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Abstract: A subset S of vertices in a graph G is a dominating set if every vertex

in V (G) \ S is adjacent to a vertex in S. If the graph G has no isolated vertex, then
a paired dominating set S of G is a dominating set of G such that G[S] has a perfect

matching. Further, a semipaired dominating set of G is a dominating set of G with

the additional property that the set S can be partitioned into two element subsets
such that the vertices in each subset are at most distance two apart. The domination

number γ(G) is the minimum cardinality of a dominating set of G. Similarly, the
paired (semipaired) domination number γpr(G) (γpr2(G)) is the minimum cardinality

of a paired (semipaired) dominating set of G. It is known that for a graph G, γ(G) ≤
γpr2(G) ≤ γpr(G) ≤ 2γ(G). In this paper, we characterize maximal outerplanar graphs
G satisfying γpr2(G) = 2γ(G). Hence, our result yields the characterization of maximal
outerplanar graphs G satisfying γpr(G) = 2γ(G).

Keywords: paired-domination, semipaired domination number, maximal outerplanar
graphs

AMS Subject classification: 05C69

1. Introduction

A dominating set of a graph G is a set S of vertices of G such that every vertex

not in S has a neighbor in S. The domination number γ(G) of G is the minimum

cardinality of a dominating set in G. A γ-set of G is a dominating set of G of
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2 Maximal outerplanar graphs with γpr2(G) = 2γ(G)

minimum cardinality γ(G). For recent books on domination in graphs, we refer the

reader to [4–6].

An isolate-free graph is a graph that contains no isolated vertex. Paired domination

was introduced in [13, 14] as a model for security applications involving backups

for police officers. To model a backup, each vertex in the paired dominating set

must be partnered with an adjacent vertex in the set. Formally, a paired dominating

set, abbreviated PD-set, of an isolate-free graph G is a dominating set S of G with

the additional property that the subgraph induced by S, denoted G[S], contains a

perfect matching. The paired domination number, denoted by γpr(G), of G is the

minimum cardinality of a PD-set of G. A γpr-set of G is a PD-set of G of minimum

cardinality γpr(G). For a state of the art on paired domination in graphs we refer the

reader to the survey paper [3] and the book chapter [2].

A relaxed version of paired domination, called semipaired domination, was introduced

by Haynes and Henning [8] and studied, for example, in [7, 9–12, 15, 16] and elsewhere.

Following the notation introduced in [8], a set S of vertices in an isolate-free graph

G is a semipaired dominating set, abbreviated semi-PD-set, of G if S is a dominating

set of G and every vertex in S is paired with exactly one other vertex in S that is

within at most distance 2 from it. Thus, the vertices in the dominating set S can be

partitioned into 2-sets such that if {u, v} is a 2-set, then uv ∈ E(G) or the distance

between u and v is 2. As defined in [8], we say that u and v are S-paired (or simply

paired if the set S is clear from the context), and that u and v are S-partners (or

simply partners), and we call such a pairing of the vertices of S a semi-matching in G.

The semipaired domination number, denoted by γpr2(G), is the minimum cardinality

of a semi-PD-set of G. A semi-PD-set of G of cardinality γpr2(G) is a γpr2-set of G.

Every semi-PD-set is a dominating set and every PD-set is a semi-PD-set. Hence, we

have the following observation, where it is observed in [14] that γpr(G) ≤ 2γ(G) for

every isolate-free graph G.

Observation 1. ([8]) If G is an isolate-free graph, then γ(G) ≤ γpr2(G) ≤ γpr(G) ≤
2γ(G).

A triangulated disc is a (simple) planar graph all of whose inner faces are triangles. A

maximal outerplanar graph, abbreviated mop in the literature, is a triangulated disc

where the outer face contains all vertices. Thus, a maximal outerplanar graph can

be embedded in the plane in such a way that all vertices are on the boundary of its

outer face (the unbounded face) and all interior faces are triangles. We note that the

addition of a single edge in a maximal outerplanar graph results in a graph that is

not outerplanar.

In this paper, we characterize maximal outerplanar graphs G satisfying γpr2(G) =

2γ(G). This yields the characterization of maximal outerplanar graphs G satisfying

γpr2(G) = γpr(G) = 2γ(G).
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1.1. Notation

For notation and graph theory terminology, we in general follow [6]. Specifically, let

G be a graph with vertex set V (G) and edge set E(G), and of order n(G) = |V (G)|
and size m(G) = |E(G)|. Two vertices in G are neighbors if they are adjacent. The

open neighborhood NG(v) of a vertex v in G is the set of neighbors of v, while the

closed neighborhood of v is the set NG[v] = {v} ∪ NG(v). We denote the degree of

v in G by degG(v) = |NG(v)|. For a set S ⊆ V (G), its open neighborhood is the

set NG(S) = ∪v∈SNG(v), and its closed neighborhood is the set NG[S] = NG(S) ∪ S.

