
تعداد نشریات | 5 |
تعداد شمارهها | 113 |
تعداد مقالات | 1,289 |
تعداد مشاهده مقاله | 1,262,062 |
تعداد دریافت فایل اصل مقاله | 1,115,243 |
Global Malmquist productivity index for evaluation of multistage series systems with undesirable and non-discretionary data | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 07 فروردین 1403 اصل مقاله (496.16 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2024.29063.1831 | ||
نویسندگان | ||
Jafar Pourmahmoud* ؛ Davoud Norouzi Bene | ||
Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran | ||
چکیده | ||
Data Envelopment Analysis measures relative efficiency, in which the performances of the DMUs in a group are compared. In this approach, an efficient unit in one group may be considered inefficient compared to the units of other groups and vice versa. To solve this weakness, two known productivity indexes, the Malmquist and Luenberger, have been introduced to evaluate units (or systems) from one period to another. The existence of special types of data such as undesirable and non-discretionary in some multi-stage series systems is unavoidable. The evaluation of such systems in the simultaneous presence of the mentioned data and different periods has not been done so far. Therefore, in this study, we have presented a model with a new approach to evaluate them. At the end of the study, we checked the proposed model’s ability by providing comparative and structural examples. We have shown that without undesirable and non-discretionary data, the proposed is better than other models. Also, this model has been used for the first time and obtained acceptable results in the presence of these data. | ||
کلیدواژهها | ||
Network data envelopment analysis؛ Malmquist productivity index؛ Evaluation؛ Non-discretionary data؛ Undesirable data | ||
مراجع | ||
[1] A.G. Abri and M.F. Jelodar, A complementary on proposing a new model on data envelopment analysis by considering non-discretionary factors and a review on previous models, Math. Comput. Appl. 17 (2012), no. 3, 244–246. https://doi.org/10.3390/mca17030244
[2] M. Ahmadkhano gharakhanlo, G. Tohidi, N. Azarmir Shotorbani, S. Razavyan, and R. Abbasi, Cost, revenue and profit efficiency in multi-period network system: A DEA-R based approach, Commun. Comb. Optim., 10 (2024), no. 4, 725-746. https://doi.org/10.22049/cco.2023.28179.1474
[3] S. Akther, H. Fukuyama, and W.L. Weber, Estimating two-stage network slacks-based inefficiency: An application to bangladesh banking, Omega 41 (2013), no. 1, 88–96. https://doi.org/10.1016/j.omega.2011.02.009
[4] A. Alinezhad and M.J. Nasiri Sadeghloo, Application of malmquist index in two-stage dea for measurement of productivity growth, J. Monet. Econ. 11 (2016), no. 1, 31–51.
[5] A. Amirteimoori and S. Kordrostami, DEA-like models for multi-component performance measurement, Appl. Math. Comput. 163 (2005), no. 2, 735–743. https://doi.org/10.1016/j.amc.2003.10.060
[6] A. Amirteimoori, S. Kordrostami, and M. Sarparast, Modeling undesirable factors in data envelopment analysis, Appl. Math. Comput. 180 (2006), no. 2, 444–452. https://doi.org/10.1016/j.amc.2005.12.029
[7] R.D. Banker, A. Charnes, and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manag. Sci. 30 (1984), no. 9, 1031–1142. https://doi.org/10.1287/mnsc.30.9.1078
[8] R.D. Banker and R.C. Morey, Efficiency analysis for exogenously fixed inputs and outputs, Oper. Res. 34 (1986), no. 4, 501–653. https://doi.org/10.1287/opre.34.4.513
[9] R.D. Banker and R.C. Morey, The use of categorical variables in data envelopment analysis, Manag. Sci. 32 (1986), no. 12, 1521–1655. https://doi.org/10.1287/mnsc.32.12.1613
[10] A.S. Camanho, M.C. Portela, and C.B. Vaz, Efficiency analysis accounting for internal and external non-discretionary factors, Comput. Oper. Res. 36 (2009), no. 5, 1591–1601. https://doi.org/10.1016/j.cor.2008.03.002
[11] A. Charnes, W.W. Cooper, R.B. Golany, G. Klopp, E. Schmitz, and D. Thomas, colorredTwo-phase data envelopment analysis approaches to policy evaluation and management of army recruiting activities: tradeoffs between joint services and army advertising, Research Report CCS 532.
[12] A. Charnes, W.W. Cooper, and E. Rhodes, Measuring the efficiency of decision making units, European J. Oper. Res. 2 (1978), no. 6, 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
[13] S. Chen and J. Golley, ‘green’productivity growth in china’s industrial economy, Energy Econ. 44 (2014), 89–98. https://doi.org/10.1016/j.eneco.2014.04.002
[14] W.D. Cook, L. Liang, and J. Zhu, Measuring performance of two-stage network structures by dea: A review and future perspective, Omega 38 (2010), no. 6, 423–430. https://doi.org/10.1016/j.omega.2009.12.001
[15] M. Fallah, F. Hosseinzadeh Lotfi, and M.M. Hosseinzadeh, Discriminant analysis and data envelopment analysis with specific data and its application for companies in the iranian stock exchange, Iranian J. Oper. Res. 11 (2020), no. 1, 144–156.
