-disk, otherwise called non-

contractible. Note that in E3(T ), we see exactly one vertical non-contractible cycle of

length 3 at each vertex (for example, we see C3(0, 1, 4) at vertex 4), while in E6(T ),

there are two non-contractible cycles at each vertex (for example, we have C3(0, 1, 4)

and C3(2, 3, 4) at vertex 4). This proves a. Following a similar argument, we see
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E1(K) � E5(K). This proves e.

In F5(K), at each vertex, we have a vertical non-contractible cycle of length 3 (for

example, we see C5(0, 1, 5) at vertex 1), which is not true in F2(K). This proves c.

Similarly, we get F1(K) � F8(K). This proves i.
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The following polynomials pG(M)(a) denote the characteristic polynomial (computed

from MATLAB) of the adjacency matrix associated with the underlying graph G of

map M . We know if two maps have distinct characteristic polynomials, they are

non-isomorphic. This proves b, d, and f .

pG(E4(T ))(a) = a12−32a10−40a9 +254a8 +440a7−628a6−1400a5 +105a4 +1000a3 +

300a2,

pG(E8(T ))(a) = a12−32a10−48a9 +254a8 +656a7−292a6−2352a5−2167a4 +624a3 +

2044a2 + 1120a+ 192,

pG(E11(T ))(a) = a12−31a10−32a9 +222a8 +180a7−746a6−220a5 +1201a4−228a3−
647a2 + 322a,

pG(E12(T ))(a) = a12−33a10−44a9 +258a8 +432a7−682a6−1032a5 +957a4 +560a3−
789a2 + 276a− 32,

pG(E13(T ))(a) = a12−33a10−44a9+252a8+456a7−568a6−1296a5+348a4+1328a3+

108a2 − 432a− 128,

pG(F3(T ))(a) = a12 − 26a10 − 17a9 + 176a8 + 91a7 − 505a6 − 95a5 + 590a4 − 90a3 −
118a2 + 24a,

pG(F6(T ))(a) = a12 − 28a10 − 24a9 + 212a8 + 280a7 − 524a6 − 976a5 + 80a4 + 860a3 +

528a2 + 96a,

pG(F7(T ))(a) = a12− 27a10− 20a9 + 201a8 + 192a7− 532a6− 552a5 + 492a4 + 560a3−
84a2 − 192a− 44,

pG(F9(T ))(a) = a12− 27a10− 20a9 + 207a8 + 168a7− 610a6− 288a5 + 723a4− 136a3−
171a2 + 84a− 11,

pG(E2(K))(a) = a12−32a10−40a9+254a8+440a7−644a6−1400a5+457a4+1640a3+

156a2 − 640a− 192,

pG(E7(K))(a) = a12−32a10−48a9 +258a8 +640a7−364a6−220a5−1635a4 +496a3 +

684a2 − 32a− 64,

pG(E9(K))(a) = a12−31a10−39a9+227a8+377a7−561a6−1129a5+416a4+1283a3+

92a2 − 492a− 144.

This proves the lemma.

4. Proofs: Classification of 2-semi equivelar maps

In this section, we prove our main results Theorems 1 and 2. In our earlier study [13],

we have shown the following:

Proposition 1. Let v be a vertex with the face-sequence f such that φ(v) = 0.
Then f ∈ S, where S = {(33.42), (36), (3.42.6), (32.62), (34.6), (32.4.3.4), (3.6.3.6),
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(44), (3.4.6.4), (32.4.12), (4.82), (3.122), (63), (52.10), (3.8.24), (3.9.18), (3.10.15), (4.5.20),
(3.7.42), (4.6.12), (3.4.3.12)}.

From the above proposition and the compatibility of face-sequences, it is easy to

see that if a 2-semi equivelar map exists, then its possible type T ∈ S1 = A ∪ B,

where A = {[33.42 : 32.62], [33.42 : 3.42.6], [33.42 : 34.6], [33.42 : 32.4.12], [33.42 : 4.82],

[33.42 : 4.5.20], [33.42 : 4.6.12], [33.42 : 3.4.3.12], [3.42.6 : 32.62], [3.42.6 : 34.6], [3.42.6 :

32.4.3.4], [3.42.6 : 44], [3.42.6 : 32.4.12], [3.42.6 : 4.82], [3.42.6 : 63], [3.42.6 : 4.5.20],

3.42.6 : 4.6.12], [3.42.6 : 3.4.3.12], [32.62 : 32.4.3.4], [32.62 : 32.4.12], [32.62 : 63], [34.6 :

32.4.3.4], [34.6 : 32.4.12], [34.6 : 63], [34.6 : 4.6.12], [32.4.3.4 : 44], [32.4.3.4 : 32.4.12],

[32.4.3.4 : 3.4.3.12], [32.4.3.4 : 4.82], [3.6.3.6 : 4.6.12], [3.6.3.6 : 63], [44 : 3.4.6.4],

[44 : 32.4.12], [44 : 4.82], [44 : 4.5.20], [44 : 4.6.12], [44 : 3.4.3.12], [3.4.6.4 : 32.4.12],

[3.4.6.4 : 63], [3.4.6.4 : 4.82], [3.4.6.4 : 4.5.20], [3.4.6.4 : 3.4.3.12], [32.4.12 : 3.122],

[32.4.12 : 3.4.3.12], [32.4.12 : 4.5.20], [32.4.12 : 4.6.12], [32.4.12 : 4.82], [4.82 : 4.5.20],

[4.82 : 4.6.12], [4.82 : 3.4.3.12], [3.122 : 3.4.3.12], [63 : 4.6.12], [52.10 : 4.5.20]} and

B = {[36 : 34.6], [36 : 33.42], [36 : 32.4.3.4], [36 : 32.4.12], [36 : 32.62], [34.6 : 3.6.3.6],

[33.42 : 32.4.3.4], [33.42 : 3.4.6.4], [33.42 : 44], [32.4.3.4 : 3.4.6.4], [32.62 : 34.6], [32.62 :

3.6.3.6], [3.42.6 : 3.4.6.4], [3.42.6 : 3.6.3.6], [3.4.6.4 : 4.6.12], [3.122 : 3.4.3.12]}.
We note the following:

Remark. Let M be a 2-semi equivelar map of type [f1 : f2] with the vertex set

V (M). Then for f1 (or f2), there is a vertex v in V (M) with the face-sequence f1
(resp. f2) such that lk(v) contains a vertex u with the face-sequence f2 (resp. f1).

Such a vertex v is called a critical vertex. Clearly, M does not exist if it has no critical

vertex.

Now we prove the following:

Proof of Theorem 1. As given above, a 2-semi equivelar map M has possible type

T ∈ S1. Note that for each T ∈ B, there exists a 2-semi equivelar map of the type T ,

see examples in Section 3. For T ∈ A, we show:

Claim 1. There exist no 2-semi equivelar maps of type T ∈ A.

Consider a map M of type T ∈ A, where T = [f1 = 33.42 : f2]. Let x0 be a critical

vertex with the face-sequence (33.42) such that lk(x0) = C7(x1,x2, x3, x4, x5, x6,x7).

Then we have the following cases for f2:

Case 1. f2 = (32.62), i.e., T = [f1 = 33.42 : f2 = 32.62].

Then at least one vertex in {x4, x5} has the face-sequence (32.62). If fseq(x4) = (32.62)

(or fseq(x5) = (32.62)), then x3 (resp. x6) has the face-sequence f3 6= f1, f2. This

means x0 is not a critical vertex.

Case 2. f2 = (3.42.6), i.e., T = [f1 = 33.42 : f2 = 3.42.6].
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Then at least one vertex in {x1, x2, x3, x6, x7} has the face-sequence (3.42.6). If

fseq(x3) = (3.42.6), then we see consecutive 2 triangular faces and one hexagonal

face at x4, which implies fseq(x4) 6= f1, f2. Similarly, if fseq(x6) = (3.42.6), then

fseq(x5) 6= f1, f2. If fseq(x1) = (3.42.6), then lk(x1) = C9(x0,x3, x2,x8,x9,x10, x11,

x7,x6) or lk(x1) = C9(x0,x6, x7,x11,x10,x9, x8, x2,x3). The first case of lk(x1) im-

plies fseq(x11) = (3.42.6). Now considering lk(x11), we get one triangular face adjacent

with two quadrangular faces at x7 (see Figure 4.1), which shows fseq(x7) 6= f1, f2.

Similarly, for the later case of lk(x1), we get a vertex x such that fseq(x) 6= f1, f2,

(see Figure 4.2). So, fseq(x1) 6= (3.42.6). If fseq(x2) = (3.42.6), then lk(x2) =

C9(x3,x13, x12,x11,x10,x9, x8, x1,x0), which shows fseq(x1) = (33.42) and then we

get consecutive two triangular faces and one hexagonal face at x8 (see Figure 4.3),

which implies fseq(x8) 6= f1, f2. So, fseq(x2) 6= f2. Similarly, fseq(x7) 6= f2. Thus x0
is not a critical vertex.

(a) (b)

(c)

Case 3. f2 = (34.6), i.e., T = [f1 = 33.42 : f2 = 34.6].

Then at least one vertex in {x4, x5} has the face-sequence (34.6). Without loss

of generality let fseq(x4) = (34.6). Then lk(x4) = C8(x3, x0, x5, x8, x9,x10,x11,

x12) or lk(x4) = C8(x12, x3, x0, x5, x8,x9,x10,x11) or lk(x4) = C8(x5,

x0, x3, x8, x9,x10,x11,x12). In the first case of lk(x4), we see that fseq(x3) 6= f1, f2
(see Figure 4.4). In the second case of lk(x4), considering successively lk(x8) and
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(a) (b)

(c)

lk(x5), we see that fseq(x6) 6= f1, f2 (see Figure 4.5). In the last case of lk(x4), con-

sidering successively lk(x9), lk(x10), lk(x11), lk(x12), lk(x5), lk(x6), and then lk(x),

we get a vertex y in lk(6) such that fseq(y) 6= f1, f2 (see Figure 4.6). Thus x0 is not

a critical vertex.

Case 4. f2 = (32.4.12), i.e., T = [f1 = 33.42 : f2 = 32.4.12].

Then at least one vertex in {x2, x3, x4, x5, x6, x7} has the face-sequence (32.4.12).

Note that, the case fseq(x2) = (32.4.12) is similar to the case fseq(x7) = (32.4.12),

the case fseq(x3) = (32.4.12) is similar to the case fseq(x6) = (32.4.12), and the

case fseq(x4) = (32.4.12) is similar to the case fseq(x5) = (32.4.12). So, it is enough

to see the cases when fseq(x2) = (32.4.12), fseq(x3) = (32.4.12), and fseq(x4) =

(32.4.12). For fseq(x2) = (32.4.12), let lk(x2) = C14(x3,x0, x1, x8, x9,x10,x11,x12,

x13,x14,x15,x16,x17,x18). This implies fseq(x3) = (32.4.12) and fseq(xi) =

(32.4.12), for 9 ≤ i ≤ 18, which further gives fseq(x4) 6= f1, f2. If fseq(x3) = (32.4.12),

then fseq(x4) 6= f1, f2. If fseq(x4) = (32.4.12), then fseq(x3) 6= f1, f2. This means x0
is not a critical vertex.

Case 5. f2 = (4.82), i.e, T = [f1 = 33.42 : f2 = 4.82].

Then at least one vertex in {x2, x7} has the face-sequence (4.82). Note that, the case



A.K.Tiwari, et al. 11

fseq(x2) = (4.82) is similar to the case fseq(x7) = (4.82). If fseq(x2) = (4.82), then

fseq(x3) 6= f1, f2. This means x0 is not a critical vertex.