Moreover, the subgraph induced by S is denoted by G[S]. The graph G−S is obtained

from G by deleting all vertices in S (and all edges of G incident with vertices of S).

If S = {v}, we denote G− S simply by G− v rather than G− {v}.
For a set S ⊆ V (G) and a vertex v ∈ S, the S-private neighborhood pn[v, S] of v

is the set of vertices that are in the closed neighborhood of v but not in the closed

neighborhood of the set S \ {v}, that is, pn[v, S] = {w ∈ V (G) : NG[w] ∩ S = {v}}.
If pn[v, S] 6= ∅, then a vertex in pn[v, S] is called an S-private neighbor of v. A set

B ⊆ V (G) is a packing of G if NG[u] ∩NG[v] = ∅ for any pair of distinct u, v ∈ B.

We denote a path, a cycle, and a complete graph on n vertices by Pn, Cn, and Kn,

respectively. A complete graph K3 we call a triangle. A fan of order n ≥ 5, denoted

Fn, is the graph obtained from a path Pn−1 by adding a new vertex v and joining it

to all vertices of the path. We say that the fan Fn is centered at v.

For an integer k ≥ 1, we use the standard notation [k] = {1, . . . , k} and [k]0 =

[k] ∪ {0} = {0, 1, . . . , k}.

2. Main result

In this section, we characterize all mops G with γpr2(G) = 2γ(G). We shall prove the

following result, where the class G(F ,H) is defined in Section 4.

Theorem 2. If G is a mop, then γpr2(G) ≤ 2γ(G), with equality if and only if G ∈
G(F ,H).

We proceed as follows. In Section 3, we present some preliminary results. In Section 4

we define the class G(F ,H) and prove that every graph G in the class G(F ,H) is a mop

satisfying γpr2(G) = 2γ(G). Finally, in Section 4 we prove that if G is a mop satisfying

γpr2(G) = 2γ(G), then G ∈ G(F ,H). The result of Theorem 2 follows immediately

from Observation 1, and the results presented in Section 4 and Section 5.

3. Preliminary Results

In this section, we present some preliminary results on mops.
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Observation 3. If v is a vertex in a mop G, then the induced subgraph G[NG[v]] is a
fan centered at v, and so G[NG(v)] is a path.

We shall need the following property of mops observed by O’Rourke [18] (see

Lemma 7.2, p. 169) and others.

Observation 4. ([18]) Every mop has a unique Hamiltonian cycle.

Following the notation of [17], for simplicity we refer to an edge that belongs to the

Hamiltonian cycle of a mop as a Hamiltonian edge, and to every other edge of the mop

as a diagonal. We shall also need the following property of mops due to Allgeier [1].

Lemma 1. ([1]) If H is a 2-connected induced subgraph of a mop G, then H is a mop.

4. The Class G(F ,H)

Let ` ≥ 2 be an integer. Let Fi be a fan of order at least 5 and let xi be the center

of Fi for i ∈ [`]. Let F ′ = {F1, F2, . . . , F`}. We say that the fans in F ′ are linked in

a graph G if, for each i ∈ [`], there exist exactly two consecutive vertices yi and zi
on the path Fi − xi such that {yi, zi : i ∈ [`]} induces a mop in G, which we call a

linked mop associated with F ′. We say also that Fi is linked in F ′ via the edge yizi.

Moreover, we call yizi the linked edge of Fi in F ′. For example, Figure 1 illustrates a

Figure 1. Linked fans

family F ′ with four linked fans F1, F2, F3, F4, where the linked edges of G are colored

red and the center of each fan is colored green. Further the edges, different from the

linked (red) edges, in the mop of G induced by the set {yi, zi : i ∈ [4]} are colored

blue in Figure 1. Thus the red and blue edges in Figure 1 form the linked mop of G

associated with F ′.
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Let F1, . . . ,Fd be d ≥ 1 families of linked fans in a mop G, and let F be a common

fan that belongs to each family Fj and is linked to the fans in Fj by the linked edge

ajbj ∈ E(F ) for all j ∈ [d] (see Figure 2).

Figure 2. A common fan F in F1,F2,F3, . . . ,Fd

Further, let Fr ∩ Fs = {F} for all r and s where 1 ≤ r < s ≤ d. Hence, all the

fans from all the families F1, . . . ,Fd are vertex disjoint, except for the fan F which

belongs to each family Fj for all j ∈ [d]. We define a linked set JF of the fan F as

follows:

(a) If ajbj is the edge of F that is linked to the family Fj and |Fj | ≥ 3, then we

add both aj and bj to JF for all j ∈ [d].