[16] R. Färe and S. Grosskopf, Modeling undesirable factors in efficiency evaluation: comment, European J. Oper. Res. 157 (2004), no. 1, 242–245. https://doi.org/10.1016/S0377-2217(03)00191-7
[17] R. Färe, S. Grosskopf, B. Lindgren, and P. Roos, Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach, Data Envelopment Analysis: Theory, Methodology, and Applications, Springer Netherlands, Dor- drecht, 1994, pp. 253–272. [18] R. Färe, S. Grosskopf, M. Norris, and Z. Zhang, Productivity growth, technical progress, and efficiency change in industrialized countries, Am. Econ. Assoc. 84 (1994), 66–83.
[19] D.U.A. Galagedera, Modelling social responsibility in mutual fund performance appraisal: A two-stage data envelopment analysis model with non-discretionary first stage output, European J. Oper. Res. 273 (2019), no. 1, 376–389. https://doi.org/10.1016/j.ejor.2018.08.011 [20] M. Homayounfar and A.R. Amirteimoori, Network production planning considering undesirable outputs- a fuzzy data envelopment analysis approach, Int. J. Oper. Res. 13 (2016), no. 1, 121–141.
[21] F. Hosseinzadeh Lotfi, G.R. Jahanshahloo, and M. Esmaeili, Sensitivity analysis of efficient units in the presence of non-discretionary inputs, Appl. Math. Comput. 190 (2007), no. 2, 1185–1197. https://doi.org/10.1016/j.amc.2007.02.002
[22] G.R. Jahanshahloo, H.V. Junior, F. Hosseinzadeh Lotfi, and D. Akbarian, A new DEA ranking system based on changing the reference set, European J. Oper. Res. 181 (2007), no. 1, 331–337. https://doi.org/10.1016/j.ejor.2006.06.012
[23] G.R. Jahanshahloo, A.H. Vencheh, A.A. Foroughi, and R. Kazemi Matin, Inputs/outputs estimation in dea when some factors are undesirable, Appl. Math. Comput. 156 (2004), no. 1, 19–32. https://doi.org/10.1016/S0096-3003(03)00814-2
[24] Chiang K., Network Data Envelopment Analysis, Foundations and Extensions, Springer, 2017.
[25] C. Kao, Efficiency decomposition for general multi-stage systems in data envelopment analysis, European J. Oper. Res. 232 (2014), no. 1, 117–124. https://doi.org/10.1016/j.ejor.2013.07.012
[26] C. Kao, Network data envelopment analysis: A review, European J. Oper. Res. 239 (2014), no. 1, 1–16. https://doi.org/10.1016/j.ejor.2014.02.039
[27] C. Kao, Network Data Envelopment Analysis: Foundations and Extensions, Springer International Publishing, 2016.
[28] C. Kao and S.T. Liu, Efficiencies of two-stage systems with fuzzy data, Fuzzy Sets and Systems 176 (2011), no. 1, 20–35. https://doi.org/10.1016/j.fss.2011.03.003
[29] S. Kordrostami and A. Amirteimoori, Un-desirable factors in multi-component performance measurement, Appl. Math. Comput. 171 (2005), no. 2, 721–729. https://doi.org/10.1016/j.amc.2005.01.081
[30] C.Y. Lee and A.L. Johnson, Two-dimensional efficiency decomposition to measure the demand effect in productivity analysis, European J. Oper. Res. 216 (2012), no. 3, 584–593. https://doi.org/10.1016/j.ejor.2011.08.004
[31] Y. Li, H. Xue, L. Lin, F. Li, L. Liang, and G. Kou, Provincial production and pollution treatment performance in china based on a two-stage eco-inefficiency approach with undesirable intermediate outputs, J. Clean. Prod. 331 (2022), Ar- ticle ID: 130016. https://doi.org/10.1016/j.jclepro.2021.130016 [32] S. Madadi, F. Hosseinzadeh Lotfi, M. Rostamy Malkhalifeh, and M. Fallah Jelodar, DEA -based re -allocation model with constant the efficiency and improvement of undesirable factors. the case study in tejarat bank of iran, Iranian J. Oper. Res. 9 (2018), no. 1, 63–75. [33] K. Matthews, Risk management and managerial efficiency in chinese banks: A network dea framework, Omega 41 (2013), no. 2, 207–215. https://doi.org/10.1016/j.omega.2012.06.003
[34] H. Omrani, A. Emrouznejad, M. Shamsi, and P. Fahimi, Evaluation of insurance companies considering uncertainty: A multi-objective network data envelopment analysis model with negative data and undesirable outputs, Socio-economic planning sciences 82 (2022), Article ID: 101306. https://doi.org/10.1016/j.seps.2022.101306
[35] J.T. Pastor and C.A.K. Lovell, A global Malmquist productivity index, Econ. Lett. 88 (2005), no. 2, 266–271. https://doi.org/10.1016/j.econlet.2005.02.013
[36] J.T. Pastor and C.A.K. Lovell, Circularity of the malmquist productivity index, Econ. Theory 33 (2007), no. 3, 591–599. https://doi.org/10.1007/s00199-006-0169-4 [37] R.W. Pittman, Multilateral productivity comparisons with undesirable outputs, Econ. J. 93 (1983), no. 372, 883–891. https://doi.org/10.2307/2232753
[38] J. Pourmahmoud and D. Norouzi Bene, Evaluation of general two-stage network systems in the presence of undesirable and non-discretionary data, Iranian J. Oper. Res. 13 (2022), no. 2, 83–95.