Case 6. f2 = (4.5.20), i.e., T = [f1 = 33.42 : f2 = 4.5.20].

Then at least one vertex in {x2, x7} has the face-sequence (4.82). Note that, the case

fseq(x2) = (4.5.20) is similar to the case fseq(x7) = (4.5.20). If fseq(x2) = (4.5.20),

then fseq(x1) 6= f1, f2. This means x0 is not a critical vertex.

Case 7. f2 = (4.6.12), i.e., T = [f1 = 33.42 : f2 = 4.6.12].

Then at least one vertex in {x2, x7} has the face-sequence (4.6.12). The case

fseq(x2) = (4.6.12) is similar to the case fseq(x7) = (4.6.12). If fseq(x2) = (4.6.12),

then fseq(x1) 6= f1, f2. This means x0 is not a critical vertex.

Case 8. f2 = (3.4.3.12), i.e., T = [f1 = 33.42 : f2 = 3.4.3.12].

Then at least one vertex in {x2, x3, x6, x7} has the face-sequence (3.4.3.12). Note

that, the cases fseq(x2) = (3.4.3.12) and fseq(x3) = (3.4.3.12) are similar to the cases

fseq(x7) = (3.4.3.12) and fseq(x6) = (3.4.3.12) respectively. If fseq(x2) = (3.4.3.12),

then fseq(x3) = (3.4.3.12). This gives fseq(x4) 6= f1, f2. Similarly, we see fseq(x3) 6=
f1, f2. This means x0 is not a critical vertex.

Hence, in all the above cases for f2, x0 is not a critical vertex. Thus the map M of

type T = [f1 = 33.42 : f2] does not exist. By a similar computation, it can be shown

easily that M does not exist for the remaining type T ∈ A. Thus the claim and hence

the lemma. 2

Further, we enumerate and classify 2-semi equivelar map M of type T ∈ B for the

number of vertices |V (M)| ≤ 12, by the Lemmas 2-B. The classification is exhaustive

search for all possible cases. Let the vertex set V (M) = {0, 1, . . . , 11}. Then:

Lemma 2. There exists no 2-semi equivelar map of type T ∈ S2 = {[36 : 32.4.12],
[36 : 32.62], [34.6 : 3.6.3.6], [32.62 : 34.6], [32.62 : 3.6.3.6], [3.42.6 : 3.6.3.6], [3.42.6 : 3.4.6.4],
[3.4.6.4 : 4.6.12], [3.122 : 3.4.3.12]} for the number of vertices ≤ 12.

Proof. Since one requires more than 12 vertices to complete the link of a vertex with

the face-sequence (32.4.12), (4.6.12) or (3.4.3.12), M of type [36 : 32.4.12], [3.4.6.4 :

4.6.12] or [3.122 : 3.4.3.12] does not exist on the given V (M). For the remaining

types, we have following cases:

Case 1. If M is of the type [36 : 32.62], then without loss of general-

ity let 0 be a critical vertex with the face-sequence (32.62) and let lk(0) =

C10(1,2,3,4, 5, 6, 7,8,9,10). Then the only vertex in lk(0) which can have face-

sequence (36) is 6. This gives lk(6) = C6(5, 0, 7, x1, x2, x3), where (x1, x2, x3) ∈
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S3 = {(2, 1, 10), (2, 3, 11), (3, 2, 11), (3, 4, 11), (4, 3, 2), (4, 3, 11), (11, 4, 3)}. If

(x1, x2, x3) = (2, 1, 10), then lk(6) = C6(5, 0, 7, 2, 1, 10). This implies lk(2) =

C10(3,4,5,0, 1, 6, 7,8,x5,x4). Now by the fact that two distinct hexagonal faces

can not share more than 2 vertices, we get x4 = 11 and then x5 has no suitable value

in V (M) so that lk(2) can be completed. So, (x1, x2, x3) 6= (2, 1, 10). By a similar

argument, we see that M does not exist for the remaining (x1, x2, x3) ∈ S3.

Case 2. If M is of the type [34.6 : 3.6.3.6], then observe that two distinct hexagonal

faces can share at most one vertex. Now, without loss of generality, let fseq(0) =

(3.6.3.6) and lk(0) = C10(1,2,3,4, 5, 6,7,8,9, 10). Then fseq(1) = (3.6.3.6) or (34.6).

If fseq(1) = (3.6.3.6), then lk(1) = C10(2,3,4,5, 0, 10,x1,x2,x3, x4). Note that

x1 = 11 and then x4 ∈ {7, 8, 9}. But for all these values of x4, we see that two

distinct hexagonal faces share two vertices. So fseq(1) 6= (3.6.3.6).

On the other hand, if fseq(1) = (34.6), then lk(1) = C8(2,3,4,5, 0, 10, 11, x1),

where x1 ∈ {7, 8, 9}. If x1 = 7, then lk(7) = C8(8,9,10,0, 6, 11, 1, 2) or lk(7) =

C8(8,9,10,0, 6, 2, 1, 11), which implies lk(2) = C8(3,4,5,0, 1, 7, 8, x2) or lk(2) =

C8(3,4,5,0, 1, 7, 6, x2) respectively. Observe that for both the cases of lk(2), x2 has

no suitable value in V (M). So x1 6= 7. Proceeding similrly, we see that x1 6= 8 or 9.

Case 3. If M is of the type [32.62 : 3.6.3.6], then observe that two distinct hexag-

onal faces can share at most two vertices. Without loss of generality, let 0 be a

critical vertex with fseq(0) = (32.62) and lk(0) = C10(1,2,3,4, 5, 6, 7,8,9,10). Then

fseq(6) = (36). This implies lk(6) = C6(5, 0, 7, x1, x2, x3). It is easy to see that

(x1, x2, x3) ∈ {(2, 1, 10), (2, 3, 11), (3, 2, 11), (3, 4, 11), (4, 3, 11), (11, 8, 9), (11, 9, 8),

(11, 9, 10), (11, 10, 9)}. If (x1, x2, x3) = (2, 1, 10), i.e., lk(6) = C6(5, 0, 7, 2, 1, 10), then

lk(2) = C10(3,4,5,0, 1, 6, 7,8,x4,x5). Observe that x4 = 11 and x5 has no suitable

value in V (M). So for (x1, x2, x3) = (2, 1, 10), we do not get M . Proceeding similarly,

we see that M does not exist for the remaining values of (x1, x2, x3).

Case 4. If M is of the type [3.42.6 : 3.6.3.6], then observe that two dis-

tinct hexagonal faces can share at most one vertex. Let fseq(0) = (3.6.3.6) and

lk(0) = C10(1,2,3,4, 5, 6,7,8,9, 10). Then fseq(1) = (3.6.3.6) or (3.42.6). In the

first case, we get lk(1) = C10(2,3,4,5, 0, 10,x1,x2,x3, x4). Now following the fact

that two distinct hexagonal faces can share at most one vertex, we do not get suit-

able values for x1, x2, x3, x4 in V (M) so that lk(1) can be completed. On the other

hand, if fseq(1) = (3.42.6), then lk(1) = C9(0,5,4,3, 2,x3, x2,x1, 10). It is easy

to see that x2 = 11, this gives x1 = 9 and x3 ∈ {6, 7, 8}. If x3 = 6, then

lk(11) = C9(x4,x5,x6,x7, 6,2, 1,10, 9) or lk(11) = C9(x4,x5,x6,x7, 9,10, 1,2, 6).

Again by the fact that two distinct quadrangular faces can share at most 1 vertex,

we see that in both the cases lk(11) can not be completed. Similarly for x3 = 7 and

6, we see that lk(11) can not be completed.

Case 5. If M is of the type [3.42.6 : 3.4.6.4], then observe that two dis-

tinct hexagonal faces can not share any vertex. Let fseq(0) = (3.42.6) and

lk(0) = C9(1,2,3,4, 5,6, 7,8, 9). This implies lk(7) = C9(x1,x2,x3,x4, 6,5, 0,9, 8)

or lk(7) = C9(x1,x2,x3,x4, 8,9, 0,5, 6). Then by the fact that two distinct hexag-

onal faces are disjoint, successively, we see x1 = 10 and x2 = 11. Now observe that
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x3, x4 have no suitable values in V (M) so that lk(7) can be completed.

Case 6. If M is of the type [34.6 : 32.62], then observe that two dis-

tinct hexagonal faces can share at most two adjacent vertices (an edge). Let

fseq(0) = (32.62) and lk(0) = C10(1,2,3,4, 5, 6, 7,8,9, 10). This implies lk(1) =

C10(0,5,4,3, 2, 11, 10,9,8,7). Then fseq(6) = (32.62) or (34.6). If fseq(6) = (32.62),

then by the above observation, we see easily that lk(6) can not be completed. on

the other hand, If fseq(6) = (34.6), then lk(6) = C8(5,x1,x2,x3, x4, x5, 7, 0) or

lk(6) = C8(7,x1,x2, x3, x4, x5, 5, 0) or lk(6) = C8(x1,x2,x3,x4, x5, 7, 0, 5). The

first case of lk(6) implies x1 = 4. Then there exist two distinct hexagonal faces

at 5, which gives C6(0, 4, x2, x3, x4, 6) ⊆ lk(5). This is not possible. Similarly, we

see that the second case of lk(6) is also not possible. In the last case of lk(6), it

is easy to see that (x1, x2, x3, x4, x5) ∈ {(8, 9, 3, 2, 11), (8, 9, 4, 3, 11), (8, 9, 11, 2, 3),

(8, 9, 11, 3, 4), (8, 9, 11, 4, 3), (9, 8, 3, 2, 11), (9, 8, 11, 2, 3), (9, 8, 11, 3, 4), (9, 8, 11, 4, 3),

(11, 10, 9, 3, 4), (11, 10, 9, 4, 3))}. If (x1, x2, x3, x4, x5) = (8, 9, 3, 2, 11), then lk(8) =

C10(9,10,1,0, 7, 4, 6,11,2,3) and lk(9) = C10(8,7,0,1, 10, 4, 3,2,11,6). This im-

plies C9(0, 1, 2, 11, 6, 8, 9, 4, 5) ⊆ lk(3). This is not possible. Proceeding similarly for

the remaining cases, we get no map. For the detailed computation, we refer to see

[15]. Thus the proof.

Lemma 3. Let M be a 2-semi equivelar map of type [36 : 34.6] on ≤ 12 vertices. Then
M is isomorphic to one of A1(K), A2(T ) or A3(T ) given in Section 3.

Proof. Without loss of generality, let 0 be a vertex of face-sequence (34.6) and

lk(0) = C8(1,2,3,4, 5, 6, 7, 8). Since the vertices 1, 2, 3, 4, 5 appear in hexagonal

face [0, 1, 2, 3, 4, 5], the vertices have the face-sequence (34.6). This gives lk(1) =

C8(2,3,4,5, 0, 8, x1, x2). It is easy to see that (x1, x2) ∈ {(6, 7), (6, 9), (9, 6), (9, 10),

(9, 7)}. The case (6, 9) ∼= (9, 7) by the map (0, 1)(2, 5)(3, 4)(6, 7, 9). So, we need not

consider the last case.

Claim 2. (x1, x2) = (9, 6) or (9, 10).

If (x1, x2) = (6, 7), then lk(1) = C8(2,3,4,5, 0, 8, 6, 7) and this gives fseq(6) is (36)

or (34.6). By the fact that two distinct hexagonal faces are disjoint, we see that

for the given number of vertices, lk(6) can not be completed if fseq(6) = (34.6).

So, fseq(6) = (36). This gives lk(6) = C6(0, 5, 9, 8, 1, 7). Again by the same fact

as above, we see fseq(7) = (36) and then we get lk(7) = C6(0, 6, 1, 2, x3, 8), where

x3 ∈ {9, 10}. If x3 = 9, then C5(0, 1, 6, 9, 7) ⊆ lk(8), which can not be true. If

x3 = 10, then lk(7) = C6(0, 6, 1, 2, 10, 8). This implies lk(8) = C6(0, 1, 6, 9, 10, 7),

lk(2) = C8(3,4,5,0, 1, 7, 10, 11). Now, considering the same fact as above, we see

fseq(10) = (36). This gives lk(10) = C6(9, 8, 7, 2, 11, x4). But observe that x4 has no

value in V (M) so that lk(10) can be completed. So (x, y) 6= (6, 7).

If (x1, x2) = (6, 9), then lk(1) = C8(2,3,4,5, 0, 8, 6, 9), lk(6) = C6(0, 5, 8, 1, 9, 7),

lk(5) = C8(0,1,2,3, 4, 10, 8, 6), lk(8) = C6(0, 1, 6, 5, 10, 7). This gives fseq(7) = (36),
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which implies lk(7) = C6(9, 6, 0, 8, 10, x3), where x3 ∈ {3, 4, 11}. If x3 = a, for

a ∈ {3, 11}, we see that the fseq(9) = (36), otherwise the vertices 2 and 3 lie in two

distinct hexagonal faces which is not allowed. So lk(9) = C6(2, 1, 6, 7, a, x4). Now

observe that x4 has no value in V (M) so that lk(9) can be completed. If x4 = 4,

then lk(7) = C6(9, 6, 0, 8, 10, 4) and lk(4) = C8(5,0,1,2, 3, 9, 7, 10). This implies

C6(0, 1, 2, 9, 4, 5) ⊆ lk(3). This can not be true as fseq(3) = (34.6). This proves the

claim.

Case 1. (x1, x2) = (9, 6), i.e., lk(1) = C8(2,3,4,5, 0, 8, 9, 6). Then lk(6) =

C6(0, 5, 9, 1, 2, 7) and lk(2) = C8(3,4,5,0, 1, 6, 7, x3), where x3 ∈ {8, 10}. If

x3 = 8, then lk(2) = C8(3,4,5,0, 1, 6, 7, 8), lk(8) = C6(0, 1, 9, 3, 2, 7), lk(9) =

C6(1, 6, 5, 10, 3, 8), lk(3) = C8(4,5,0,1, 2, 8, 9, 10), lk(5) = C8(0,1,2,3, 4, 10, 9, 6).

This implies C4(3, 4, 5, 9) ⊆ lk(10). So x3 = 10. Then lk(2) = C8(3,4,5,0, 1, 6, 7, 10)

and lk(7) = C6(8, 0, 6, 2, 10, x4), where x4 ∈ {4, 11}.
In case x4 = 11, considering lk(8) = C6(9, 1, 0, 7, 11, x5), we get x5 = 4. But

then considering lk(9) and lk(3) successively, we see that deg(5) > 5. So,

x4 = 4. Then lk(8) = C6(9, 1, 0, 7, 4, 3), completing successively, we get lk(4) =

C8(5,0,1,2, 3, 8, 7, 10), lk(5) = C8(0,1,2,3, 4, 10, 9, 6), lk(9) = C6(1, 6, 5, 10, 3, 8),

lk(3) = C8(4,5,0,1, 2, 10, 9, 8), and lk(10) = C6(2, 3, 9, 5, 4, 7). Then M ∼= A1(K) by

the identity map.

Case 2. (x1, x2) = (9, 10), i.e., lk(1) = C8(2,3,4,5, 0, 8, 9, 10). This implies lk(2) =

C8(3,4,5,0, 1, 10, x3, x4). It is easy to see that (x3, x4) ∈ {(6, 7), (6, 11), (7, 6), (7, 8),

(7, 9), (7, 11), (8, 7), (8, 9), (11, 6), (11, 7), (11, 9)}. Here, the cases (6, 7) ∼= (7, 6)

and (6, 11) ∼= (11, 7) by the maps (0, 2)(3, 5)(6, 7)(8, 10) and (0, 2)(3, 5)(6, 7, 11)(8, 10)

respectively. So, we need not to discuss the cases (x3, x4) = (6, 7) or (11, 7).

Claim 2. (x3, x4) = (6, 11), (7, 6) or (7, 8).

If (x3, x4) = (7, 9), then lk(9) = C6(1, 8, 7, 2, 3, 10), lk(7) = C6(0, 6, 10, 2, 9, 8),

lk(10) = C6(1, 2, 7, 6, 3, 9), and lk(3) = C8(4,5,0,1, 2, 9, 10, 6). Now considering

lk(6), we see that the set {3, 4, 5} forms a triangular face, which is not true in lk(0).

If (x3, x4) = (7, 11), then lk(2) = C8(3,4,5,0, 1, 10, 7, 11). This implies

lk(7) = C6(0, 6, 10, 2, 11, 8) or lk(7) = C6(0, 6, 11, 2, 10, 8). In the first case,

lk(10) = C6(1, 2, 7, 6, 4, 9), lk(4) = C8(5,0,1, 2, 3, 6, 10, 9). This implies lk(6) =

C6(0, 5, 3, 4, 10, 7), which contradicts the fact that {5, 6} forms a non-edge in

lk(0). So lk(7) = C6(0, 6, 11, 2, 10, 8). Then lk(10) = C6(1, 2, 7, 8, 4, 9), lk(8) =

C6(0, 1, 9, 4, 10, 7), this gives C4(1, 8, 4, 10) ⊆ lk(9).

If (x3, x4) = (8, 7), then lk(2) = C8(3,4,5,0, 1, 10, 8, 7). This implies lk(8) =

C6(0, 1, 9, 10, 2, 7), and we get triangular face [8, 9, 10], which is not true if we consider

lk(1).

If (x3, x4) = (8, 9), then lk(2) = C8(3,4,5,0, 1, 10, 8, 9). This implies lk(8) =

C6(0, 1, 9, 2, 10, 7), and lk(10) = C6(7, 8, 2, 1, 9, x5), where x5 ∈ {4, 11}. If x5 = 4,

then lk(9) = C6(1, 8, 2, 3, 4, 10) and we get C6(0, 1, 2, 9, 4, 5) ⊆ lk(3). If x5 = 11, then

successively, we get lk(9) = C6(1, 8, 2, 3, 11, 10), lk(7) = C6(0, 6, 4, 11, 10, 8). Observe

that lk(4) = C8(5,0,1,2, 3, 6, 7, 11), this implies lk(3) = C8(4,5,0,1, 2, 9, 11, 6), and

we see deg(11) > 6.
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If (x3, x4) = (11, 6), then lk(2) = C8(3,4,5,0, 1, 10, 11, 6). This implies lk(6) =

C6(0, 5, 11, 2, 3, 7), lk(3) = C8(4,5,0,1, 2, 6, 7, 9), and lk(7) = C6(8, 0, 6, 3, 9, x5),

where x5 ∈ {4, 10}. If x5 = 4, considering lk(4) and lk(8), we see deg(9) > 6. If

x5 = 10, then considering lk(10), lk(8) and lk(9) successively, we see deg(3) > 5.

If (x3, x4) = (11, 9), then lk(2) = C8(3,4,5,0, 1, 10, 11, 9). This gives lk(9) =

C6(1, 8, 11, 2, 3, 10), and lk(10) = C6(3, 9, 1, 2, 11, x5). Here x5 ∈ {4, 6, 7}. If x5 = 4,

then C7(0, 1, 2, 9, 10, 4, 5) ⊆ lk(3). If x5 = a ∈ {6, 7}, then considering lk(6), we see

that deg(a) > 6. This proves the claim.

Subcase 2.1. If (x3, x4) = (6, 11), then lk(6) = C6(0, 5, 10, 2, 11, 7) or lk(6)

= C6(0, 5, 11, 2, 10, 7). In the first case, lk(10) can not be completed. So,

lk(6) = C6(0, 5, 11, 2, 10, 7). Then lk(10) = C6(1, 2, 6, 7, 4, 9) and lk(7) = C6

(0, 6, 10, 4, 3, 8). Completing successively, we get lk(4) = C8(5,0,1, 2, 3, 7, 10, 9),

lk(5) = C8(0,1,2,3, 4, 9, 11, 6), lk(3) = C8(4,5,0,1, 2, 11, 8, 7), lk(8) = C6(0, 1, 9, 11,

3, 7), lk(9) = C6(1, 8, 11, 5, 4, 10). Then M ∼= A2(T ) by the identity map.

Subcase 2.2. If (x3, x4) = (7, 6), then lk(2) = C8(3,4,5,0, 1, 10, 7, 6) and

lk(6) = C6(3, 2, 7, 0, 5, x5), where x5 ∈ {9, 11}. If x5 = 11, then lk(3) = C8

(4,5,0,1, 2, 6, 11, 9) and we see that lk(7) can not be completed. So x5 = 9.

Then lk(6) = C6(3, 2, 7, 0, 5, 9), this implies, lk(9) = C6 (1, 8, 5, 6, 3, 10) or lk(9)

= C6(1, 8, 3, 6, 5, 10). In the first case of lk(9), completing successively we get

lk(5) = C8(0,1,2,3, 4, 8, 9, 6), lk(8) = C6(0, 1, 9, 5, 4, 7), lk(7) = C6(0, 6, 2, 10, 4, 8),

lk(4) = C8(5,0,1,2, 3, 10, 7, 8), lk(3) = C8(4,5,0,1, 2, 6, 9, 10), and lk(10) =

C6(1, 2, 7, 4, 3, 9). Then M ∼= C1(K) by the map (1, 5)(2, 4)(6, 8). Also, when lk(9) =

C6(1, 8, 3, 6, 5, 10), completing successively we get lk(5) = C8(0,1,2,3, 4, 10, 9, 6),

lk(10) = C6(1, 2, 7, 4, 5, 9), lk(7) = C6(0, 6, 2, 10, 4, 8), lk(4) = C8(5,0,1,2, 3, 8, 7, 10),

lk(3) = C8(4,5,0,1, 2, 6, 9, 8). Then M ∼= A3(T ) by the identity map.

Subcase 2.3. If (x3, x4) = (7, 8), then lk(8) = C6(0, 1, 9, 3, 2, 7) and lk(3)

= C8(4,5,0,1, 2, 8, 9, x5). Observe that x5 = 6. Now completing succes-

sively, we get lk(3) = C8(4,5,0,1, 2, 8, 9, 6), lk(6) = C6(0, 5, 9, 3, 4, 7), lk(4) =

C8(5,0,1,2, 3, 6, 7, 10), lk(10) = C6(1, 2, 7, 4, 5, 9), lk(5) = C8 (0,1,2,3, 4, 10, 9, 6),

lk(9) = C6(1, 8, 3, 6, 5, 10), and lk(7) = C6(0, 6, 4, 10, 2, 8). Then M ∼= A1(K) by the

map (0, 5, 4, 3, 2, 1)(6, 10, 8)(7, 9). Thus the proof.

Lemma 4. Let M be a 2-semi equivelar map of type [33.42 : 3.4.6.4] on ≤ 12 vertices.
Then M is isomorphic to B1(K) or B2(T ) given in example Section 3.