[39] J. Pourmahmoud and D. Norouzi Bene, Provide a new model for evaluating and ranking dmus with ordinal data, Int. J. Ind. Math. 14 (2022), no. 3, 271–277. [40] S.C. Ray, Resource-use efficiency in public schools: A study of connecticut data, Manag. Sci. 37 (1991), no. 12, 1620–1628. https://doi.org/10.1287/mnsc.37.12.1620
[41] V. Ruggiero, Criminals and service providers: Cross-national dirty economies, C.L. and S.C. 28 (1997), no. 1, 27–38. https://doi.org/10.1023/A:1008251402277 [42] L.M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation, European J. Oper. Res. 142 (2002), no. 1, 16–20. https://doi.org/10.1016/S0377-2217(01)00293-4
[43] F. Seihani Parashkouh, S. Kordrostami, A. Amirteimoori, and A. Ghane-Kanafi, Two-stage network dea with undesirable outputs: An application in the air transportation in the spain, Iranian J. Oper. Res. 11 (2020), no. 1, 1–24.
[44] A. Shirvani and A. Azizi, Developing a two-stage network data envelopment analysis model with desirable and undesirable outputs (case study of butter manufacturing industry)., Int. J. Ind. Math. 14 (2022), no. 4, 445–456. http://dx.doi.org/10.30495/ijim.2022.65237.1568
[45] M. Taleb, R. Ramli, and R. Khalid, Developing a two-stage approach of super efficiency slack-based measure in the presence of non-discretionary factors and mixed integer-valued data envelopment analysis, Expert Syst. Appl. 103 (2018), 14–24. https://doi.org/10.1016/j.eswa.2018.02.037 [46] M. Tavana, K. Khalili-Damghani, F.J.S. Arteaga, and A. Hashemi, A malmquist productivity index for network production systems in the energy sector, Ann. Oper. Res. 284 (2020), no. 1, 415–445. https://doi.org/10.1007/s10479-019-03173-7
[47] J. Tayyebi and A. Amirteymoori, Further study on ”an extended shortest path problem a data envelopment analysis approach”, Commun. Comb. Optim. 8 (2023), no. 1, 253–259. https://doi.org/10.22049/cco.2022.27510.1280
[48] K. Tone and B.K. Sahoo, Scale, indivisibilities and production function in data envelopment analysis, Int. J. Prod. Econ. 84 (2003), no. 2, 165–192. https://doi.org/10.1016/S0925-5273(02)00412-7
[49] M.D. Troutt, P.J. Ambrose, and C. Kin Chan, Optimal throughput for multistage input-output processes, Int. J. Oper. Prod. Manag. 21 (2001), no. 1/2, 148–158. https://doi.org/10.1108/01443570110358503
[50] M. Tsutsui and M. Goto, A multi-division efficiency evaluation of us electric power companies using a weighted slacks-based measure, Socio-Econ. Plan. Sci. 43 (2009), no. 3, 201–208. https://doi.org/10.1016/j.seps.2008.05.002
[51] Q. Wei, H. Yan, and L. Pang, Composite network data envelopment analysis model, Int. J. Inf. Technol Decis. Mak. 10 (2011), no. 4, 613–633. https://doi.org/10.1142/S0219622011004488
[52] J. Wu, Q. Zhu, X. Ji, J. Chu, and L. Liang, Two-stage network processes with shared resources and resources recovered from undesirable outputs, European J. Oper. Res. 251 (2016), no. 1, 182–197. https://doi.org/10.1016/j.ejor.2015.10.049
[53] X. Yao, C. Guo, S. Shao, and Z. Jiang, Total-factor co2 emission performance of china’s provincial industrial sector: A meta-frontier non-radial malmquist index approach, Appl. Energy 184 (2016), 1142–1153. https://doi.org/10.1016/j.apenergy.2016.08.064
[54] S. Yu, J. Liu, and L. Li, Evaluating provincial eco-efficiency in china: an improved network data envelopment analysis model with undesirable output, Environ. Sci. Pollut. Res. 27 (2020), 6886–6903. https://doi.org/10.1007/s11356-019-06958-2 | ||
آمار تعداد مشاهده مقاله: 146 تعداد دریافت فایل اصل مقاله: 665 |