Proof. If M is of the type [33.42 : 3.4.6.4]. Then, observe that: (i) if i is a vertex

with the face-sequence (33.42) or (32.4.3.4), then deg(i) = 5 or 4 respectively (ii) two

distinct hexagonal faces do not share any vertex, and (iii) the non-empty intersection

of a hexagonal face and a quadrangular face is an edge. Without loss of generality,

let fseq(0) = (3.4.6.4) and lk(0) = C9(1,2,3,4, 5,6, 7, 8,9).

Claim 3. The vertices 6, 7, 8, 9 can not have the face-sequence (3.4.6.4).
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Note that the cases, fseq(6) = (3.4.6.4) and fseq(7) = (3.4.6.4) are similar to

the cases fseq(9) = (3.4.6.4) and fseq(8) = (3.4.6.4) respectively. So, first as-

sume that fseq(6) = (3.4.6.4). Then lk(6) = C9(5,y1,y2,y3, y4,y5, y6, 7,0) or

lk(6) = C9(7,y1,y2,y3, y4,y5, y6, 5,0), where y1, y2, y3, y4, y5, y6 ∈ V (M). In the

first case of lk(6), we see that 5 appears in two distinct hexagonal faces [0, 1, 2, 3, 4, 5]

and [5, y1, y2, y3, y4], which is not allowed. While for the later case of lk(6), we see

that y1, y2, y3, y4 6= 8, as if y1 = 8, then it contradicts the fact that [0, 7, 8] is a tri-

angular face and if any xj = 8, for j ∈ {2, 3, 4}, then it contradicts the fact that 7 8

is an edge. Now, observe that we have four vertices y1, y2, y3, y4 in lk(6) which have

possible choices from the set {9, 10, 11}. This is not possible. So fseq(6) 6= (3.4.6.4).

Similarly, we see that fseq(7) 6= (3.4.6.4). Thus the claim.

From lk(0), we get lk(1) = C9(2,3,4,5, 0,8, 9, x1,x2), where x1, x2 ∈ V (M). It is

easy to see that (x1, x2) ∈ {(6, 7), (6, 10), (7, 6), (7, 10), (10, 6), (10, 7), (10, 11)}.

Claim 4. (x1, x2) = (10, 11).

By Claim 1, we know if there exist two quadrangular faces at 6, 7, 8 or 9, then these

faces share an edge. It follows that (x1, x2) 6∈ {(6, 10), (7, 10), (10, 6), (10, 7)}. If

(x1, x2) = (7, 6), then lk(7) = C7(6,2, 1, 9, 8, 0,5). This implies C4(0, 1, 9, 7) ⊆ lk(8).

If (x1, x2) = (6, 7), then lk(6) = C7(7,2, 1, 9, 10, 5,0), lk(7) = C7(6,1, 2, 11, 8, 0,5),

and lk(2) = C9(1,0,5,4, 3,10, 11, 7,6). This implies lk(10) = C7(3,2, 11, 9, 6, 5,x3)

or lk(10) = C7(11,2, 3, 5, 6, 9,x3). In the first case of lk(10), we see that the faces

[0, 1, 2, 3, 4, 5] and [3, 10, 5, x3] share two non-adjacent vertices {3, 5}, which contra-

dicts (iii) given above. In the later case of lk(10), we see that the set {3, 5} forms an

edge and non-edge both. Thus the claim.

Let (x1, x2) = (10, 11), i.e., lk(1) = C9(2,3,4,5, 0,8, 9, 10,11). Then lk(2) =

C9(3,4,5,0, 1,10, 11, x3,x4). Considering the above facts, we observe that (x3, x4) ∈
{(6, 7), (7, 6), (8, 9), (9, 8)}.

Claim 5. (x3, x4) = (7, 6) or (8, 9).

If (x3, x4) = (6, 7), then lk(6) = C7(7,0, 5, 10, 11, 2,3). This implies lk(7) =

C7(6,2, 3, x5, 8, 0, 5). Now observe that x5 has no value in V (M). Similarly

if (x3, x4) = (9, 8), then lk(9) = C7(8,0, 1, 6, 11, 2,3). This implies lk(8) =

C7(9,1, 0, 7, x5, 3,2). Now again we see that x5 has no value in V (M). This proves

the claim.

Case 1. If (x3, x4) = (8, 9), then completing successively, we get

lk(8) = C7(9,1, 0, 7, 11, 2,3), lk(9) = C7(8,0, 1, 10, 6, 3,2), lk(6) = C7(7,

0, 5, 10, 9, 3,4), lk(7) = C7(6,3, 4, 11, 8, 0,5), lk(10) = C7(11,2, 1, 9, 6, 5,4),

lk(11) = C7(10,1, 2, 8, 7, 4,5), lk(3) = C9(2,1, 0,5, 4,7, 6, 9,8), lk(4) = C9(3,

2,1,0, 5,10, 11, 7,6). Then M ∼= B1(K) by the identity map.
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Case 2. If (x3, x4) = (7, 6), then lk(7) = C7(6,3, 2, 11, 8, 0,5). Observe

that (x5, x6) ∈ {(9, 10), (10, 9)}. If (x5, x6) = (9, 10), then completing succes-

sively, we get lk(6) = C7(7,0, 5, 9, 10, 3,2), lk(9) = C7(8,0, 1, 10, 6, 5,4), lk(8) =

C7(9,1, 0, 7, 11, 4,5), lk(10) = C7(11,2, 1, 9, 6, 3,4), lk(11) = C7(10,1, 2, 7, 8, 4,3),

lk(3) = C9(2,1,0,5, 4,11, 10, 6,7), lk(4) = C9(3,2,1,0, 5,9, 8, 11,10). Then

M ∼= B1(K) by the map (0, 2, 4)(1, 3, 5)(6, 10)(7, 11). If (x5, x6) = (10, 9),

then completing successively, we get lk(6) = C7(7,0, 5, 10, 9, 3,2), lk(9) =

C7(8,0, 1, 10, 6, 3,4), lk(8) = C7(9,1, 0, 7, 11, 4,3), lk(10) = C7(11,2, 1, 9, 6, 5,4),

lk(11) = C7(10,1, 2, 7, 8, 4,5), lk(3) = C9(2,1,0,5, 4,8, 9, 6,7), lk(4) =

C9(3,2,1,0, 5,10, 11, 8,9). Then M ∼= B2(T ) by the identity map. Thus the

proof.

Lemma 5. Let M be a 2-semi equivelar map of the type [32.4.3.4 : 3.4.6.4] on ≤ 12
vertices. Then M is isomorphic to C1(K) or C2(T ) given in example Section 3.

Proof. Without loss of generality, let fseq(0) = (3.4.6.4) and lk(0) =

C9(1,2,3,4, 5,6, 7, 8,9). Since, the vertices 1, 2, 3, 4, and 5 lie on the hexagonal

face [0, 1, 2, 3, 4, 5], fseq(1) = fseq(2) = fseq(3) = fseq(4) = fseq(5) = (3.4.6.4). Then

lk(1) = C9(2,3,4,5, 0,8, 9, x1,x2), where observe that x1 ∈ {6, 7, 10}. If x1 = 6, then

x2 ∈ {7, 10}, but for x2 = 7 we see that the edge 67 appears in two distinct quadran-

gular faces [0, 5, 6, 7] and [1, 2, 7, 6], which is not possible. If x1 = 7, then x2 = 6 and

we see again that two distinct quadrangular faces share more than one vertices. If

x1 = 10, then x2 ∈ {6, 7, 11}. This gives (x1, x2) ∈ {(6, 10), (10, 6), (10, 7), (10, 11)}.
Since (6, 10) ∼= (10, 7) by the map (0, 1)(2, 5)(3, 4)(6, 7, 10)(8, 9), we need not consider

the case (6, 10).

Claim 6. (x1, x2) = (10, 6) or (10, 7).

For (x1, x2) = (10, 11), we get lk(1) = C9(2,3,4,5, 0,8, 9, 10,11). This implies

lk(2) = C9(3,4, 5,0, 1,10, 11, x3,x4), where (x3, x4) ∈ {(6, 8), (6, 9), (7, 8), (8, 7)}.
If (x3, x4) = (6, 8), then lk(6) = C7(2, 11, 7,0, 5, 8,3), which implies deg(8) > 5. If

(x3, x4) = (6, 9), then lk(6) = C7(2, 11, 7,0, 5, 9,3) or lk(6) = C7(2, 11, 5,0, 7, 9,3).

But for both the cases, we see deg(9) > 5. If (x3, x4) = (8, 7), then lk(7) =

C7(3, x5, 6,5, 0, 8,2). Now observe that x5 has no value in V (M). If (x3, x4) = (7, 8),

then lk(7) = C7(2, 11, 6,5, 0, 8,3) and lk(3) = C9(4,5,0,1, 2,7, 8, x5,x6), where

(x5, x6) ∈ {(6, 11), (10, 9)}. In case (x5, x6) = (6, 11) (or (10, 9)), considering lk(8),

we see deg(6) > 5 (resp. C4(3, 4, 9, 8) ⊆ lk(10)). This proves the claim.

Case 1. (x1, x2) = (10, 6), i.e., lk(1) = C9(2,3,4,5, 0,8, 9, 10,6) then lk(2) =

C9(3,4,5,0, 1, 10, 6, x3,x4), where (x3, x4) ∈ {(7, 9), (8, 7), (11, 7), (11, 8), (11, 9)}. If

(x3, x4) = (7, 9) then considering lk(7) we get C4(0, 1, 9, 7) ⊆ lk(8). If (x3, x4) = (8, 7),

then considering lk(6), we get three quadrangular faces [6, 5, 0, 7], [6, 2, 1, 10] and

[6, 9, x5, x6] at 6, which is not allowed. If (x3, x4) = (11, 7) or (11, 9) then lk(6) =

C7(5, 11, 2,1, 10, 7,0) or lk(6) = C7(7, 11, 2,1, 10, 5,0). In the first case deg(7) > 5
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and in the second case we get triangular face [6, 7, 11] which is not possible, see lk(2).

Now we search for the remaining cases.

If (x3, x4) = (11, 8), then lk(2) = C9(3,4,5,0, 1,10, 6, 11,8) and lk(3) =

C9(4,5,0,1, 2,11, 8, x5,x6). Here, (x5, x6) ∈ {(7, 9), (7, 10), (9, 7)}. In case

(x5, x6) = (7, 9), considering lk(7), we get deg(6) > 5. In case (x5, x6) = (9, 7), consid-

ering lk(9), we get deg(7) > 5. If (x5, x6) = (7, 10), then lk(7) = C7(0, 8, 3,4, 10, 6,5),

lk(6) = C7(2, 11, 5,0, 7, 10,1). Now completing successively, we get lk(5) =

C9(0,1,2,3, 4,9, 11, 6,7), lk(11) = C7(2, 6, 5,4, 9, 8,3), lk(8) = C7(0, 7, 3,2, 11, 9,1),

lk(4) = C9(5,0,1,2, 3,7, 10, 9,11), lk(9) = C7(1, 10, 4,5, 11, 8,0), and lk(10) =

C7(1, 9, 4,3, 7, 6,2). Then M ∼= C2(T ) by the identity map.

If (x3, x4) = (11, 9), then lk(2) = C9(3,4,5,0, 1,10, 6, 11,9) and lk(3) =

C9(4,5,0,1, 2,11, 9, x5,x6). Here, (x5, x6) ∈ {(8, 10), (10, 7), (10, 8)}. If (x5, x6) =

(8, 10), we get lk(8) = C7(0, 7, 10, 4, 3, 9,1), which implies lk(4) can not be completed.

If (x5, x6) = (10, 8), then considering lk(9) and lk(10), we get deg(6) > 5. If (x5, x6) =

(10, 7), then lk(4) = C9(5,0,1,2, 3,10, 7, 8,11), lk(8) = C7(0, 7, 4,5, 11, 9,1), lk(7) =

C7(0, 8, 4,3, 10, 6,5), lk(6) = C7(2, 11, 5,0, 7, 10,1). Now completing successively,

we get lk(11) = C7(2, 6, 5,4, 8, 9,3), lk(5) = C9(0,1,2,3, 4,8, 11, 6,7), lk(9) =

C7(1, 10, 3,2, 11, 8,0). Then M ∼= C1(K) by the identity map.

Case 2. (x1, x2) = (10, 7), i.e., lk(1) = C9(2,3,4,5, 0,8, 9, 10,7). Then lk(7) =

C7(0, 8, 10,1, 2, 6,5) or lk(7) = C7(0, 8, 2,1, 10, 6,5). In the first case of lk(7), we get

lk(2) = C9(3,4,5,0, 1,10, 7, 6,x3), where x3 ∈ {9, 11}. But for both the cases of x3,

lk(6) can not be completed. While for lk(7) = C7(0, 8, 2,1, 10, 6,5), we get lk(2) =

C9(3,4,5,0, 1,10, 7, 8,x3), where x3 ∈ {6, 11}. If x3 = 6, considering lk(2) and lk(8),

we see deg(6) > 5. So, let x3 = 11. Then lk(2) = C9(3,4,5,0, 1,10, 7, 8,11), lk(8) =

C7(0, 7, 2,3, 11, 9,1). Note that lk(3) = C9(4,5,0,1, 2,8, 11, 6, 10). Now complet-

ing successively, we get lk(6) = C7(3, 11, 5,0, 7, 10,4), lk(10) = C7(1, 9, 4,3, 6, 7,

2), lk(9) = C7(1, 10, 4,5, 11, 8,0), lk(4) = C9(5,0,1,2, 3,6, 10, 9,11), lk(5) =

C9(0,1,2,3, 4,9, 11, 6,7). Then M ∼= C1 by the map (1, 5)(2, 4)(6, 9)(7, 8)(10, 11).

This proves the lemma.

Theorem A. Let M be a 2-semi equivelar map of type [36 : 32.4.3.4] on ≤ 12. Then M
is isomorphic to D1(K) given in example Section 3.

Proof. Without loss of generality, let 0 be a critical vertex in M with the face-

sequence (36) and lk(0) = C6(1, 2, 3, 4, 5, 6). Since, each vertex in the lk(0) has

two triangular faces, without loss of generality, let fseq(1) = (32.4.3.4). This

gives lk(1) = C7(2, 0, 6,x4, x3, x2,x1). It is easy to see that (x1, x2, x3, x4) ∈
{(5, 4, 7, 8), (8, 7, 4, 3), (9, 7, 8, 10)}.
Case 1. (x1, x2, x3, x4) = (5, 4, 7, 8), i.e., lk(1) = C7(2, 0, 6,8, 7, 4,5). This im-

plies lk(4) = C7(3, 0, 5,2, 1, 7,9) and lk(3) = C7(2, 0, 4,7, 9, x5,x6), where (x5, x6) ∈
{(10, 8), (10, 11), (8, 10)}. If (x5, x6) = (10, 8), then lk(2) = C7(1, 0, 3,10, 8, 5,4).

Now considering lk(5) and lk(1), we see that the set {6, 8} forms both an edge

and a non-edge. If (x5, x6) = (10, 11), then lk(2) = C7(1, 0, 3,10, 11, 5,4), lk(5) =
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C7(4, 0, 6,9, 11, 2,1), lk(6) = C7(1, 0, 5,11, 9, 8,7), and lk(7) = C7(8, x7, 9,3, 4, 1,6).

Now observe that x has no value in V (M) so that lk(7) can be completed. If (x5, x6) =

(8, 10), then lk(2) = C7(1, 0, 3,8, 10, 5,4), lk(5) = C7(6, 0, 4,1, 2, 10,x7). It is easy to

see that x7 = 9, completing successively, we get lk(5) = C7(4, 0, 6,9, 10, 2,1), lk(6) =

C7(1, 0, 5,10, 9, 8,7), lk(9) = C7(3, 8, 6,5, 10, 7,4), lk(7) = C7(8, 10, 9,3, 4, 1,6),

lk(10) = C7(8, 7, 9,6, 5, 2,3) and lk(8) = C7(3, 9, 6,1, 7, 10,2). Then M ∼= D1(K)

by the identity map.

Case 2. (x1, x2, x3, x4) = (8, 7, 4, 3), i.e., lk(1) = C7(2, 0, 6,3, 4, 7,8). Then

lk(4) = C7(3, 0, 5,9, 7, 1,6) and lk(7) = C7(8, 10, 9,5, 4, 1,2). This im-

plies lk(2) = C7(3, 0, 1,7, 8, x5,x6), where, (x5, x6) ∈ {(11, 9), (9, 10)}. If

(x5, x6) = (11, 9), then lk(3) = C7(2, 0, 4,1, 6, 9,11), lk(6) = C7(1, 0, 5,10, 9, 3,

4), and lk(9) = C7(10, x7, 11,2, 3, 6,5), but observe that x7 has no value in

V (M). On the other hand, if (x5, x6) = (9, 10), completing successively,

we get lk(2) = C7(1, 0, 3,10, 9, 8,7), lk(3) = C7(2, 0, 4,1, 6, 10,9), lk(10) =

C7(8, 7, 9,2, 3, 6,5), lk(5) = C7(4, 0, 6,10, 8, 9,7), lk(8) = C7(2, 9, 5,6, 10, 7,1),

lk(9) = C7(2, 8, 5,4, 7, 10,3). Then M ∼= D1(K) by the map (2, 6)(3, 5).

Case 3. (x1, x2, x3, x4) = (9, 7, 8, 10), i.e., lk(1) = C7(2, 0, 6,10, 8, 7,9). This im-

plies lk(2) = C7(3, 0, 1,7, 9, x5,x6), where (x5, x6) ∈ {(10, 11), (11, 8), (11, 10), (5, 6)}.
If (x5, x6) = (10, 11), then lk(10) = C7(2, 9, 8,1, 6, 11,3) or lk(10) =

C7(2, 9, 6,1, 8, 11,3). In the first case, we get lk(6) = C7(1, 0, 5,7, 11, 10,8) and

lk(11) = C7(3, x7, 7,5, 6, 10,2), but observe that x7 has no value in V (M). On

the other hand when, lk(10) = C7(2, 9, 6,1, 8, 11,3), then considering lk(10), lk(6),

and lk(10) successively, we see that lk(11) can not be completed. If (x5, x6) =

(11, 8), then lk(8) = C7(1, 7, 3,2, 11, 10,6) or lk(8) = C7(1, 7, 11,2, 3, 10,6). Now,

as in previous case, we see that link of all vertices can not be completed. If

(x5, x6) = (11, 10), then lk(2) = C7(1, 0, 3,10, 11, 9,7). This implies lk(3) =

C7(4, 0, 2,11, 10, x7,x8), where (x7, x8) ∈ {(7, 8), (8, 7)}. But for both the cases,

lk(7) can not be completed. If (x5, x6) = (5, 6), then lk(2) = C7(1, 0, 3,6, 5, 9,7),

and lk(5) = C7(4, 0, 6,3, 2, 9,x7), where x7 ∈ {8, 10}. If x7 = 10, then considering

lk(5) and lk(6) we see that lk(3) can not be completed. So, x7 = 8. Completing suc-

cessively, we get lk(5) = C7(4, 0, 6,3, 2, 9,8), lk(6) = C7(1, 0, 5,2, 3, 10,8), lk(3) =

C7(2, 0, 4,7, 10, 5,6), lk(4) = C7(3, 0, 5,9, 8, 7,10), lk(7) = C7(1, 8, 4,3, 10, 9,2),

lk(8) = C7(1, 7, 4,5, 9, 10,6), lk(9) = C7(7, 10, 8,4, 5, 2,1). Then M ∼= D1(K) by

the map (1, 6, 5, 4, 3, 2)(7, 8, 9). This proves the lemma.

Lemma 6. Let M be a 2-semi equivelar map of type [36 : 33.42] on ≤ 12 vertices. Then
M is isomorphic to one of E1(K), E2(K), E3(T ), E4(T ), E5(K), E6(T ), E7(K), E8(T ), E9(K),
E10(K), E11(T ), E12(T ) or E13(T ) given in example Section 3.

Proof. Without loss, let fseq(0) = (33.42) and lk(0) = C7(1,2, 3, 4, 5, 6,7).

Then the vertices 1, 2, 3, 6 and 7 have the face-sequence (33.42). There-

fore, lk(1) = C7(0,6, 7, x1, x2, 2, 3). Now observe that (x1, x2) ∈
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{(4, 5), (4, 8), (5, 4), (5, 8), (8, 4), (8, 5), (8, 9)}. Here, the case (4, 8) ∼= (8, 5) by the

map (0, 1)(2, 3)(4, 5, 8)(6, 7). So, we need not discuss the case (x1, x2) = (8, 5).

Case 1. (x1, x2) = (4, 5), i.e., lk(1) = C7(0,6, 7, 4, 5, 2,3). This implies lk(4) =

C6(0, 3, 8, 7, 1, 5) and lk(3) = C7(2,1, 0, 4, 8, x3,x4), where (x3, x4) ∈ {(6, 7), (9, 10)}.
In case (x3, x4) = (6, 7), completing successively, we get lk(3) = C7(2,1, 0, 4, 8, 6,7),

lk(7) = C7(6,0, 1, 4, 8, 2,3), lk(2) = C7(3,0, 1, 5, 8, 7,6), lk(5) = C6(0, 4, 1, 2, 8, 6),

lk(6) = C7(7,1, 0, 5, 8, 3,2), lk(8) = C6(2, 5, 6, 3, 4, 7). Then M ∼= E1(K) by the

identity map. If (x3, x4) = (9, 10), then lk(2) = C7(3,0, 1, 5, x3, 10,9). Observe that

x3 = 11. Now completing successively, we get lk(5) = C6(0, 4, 1, 2, 11, 6), lk(6) =

C7(7,1, 0, 5, 11, 9,10), lk(9) = C7(10,2, 3, 8, 11, 6,7), lk(8) = C6(3, 4, 7, 10, 11, 9),

lk(10) = C7(9,3, 2, 11, 8, 7,6), lk(7) = C7(6,0, 1, 4, 8, 10,9). Then M ∼= E2(K) by

the identity map.

Case 2. (x1, x2) = (4, 8). Then lk(4) = C6(0, 3, 7, 1, 8, 5) or lk(4) =

C6(0, 3, 8, 1, 7, 5). If lk(4) = C6(0, 3, 7, 1, 8, 5), then lk(3) = C7(2,1, 0, 4, 7, 9,10),

lk(2) = C7(3,0, 1, 8, x3, 10,9). Observe that the possible value of x3 = 5, but then

considering lk(5), we get C4(1, 2, 5, 4). So lk(4) = C6(0, 3, 8, 1, 7, 5). Then lk(3) =

C7(2,1, 0, 4, 8, x3,x4), where (x3, x4) ∈ {(6, 7), (9, 10)}. If (x3, x4) = (6, 7), com-

pleting successively, we get lk(3) = C7(2,1, 0, 4, 8, 6,7), lk(6) = C7(7,1, 0, 5, 8, 3,2),

lk(7) = C7(6,0, 1, 4, 5, 2,3), lk(2) = C7(3,0, 1, 8, 5, 7,6), lk(5) = C6(0, 4, 7, 2, 8, 6),

and lk(8) = C6(1, 2, 5, 6, 3, 4). Then M ∼= E3(T ) by the identity map. If

(x3, x4) = (9, 10), then lk(2) = C7(3,0, 1, 8, 11, 10,9), completing successively, we

get lk(8) = C6(1, 2, 11, 9, 3, 4), lk(9) = C7(10,2, 3, 8, 11, 6,7), lk(6) = C7(7,1, 0, 5, 11,

9,10), lk(7) = C7(6,0, 1, 4, 5, 10,9), lk(5) = C6(0, 4, 7, 10, 11, 6), lk(10) = C7(9,3, 2,

11, 5, 7,6). Then M ∼= E4(T ) by the identity map.

Case 3. (x1, x2) = (5, 4). Then lk(5) = C6(0, 4, 1, 7, 8, 6). This implies

lk(4) = C6(0, 3, 8, 2, 1, 5) or lk(4) = C6(0, 3, 9, 2, 1, 5). In the first case, when

lk(4) = C6(0, 3, 8, 2, 1, 5), then lk(8) = C6(2, 4, 3, 7, 5, 6) or lk(8) = C6(2, 4, 3, 6, 5, 7).

In case lk(8) = C6(2, 4, 3, 7, 5, 6), completing successively, we get lk(7) =

C7(6,0, 1, 5, 8, 3,2), lk(6) = C7(7,1, 0, 5, 8, 2,3), lk(2) = C7(3,0, 1, 4, 8, 6,7), and

lk(3) = C7(2,1, 0, 4, 8, 7,6). Then M ∼= E5(K) by the identity map. While, for

lk(8) = C6(2, 4, 3, 6, 5, 7), completing successively, we get lk(7) = C7(6,0, 1, 5, 8, 2,3),

lk(6) = C7(7,1, 0, 5, 8, 3,2), lk(2) = C7(3,0, 1, 4, 8, 7,6). Then M ∼= E6(T ) by the

identity map.

On the other hand, when lk(4) = C6(0, 3, 9, 2, 1, 5), then lk(2) =

C7(3,0, 1, 4, 9, x3,x4), where we see easily that (x3, x4) = (10, 11). Then

lk(3) = C7(2,1, 0, 4, 9, 11,10), lk(9) = C6(2, 4, 3, 11, 8, 10), and lk(10) =

C7(11,3, 2, 9, 8, x5,x6), where (x5, x6) ∈ {(6, 7), (7, 6)}. If (x5, x6) = (6, 7),

completing successively, we get lk(6) = C7(7,1, 0, 5, 8, 10,11), lk(7) = C7(6,0, 1, 5,

8, 11,10), lk(8) = C6(5, 6, 10, 9, 11, 7). Then M ∼= E7(K) by the identity map. Also,

if (x5, x6) = (7, 6), completing successively, we get lk(7) = C7(6,0, 1, 5, 8, 10,11),

lk(6) = C7(7,1, 0, 5, 8, 11,10), lk(8) = C6(5, 6, 11, 9, 10, 7). Then M ∼= E8(T ) by the

identity map.

Case 4. (x1, x2) = (5, 8). Then lk(5) = C6(0, 4, 7, 1, 8, 6). This implies lk(6) =



A.K.Tiwari, et al. 21

C7(7,1, 0, 5, 8, x3, x4), where (x3, x4) ∈ {(2, 3), (3, 2), (9, 10)}. If (x3, x4) = (2, 3),

then lk(7) = C7(6,0, 1, 5, 4, 3,2) and we get C4(0, 3, 7, 5) ⊆ lk(4). If (x3, x4) =

(3, 2), then lk(7) = C7(6,0, 1, 5, 4, 2,3) and lk(4) = C6(0, 3, 8, 2, 7, 5). Completing

successively, we get lk(8) = C6(1, 2, 4, 3, 6, 5), lk(6) = C7(7,1, 0, 5, 8, 3,2), lk(7) =

C7(6,0, 1, 5, 4, 2,3). Then M ∼= E1(K) by the map (0, 3)(1, 2)(5, 8).

If (x3, x4) = (9, 10), then lk(7) = C7(6,0, 1, 5, 4, 10,9) and lk(4) = C6(0, 3, 11, 10, 7,

5). Now completing successively, we get lk(10) = C7(9,3, 2, 11, 4, 7,6), lk(3) =

C7(2,1, 0, 4, 11, 9,10), lk(9) = C7(10,2, 3, 11, 8, 6,7), lk(2) = C7(3,0, 1, 8, 11, 10,9),

lk(8) = C6(1, 2, 11, 9, 6, 5), lk(11) = C6(2, 8, 9, 3, 4, 10). Then M ∼= E9(K) by the

identity map.

Case 5. (x1, x2) = (8, 4). Then lk(4) = C6(0, 3, 8, 1, 2, 5). This implies lk(2) =

C7(3,0, 1, 4, 5, x3, x4), where we see easily that (x3, x4) ∈ {(7, 6), (9, 10)}. If

(x3, x4) = (7, 6), then completing successively, we get lk(3) = C7(2,1, 0, 4, 8, 6,7),

lk(6) = C7(7,1, 0, 5, 8, 3,2), lk(7) = C7(6,0, 1, 8, 5, 2,3), lk(5) = C6(0, 4, 2, 7, 8, 6).

Then M ∼= E1(K) by the map(0, 6)(1, 7)(4, 8).

If (x3, x4) = (9, 10), then lk(3) = C7(2,1, 0, 4, 8, 10,9) and lk(8) = C6(1, 4, 3, 10, 11, 7).

Now completing successively, we get lk(7) = C7(6,0, 1, 8, 11, 9,10), lk(9) =

C7(10,3, 2, 5, 11, 7,6), lk(10) = C7(9,2, 3, 8, 11, 6,7), lk(5) = C6(0, 4, 2, 9, 11, 6),

lk(6) = C7(7,1, 0, 5, 11, 10,9). Then M ∼= E9(K) by the map (0, 9, 1, 10)(4, 11, 5, 8).

Case 6. (x1, x2) = (8, 9). Then lk(1) = C7(0,3, 2, 9, 8, 7,6). This implies

lk(2) = C7(3,0, 1, 9, x3, x4,x5). Then it is easy to see that (x3, x4, x5) ∈
{(4, 5, 8), (4, 5, 10), (4, 6, 7), (4, 7, 6), (4, 10, 5), (4, 10, 8), (4, 10, 11), (5, 6, 7), (5, 7, 6), (5,

10, 8), (5, 10, 11), (6, 5, 8), (6, 5, 10), (7, 8, 5), (7, 8, 10), (10, 6, 7), (10, 7, 6), (10, 11, 5), (10,

11, 8)}.
Claim 1. (x3, x4, x5) = (4, 10, 11), (5, 10, 11) or (10, 7, 6).

If (x3, x4, x5) = (4, 5, 8) (or (4, 5, 10)), then lk(5) = C7(8,3, 2, 4, 0, 6,7) (resp. lk(5) =

C7(10,3, 2, 4, 0, 6,7)), which implies C5(0, 1, 7, 8, 5) ⊆ lk(6) (resp. C5(0, 1, 7, 10, 5) ⊆
lk(6)). If (x3, x4, x5) = (4, 6, 7), then considering lk(6), we get C3(0, 4, 5) ⊆ lk(5). If

(x3, x4, x5) = (4, 7, 6), considering lk(7), we get deg(4) > 6. If (x3, x4, x5) = (4, 10, 5),

then considering lk(5), we see that lk(4) can not be completed. If (x3, x4, x5) =

(4, 10, 8), then lk(4) = C6(0, 3, 10, 2, 9, 5) or lk(4) = C6(0, 3, 9, 2, 10, 5), but for both

the cases, lk(9) can not be completed. By a similar computation we see easily that

M does not exists for (x3, x4, x5) ∈ {(5, 6, 7), (5, 7, 6), (5, 10, 8), (7, 8, 10)}.
If (x3, x4, x5) = (6, 5, 8), then lk(6) = C7(7,1, 0, 5, 2, 9,x6), where x6 ∈ {4, 10}. If

x6 = 10, then lk(9) = C7(10,5, 8, 1, 2, 6,x7), and we see that lk(7) can not be com-

pleted. If x6 = 4, then completing successively, we get lk(9) = C7(4,5, 8, 1, 2, 6,7),

lk(4) = C7(9,6, 7, 3, 0, 5,8), lk(7) = C7(6,0, 1, 8, 3, 4,9), lk(3) = C7(2,1, 0, 4, 7, 8,5),

lk(5) = C7(8,3, 2, 6, 0, 4,9), lk(8) = C7(5,2, 3, 7, 1, 9,4). But, this gives a semi-

equivelar map.

If (x3, x4, x5) = (6, 5, 10), then lk(6) = C7(7,1, 0, 5, 2, 9,x6), where x6 ∈ {4, 11}. If

x6 = 11, then lk(9) can not be completed. If x6 = 4, as in previous case, we get a

semi-equivelar map.

If (x3, x4, x5) = (7, 8, 5), then lk(7) = C7(6,0, 1, 8, 2, 9,x6), where x6 = 4. Now,
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completing as in previous case, we get a semi-equivelar map.

If (x3, x4, x5) = (7, 8, 10), then lk(8) = C7(10,3, 2, 7, 1, 9,x6), where x6 ∈ {5, 11}.
If x6 = 5, then lk(9) = C7(5,6, 7, 2, 1, 8,10) and we get C5(0, 1, 7, 9, 5) ⊆ lk(6).

If x6 = 11, then considering lk(9), lk(7), lk(6), and lk(10) successively, we get

C5(6, 7, 9, 8, 10) ⊆ lk(5). This proves the claim.

Subcase 6.1. (x3, x4, x5) = (4, 10, 11). Completing successively, we

get lk(2) = C7(3,0, 1, 9, 4, 10, 11), lk(4) = C6(0, 3, 9, 2, 10, 5), lk(3) =

C7(2,1, 0, 4, 9, 11,10), lk(9) = C6(1, 2, 4, 3, 11, 8), lk(10) = C7(11,3, 2, 4, 5, 7,6),

lk(11) = C7(10,2, 3, 9, 8, 6,7), lk(6) = C7(7,1, 0, 5, 8, 11,10), lk(5) = C6(0, 4,

10, 7, 8, 6), lk(8) = C6(1, 7, 5, 6, 11, 9). Then M ∼= E2(K) by the map

(0, 6, 9, 4, 5, 11, 3)(1, 7, 10, 2).

Subcase 6.2. (x3, x4, x5) = (5, 10, 11). Then lk(5) = C6(0, 4, 9, 2, 10, 6) or

lk(5) = C6(0, 4, 10, 2, 9, 6). In the first case, considering lk(9), we see that

lk(4) can not be completed. So, lk(5) = C6(0, 4, 10, 2, 9, 6). Completing succes-

sively, we get lk(9) = C6(1, 2, 5, 6, 11, 8), lk(6) = C7(7,1, 0, 5, 9, 11,10), lk(10) =

C7(11,3, 2, 5, 4, 7,6), lk(11) = C7(10,2, 3, 8, 9, 6,7), lk(3) = C7(2,1, 0, 4, 8, 11, 10),

lk(4) = C6(0, 3, 8, 7, 10, 5). Then M ∼= E11(T ) by the identity map.

Subcase 6.3. (x3, x4, x5) = (10, 7, 6). Then lk(2) = C7(3,0, 1, 9, 10, 7,6), lk(7) =

C7(6,0, 1, 8, 10, 2,3), lk(6) = C7(7,1, 0, 5, 11, 3,2), lk(3) = C7(2,1, 0, 4, 11, 6,7). This

implies lk(10) = C6(8, 7, 2, 9, x6, x7) or lk(10) = C7(x7,x8, 8, 7, 2, 9,x6).

Subcase 6.3.1. If lk(10) = C6(8, 7, 2, 9, x6, x7), then (x6, x7) ∈
{(4, 5), (5, 4), (11, 4), (11, 5)}. If (x6, x7) = (4, 5), completing successively, we get

lk(4) = C6(0, 3, 11, 9, 10, 5), lk(5) = C6(0, 4, 10, 8, 11, 6), lk(8) = C6(1, 7, 10, 5, 11, 9),

lk(9) = C6(1, 2, 10, 4, 11, 8), and lk(11) = C6(3, 4, 9, 8, 5, 6). Then M ∼= E10(K) by

the identity map.

If (x6, x7) = (5, 4), completing successively, we get lk(4) = C6(0, 3, 11, 8, 10, 5),

lk(5) = C6(0, 4, 10, 9, 11, 6), lk(9) = C6(1, 2, 10, 5, 11, 8), lk(8) = C6(1, 7, 10, 4, 11, 9),

and lk(11) = C6(3, 4, 8, 9, 5, 6). Then M ∼= E12(T ) by the identity map.

If (x6, x7) = (11, 4), completing successively, we get lk(4) = C6(0, 3, 11, 10, 8, 5),

lk(8) = C6(1, 7, 10, 4, 5, 9), lk(5) = C6(0, 4, 8, 9, 11, 6), lk(9) = C6(1, 2, 10, 11, 5, 8), and

lk(11) = C6(3, 4, 10, 9, 5, 6). Then M ∼= E10(K) by the map (0, 6)(1, 7)(4, 11)(9, 10).

If (x6, x7) = (11, 5), completing successively, we get lk(5) = C6(0, 4, 8, 10, 11, 6),

lk(8) = C6(1, 7, 10, 5, 4, 9), lk(4) = C6(0, 3, 11, 9, 8, 5), lk(9) = C6(1, 2, 10, 11, 4, 8),

and lk(11) = C6(3, 4, 9, 10, 5, 6). Then M ∼= E13(T ) by the identity map.

Subcase 6.3.2. If lk(10) = C7(x7,x8, 8, 7, 2, 9,x6), then it is easy to see that

(x6, x7, x8) ∈ {(5, 4, 11), (11, 4, 5), (4, 5, 11), (11, 5, 4), (4, 11, 5), (5, 11, 4)}. But for all

these cases of (x6, x7, x8) we see at least one quadrangular face incident at each vertex

i, for 0 ≤ i ≤ 11, which means there is no vertex in M with face-sequence (36). Thus

for these cases, M does not exists. This proves the lemma. 2

Theorem B. Let M be a 2-semi equivelar map of type [33.42 : 44] on ≤ 12 vertices. Then
M is isomorphic to one of F1(K), F2(T ), F3(T ), F4(K), F5(T ), F6(T ), F7(T ), F8(K) or
F9(T ) given in example Section 3.
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Proof: Assume that fseq(0) = (44) and lk(0) = C8(1,2, 3,4, 5,6, 7,8) in M . Then

we have two cases, either fseq(1) = (33.42) or fseq(1) = (44).

Case 1: fseq(1) = (33.42). Then lk(1) = C7(0,7, 8, x1, x2, 2,3). It is easy

to see that (x1, x2) ∈ {(4, 5), (4, 6), (4, 9), (5, 6), (5, 4), (6, 4), (6, 5), (6, 9), (9, 4), (9,

6), (9, 10)}. Here (4, 6) ∼= (6, 4) by the map (2, 8)(3, 7)(4, 6). So, we need not consider

the case (6, 4).

Subcase 1.1. (x1, x2) = (4, 5). Then lk(1) = C7(0,7, 8, 4, 5, 2,3), lk(5) =

C7(0,3, 4, 1, 2, 6,7). This implies lk(2) = C7(3,0, 1, 5, 6, x3,x4), where (x3, x4) ∈
{(9, 4), (9, 10)}. If (x3, x4) = (9, 4), then considering lk(4), we get C6(0, 1, 2, 9, 4, 5) ⊆
lk(3). If (x3, x4) = (9, 10), then it is easy to see that lk(3) = C8(0,1, 2,9, 10,11, 4,5),

lk(4) = C7(3,0, 5, 1, 8, 11,10) and lk(8) = C7(7,0, 1, 4, 11, x5,x6), where (x5, x6) =

(9, 10). Completing successively, we get lk(8) = C7(7,0, 1, 4, 11, 9,10), lk(9) =

C7(10,3, 2, 6, 11, 8,7), lk(6) = C7(7,0, 5, 2, 9, 11,10), lk(11) = C7(10,3, 4, 8, 9, 6,7),

lk(7) = C8(0, 1, 8,9, 10,11, 6,5). Then M ∼= F1(K) by the identity map.

Subcase 1.2. (x1, x2) = (4, 6). Then lk(1) = C7(0,7, 8, 4, 6, 2,3). This implies

lk(4) = C7(3,0, 5, 8, 1, 6,x3), where x3 = 7. Completing successively, we get lk(6) =

C7(7,0, 5, 2, 1, 4,3), lk(2) = C7(3,0, 1, 6, 5, 8,7), lk(8) = C7(7,0, 1, 4, 5, 2,3), lk(7) =

C8(0,1, 8,2, 3,4, 6,5), lk(5) = C7(0,3, 4, 8, 2, 6,7), lk(3) = C8(0,1, 2,8, 7,6, 4,5).

Then M ∼= F2(T ) by the identity map.

Subcase 1.3. (x1, x2) = (4, 9). Then lk(4) = C7(3,0, 5, 9, 1, 8,x3) or

lk(4) = C7(5,0, 3, 9, 1, 8,x3) or lk(4) = C7(5,0, 3, 8, 1, 9,x3), or lk(4) =

C7(3,0, 5, 8, 1, 9,x3), where x3 ∈ V (M). If lk(4) = C7(3,0, 5, 9, 1, 8,x3) (or

lk(4) = C7(5,0, 3, 9, 1, 8,x3)), then x3 = 7 and we get C5(0, 1, 4, 3, 7) ⊆ lk(8)

(resp. C5(0, 1, 4, 5, 7) ⊆ lk(8)). If lk(4) = C7(5,0, 3, 8, 1, 9,x3), then x3 = 10.

This implies lk(5) = C8(0,3, 4,9, 10,11, 6,7), but then lk(9) can not be completed.

If lk(4) = C7(3,0, 5, 8, 1, 9,x3), then lk(5) = C7(0,3, 4, 8, 10, 6,7) and lk(8) =

C7(7,0, 1, 4, 5, 10,x4), where x4 ∈ {9, 11}. In case x4 = 9, lk(7) can not be com-

pleted. So, x4 = 11. Completing successively, we get lk(8) = C7(7,0, 1, 4, 5, 10,11),

lk(7) = C8(0,1, 8,10, 11,9, 6,5), lk(6) = C7(7,0, 5, 10, 2, 9,11), lk(2) =

C7(3,0, 1, 9, 6, 10,11), lk(3) = C8(0,1, 2,10, 11,9, 4,5), lk(4) = C7(3,0, 5, 8, 1, 9,11),

lk(9) = C7(11, 3, 4, 1, 2, 6,7), lk(10) = C7(11,3, 2, 6, 5, 8,7). Then M ∼= F3(T ) by the

identity map.

Subcase 1.4. (x1, x2) = (5, 6), i.e., lk(1) = C7(0,3, 2, 6, 5, 8,7). Then lk(5) =

C7(0,3, 4, 8, 1, 6,7) and lk(6) = C7(7,0, 5, 1, 2, x3,x4). Here, we see that (x3, x4) ∈
{(4, 3), (9, 10)}. If (x3, x4) = (4, 3), completing successively, we get lk(4) =

C7(3,0, 5, 8, 2, 6,7), lk(8) = C7(7,0, 1, 5, 4, 2,3), lk(2) = C7(3,0, 1, 6, 4, 8,7), lk(3) =

C8(0,1, 2,8, 7,6, 4,5). Then M ∼= F4(K) by the identity map.

On the other hand, if (x3, x4) = (9, 10), completing successively, we

get lk(2) = C7(3,0, 1, 6, 9, 11, 10), lk(3) = C8(0,1, 2,11, 10,9, 4,5),

lk(9) = C7(10,3, 4, 11, 2, 6,7), lk(4) = C7(3,0, 5, 8, 11, 9,10), lk(7) =

C8(0,1, 8,11, 10,9, 6,5), lk(8) = C7(7,0, 1, 5, 4, 11,10), lk(11) =

C7(10,3, 2, 9, 4, 8,7). Then M ∼= F1(K) by the map (2, 8)(3, 7)(4, 6)(9, 11).

Subcase 1.5. (x1, x2) = (5, 4), i.e., lk(1) = C7(0,3, 2, 4, 5, 8,7). Then
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lk(5) = C7(0,3, 4, 1, 8, 6,7) and lk(8) = C7(7,0, 1, 5, 6, x3,x4), where (x3, x4) ∈
{(2, 3), (9, 10)}. If (x3, x4) = (2, 3), completing successively, we get lk(8) =

C7(7,0, 1, 5, 6, 2,3), lk(2) = C7(3,0, 1, 4, 6, 8,7), lk(4) = C7(3,0, 5, 1, 2, 6,7), lk(6) =

C7(7,0, 5, 8, 2, 4,3), lk(7) = C8(0,1, 8,2, 3,4, 6,5), lk(3) = C8(0,1, 2,8, 7,6, 4,5).

Then M ∼= F5(T ) by the identity map.

On the other hand, if (x3, x4) = (9, 10), then lk(8) = C7(7,0, 1, 5, 6, 9,10). This im-

plies lk(6) = C7(7,0, 5, 8, 9, x5,x6), where (x5, x6) ∈ {(2, 3), (11, 10)}. If (x5, x6) =

(2, 3), then lk(6) = C7(7,0, 5, 8, 9, 2,3), lk(2) = C7(3,0, 1, 4, 9, 6,7), lk(9) = C7(10,3, 4, 2, 6, 8,7),

which implies that lk(3) can not be completed. So (x5, x6) = (11, 10). Com-

pleting successively, we get lk(6) = C7(7,0, 5, 8, 9, 11,10), lk(7) = C8(0,1, 8,9, 10,11, 6,5),

lk(9) = C7(10,3, 2, 11, 6, 8,7), lk(2) = C7(3,0, 1, 4, 11, 9,10), lk(3) = C8(0,1, 2,9, 10,11, 4,5),

lk(4) = C7(3,0, 5, 1, 2, 11,10), lk(11) = C7(10,3, 4, 2, 9, 6,7). Then M ∼= F6(T ) by the

identity map.

Subcase 1.6. (x1, x2) = (6, 5), i.e., lk(1) = C7(0,3, 2, 5, 6, 8,7). Then lk(5) =

C7(0,3, 4, 2, 1, 6,7). This implies lk(6) = C7(7,0, 5, 1, 8, x3,x4), where (x3, x4) ∈
{(2, 3), (4, 3), (9, 10)}. If (x3, x4) = (2, 3), then considering lk(6) and lk(2), we see that

lk(8) can not be completed. If (x3, x4) = (4, 3), then completing successively we get

lk(4) = C7(3,0, 5, 2, 8, 6,7), lk(2) = C7(3,0, 1, 5, 4, 8,7), lk(8) = C7(7,0, 1, 6, 4, 2,3),

lk(3) = C8(2,1, 0,5, 4,6, 7,8). Then M ∼= F5(T ) by the map (0, 3)(1, 2)(4, 5).

On the other hand, if (x3, x4) = (9, 10), then lk(6) = C7(7,0, 5, 1, 8, 9,10), lk(7) =

C8(0,1, 8,11, 10,9, 6,5), lk(8) = C7(7,0, 1, 6, 9, 11,10). This implies lk(9) =

C7(10,7, 6, 8, 11, x5,x6), where (x5, x6) ∈ {(3, 2), (4, 3)}. In case (x5, x6) = (3, 2),

considering lk(9) and lk(2), we see that lk(10) can not be completed. If (x5, x6) =

(4, 3), completing successively, we get lk(9) = C7(10,3, 4, 11, 8, 6,7), lk(4) =

C7(3,0, 5, 2, 11, 9,10), lk(3) = C8(0,1, 2,11, 10,9, 4,5), lk(2) = C7(3,0, 1, 5, 4, 1110),

lk(11) = C7(10,3, 2, 4, 9, 8,7). Then M ∼= F6(T ) by the map (0, 10)(1, 9, 5, 11).

Subcase 1.7. (x1, x2) = (6, 9), i.e., lk(1) = C7(0,3, 2, 9, 6, 8,7). Then

lk(6) = C7(7,0, 5, 8, 1, 9,x3), where x3 ∈ {4, 10}. If x3 = 4, then consid-

ering lk(5) and lk(8), we see that lk(7) can not be completed. If x3 = 10,

then lk(7) = C8(0,1, 8,11, 10,9, 6,5), lk(8) = C7(7,0, 1, 6, 5, 11,10), lk(5) =

C7(0,3, 4, 11, 8, 6,7). This implies lk(11) = C7(10,3, 2, 4, 5, 8,7), completing suc-

cessively, we get lk(2) = C7(3,0, 1, 9, 4, 11,10), lk(3) = C8(0,1, 2,11, 10,9, 4,5),

lk(4) = C7(3,0, 5, 11, 2, 9,10), lk(9) = C7(10,3, 4, 2, 1, 6,7). Then M ∼= F1(K) by

the map (0, 7, 10)(1, 8, 9, 4, 5, 6, 11, 2).

Subcase 1.8. (x1, x2) = (9, 4). Then lk(4) = C7(3,0, 5, 2, 1, 9,x3), where x3 ∈
{6, 10}. The case x3 = 6 implies lk(3) = C8(0,1, 2,x4, 6,9, 4,5). Observe that

x4 ∈ {7, 10}. If x4 = 7, then considering lk(3), we see that lk(2) can not be com-

pleted. While if x4 = 10, considering lk(2) and lk(5), we see that lk(6) can not be

completed. On the other hand, if x3 = 10, then lk(3) = C8(0,1, 2,x4, 10,9, 4,5).

Observe that x4 ∈ {6, 11}. As above, we see that x4 6= 6. So x4 = 11.

Now completing successively, we get lk(3) = C8(0,1, 2,11, 10,9, 4,5), lk(6) =

C7(7,0, 5, 11, 8, 9,10), lk(9) = C7(10,3, 4, 1, 8, 6,7), lk(8) = C7(7,0, 1, 9, 6, 11,10),

lk(7) = C8(0,1, 8,11, 10,9, 6,5), lk(11) = C7(10,3, 2, 5, 6, 8,7). Then M ∼= F1(K) by
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the map (0, 3)(1, 2)(4, 5)(6, 11)(7, 10).

Subcase 1.9. (x1, x2) = (9, 6), i.e., lk(1) = C7(0,3, 2, 6, 9, 8,7). Then lk(6) =

C7(5,0, 7, 2, 1, 9,x3) or lk(6) = C7(7,0, 5, 2, 1, 9,x3), for x3 ∈ V (M). In the first

case, we see x3 ∈ {4, 10}. But, a small computation shows that for both of these

values, M does not exist. For the later case of lk(6), we get x3 ∈ {4, 10}. If x3 = 4,

then considering lk(6) and lk(9), we see lk(4) can not be completed. If x3 = 10,

then lk(6) = C7(7,0, 5, 2, 1, 9,10) and lk(7) = C8(8,1, 0,5, 6,9, 10,x6), where x6 ∈
{4, 11}. If x6 = 4, considering lk(7) and lk(5), we see that lk(4) can not be completed.

If x6 = 11, completing successively, we get lk(8) = C7(7,0, 1, 9, 4, 11,10), lk(9) =

C7(10,3, 4, 8, 1, 6,7), lk(4) = C7(3,0, 5, 11, 8, 9,10), lk(3) = C8(0,1, 2,11, 10,9, 4,5),

lk(11) = C7(10,3, 2, 5, 4, 8,7), lk(2) = C7(3,0, 1, 6, 5, 11,10). Then M ∼= F3(T ) by

the map (0, 3)(1, 2)(4, 5)(6, 9)(7, 11, 8, 10).

Subcase 1.10. (x1, x2) = (9, 10), i.e., lk(1) = C7(0,3, 2, 10, 9, 8,7). Then

lk(2) = C7(3,0, 1, 10, x3, x4,x5). Observe that, (x3, x4, x5) ∈ {(4, 8, 7), (6, 11, 9),
(8, 9, 6), (8, 9, 11), (11, 6, 7), (11, 8, 7)}. A small computation shows that M does not ex-

ist for these values of (x3, x4, x5), except (11, 8, 7). If (x3, x4, x5) = (11, 8, 7), then

lk(2) = C7(3,0, 1, 10, 11, 8,7), lk(8) = C7(7,0, 1, 9, 11, 2,3), lk(3) = C8(0,1, 2,8, 7, 6, 4,5) and

lk(7) = C8(0,1, 8,2, 3,4, 6,5). This implies lk(9) = C7(x7,x8, 11, 8, 1, 10,x6). It is

easy to see that (x6, x7, x8) ∈ {(4, 5, 6), (4, 6, 5), (5, 4, 6), (5, 6, 4), (6, 4, 5), (6, 5, 4)}. Note that

(5, 4, 6) ∼= (4, 6, 5) by the map (0, 7, 3)(1, 8, 2)(4, 5, 6)(9, 11, 10), (5, 6, 4) ∼= (4, 5, 6) by the map

(0, 7)(1, 8)(5, 6)(10, 11), and (6, 5, 4) ∼= (4, 6, 5) by the map (0, 7)(1, 8)(5, 6)(10, 11). So, we

search for (x6, x7, x8) ∈ {(4, 5, 6), (4, 6, 5), (6, 4, 5)}.

Subcase 1.10.1. If (x6, x7, x8) = (4, 5, 6), then completing successively, we get

lk(9)=C7(5,4, 10, 1, 8, 11,6), lk(5) = C8(0,3, 4,10, 9,11, 6,7), lk(4) = C8(3,0, 5,9, 10,11, 6,7),

lk(6) = C8(4,3, 7,0, 5,9, 11,10), lk(10) = C7(4,5, 9, 1, 2, 11,6), lk(11) = C7(6,4, 10, 2, 8, 9,5).

Then M ∼= F7(T ).

Subcase 1.10.2. If (x6, x7, x8) = (4, 6, 5), then completing successively, we get lk(9) =

C7(6,4, 10, 1, 8, 11,5), lk(6) = C8(4,3, 7,0, 5,11, 9,10), lk(4) = C8(3,0, 5,11, 10,9, 6,7), lk(10) =

C7(4,5, 11, 2, 1, 9,6), lk(11) = C7(5,4, 10, 2, 8, 9,6), lk(5) = C8(0,3, 4,10, 11,9, 6,7). Then M ∼=
F8(K).

Subcase 1.10.3. If (x6, x7, x8) = (6, 4, 5), then completing successively, we get lk(9) =

C7(4,6, 10, 1, 8, 11,5), lk(4) = C8(3,0, 5,11, 9,10, 6,7), lk(5) = C8(0,3, 4,9, 11,10, 6,7), lk(11) =

C7(5,4, 9, 8, 2, 10,6), lk(10) = C7(6,4, 9, 1, 2, 11,5). Then M ∼= F9(T ).

Case 2. If fseq(1) = (44), then lk(1) = C8(2,3, 0,7, 8,x1, x2,x3). We see that,

(x1, x2, x3) ∈ {(4, 5, 6), (4, 6, 5), (4, 9, 6), (4, 9, 10), (5, 4, 6), (5, 4, 9), (6, 4, 5), (6, 5, 4),

(6, 9, 4), (6, 9, 10), (9, 4, 5), (9, 6, 5), (9, 10, 4), (9, 10, 6), (9, 10, 11)}. Now, doing com-

putation for these cases, we get no other map. The detailed enumeration of this is

given in [Case 2 of Lemma B in [15]]. To save space here, hence, we refer to [15].

Proof of Theorem 2. Let M1 and M2 be 2-semi-equivelar maps with the vertex sets

V (M1) and V (M2) respectively. Then, M1 �M2 if: (i) one is on the torus and other

is on the Klein bottle or (ii) their types are distinct or (iii) |V (M1)| 6= |V (M2)|, where
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|V (Mi)| denotes the cardinality of V (Mi). Now, the proof follows from Theorem 1,

Lemma 1 and Lemmas 2-B. 2

The above classification is given below in tabular form.

Table 1: 2-semi-equivelar maps on the torus and Klein bottle on |V | ≤ 12

S. No. Map Type |V (M)| —Maps—On Torus On Klein bottle

1 [36 : 34.6] 11 2 A3(T ) A1(K)

12 1 A2(T )

2 [33.42 : 3.4.6.4] 12 2 B2(T ) B1(K)

3 [32.4.3.4 : 3.4.6.4] 12 2 C2(T ) C1(K)

4 [36 : 32.4.3.4] 11 1 D1(K)

5 [36 : 33.42] 9 4 E3(T ), E6(T ) E1(K), E5(K)

12 9 E4(T ), E8(T ), E11(T ),

E12(T ), E13(T )

E2(K), E7(K),

E9(K), E10(K)

6 [33.42 : 44] 9 3 F3(T ), F5(T ) F4(K)

12 6 F3(T ), F6(T ), F7(T ),

F9(T )

F1(K), F8(K)

5. Conclusion

The 2-semi equivelar maps are generalization of Johnson solids, as are 1-semi equiv-

elar maps of Platonic solids and Archimedean solids. In this article, 2-semi-equivelar

maps with curvature 0 have been studied for the surfaces of Euler characteristic 0.

It has been obtained that there are exactly 16 types 2-semi-equivelar maps on these

surfaces. Further, enumerating the maps for these types on at most 12 vertices,

we have obtained 31 2-semi-equivelar maps. Out of which, 18 are on the torus and

remaining 13 are on the Klein bottle. In [4], the authors have shown that there are

exactly eleven types, [36], [34.6], [33.42], [32.4.3.4], [3.4.6.4], [3.6.3.6], [3.122], [44],

[4.6.12], [4.82] and [63] semi equivelar maps are possible on the torus. Thus a natural

questions occurs here: are there exist finitely many types of doubly semi-equivelar

maps on the torus? If yes, then what are the remaining types?
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