(b) If ajbj is the edge of F that is linked to the family Fj and |Fj | ≤ 2, then we

add only one of ai or bi to JF .

Figure 3. A fan without property J (left) and a fan with property J (right)

We say that the fan F has property J if none of the linked sets JF of F is a dominating

set of F (see Figure 3).
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Figure 4. The hypergraph H corresponding to the fans F1, . . . , F6

Let F = {F1, . . . , Fk} be a family of vertex disjoint fans satisfying |V (Fi)| ≥ 5

for all i ∈ [k]. Let H be a hypergraph having vertex set V (H) = F and edge set

E(H) = {e1, e2, . . . , em} satisfying the following properties:

(a)

m⋃
i=1

ei = F ;

(b) |ei ∩ ej | ≤ 1 for 1 ≤ i < j ≤ m;

(c) The hypergraph H contains no hypercycle, that is, H is a linear hypertree where

the vertices of H correspond to the fans Fi of F for i ∈ [k] (see Figure 4).

We call H the linear hypertree associated with the family F = {F1, . . . , Fk} of fans.

Let G be the graph obtained from the vertex disjoint union of the fans F1, . . . , Fk as

follows. For each edge ei = {Fi1 , . . . , Fij}, we add edges joining the fans in the family

Fi = {Fi1 , . . . , Fij} in such a way that the fans in Fi are linked and resulting linked

mop consists of these added edges and the linked edges from each fan in the family

Fi, for all i ∈ [m]. Further, we construct the graph G in such a way that every fan

has property J . Moreover, for each Fi ∈ F , if Fi is linked in the families Fj and

Fj′ via the linked edges yjzj and yj′zj′ , respectively, then yjzj 6= yj′zj′ . Let G(F ,H)

be the class of all such graphs G constructed in this manner from the family of fans

F = {F1, . . . , Fk} and the linear hypertree H associated with the family F .

We will prove that every graph G in the class G(F ,H) is a mop satisfying γpr2(G) =

γpr(G) = 2γ(G).

Theorem 5. If G ∈ G(F ,H), then G is a mop with γpr2(G) = 2γ(G).
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Proof. Let F = {F1, . . . , Fk} be a family of fans satisfying |V (Fi)| ≥ 5 for all i ∈ [k],

and let H be the linear hypertree associated with the family F . Let xi be the center

of the fan Fi for i ∈ [k]. Let G ∈ G(F ,H). We proceed further by proving two claims.

Claim 1. The graph G satisfies γpr2(G) = 2γ(G).

Proof. The center of the fans dominate the graph G, that is, {x1, x2, . . . , xk} is a

dominating set of G. Thus, γ(G) ≤ k, implying by Observation 1 that γpr2(G) ≤
2γ(G) ≤ 2k. Hence it suffices for us to show that γpr2(G) ≥ 2k. Among all γpr2-sets

of G, let S be chosen so that |S ∩ {x1, x2, . . . , xk}| is maximum.

Figure 5. The vertices u and u′

We show that {x1, x2, . . . , xk} ⊆ S. Suppose, to the contrary, that xi /∈ S for some

i ∈ [k]. If S ∩ V (Fi) ⊆ JFi
, then, by property J , the set S does not dominate

Fi, contradicting the fact that S is a semi-PD-set of G. Hence there exists a vertex

u ∈ S ∩ V (Fi) such that u /∈ JFi
(see Figure 5).

Let u′ be the vertex that is S-paired with u. If u′ ∈ V (Fi), then S′ = (S \ {u})∪{xi}
is a semi-PD-set of G with u′ S′-paired with xi, and with the S′-pairings of all other

pairs of vertices in S′ unchanged from their S-pairings. We note that |S′| = |S|,
and so S′ is a γpr2-set of G. However, |S′ ∩ {x1, x2, . . . , xk}| > |S ∩ {x1, x2, . . . , xk}|,
contradicting our choice of the set S. Hence, u′ /∈ V (Fi). Since u /∈ JFi

and u′ and

u are S′-paired, it follows that dG(u′, xi) = 2. As before, S′ = (S \ {u}) ∪ {xi} is

a semi-PD-set of G with u′ S′-paired with xi, and with the S′-pairings of all other

pairs of vertices in S′ unchanged from their S-pairings. Thus, S′ is a γpr2-sets of G

and |S′ ∩ {x1, x2, . . . , xk}| > |S ∩ {x1, x2, . . . , xk}|, a contradiction.

Hence, {x1, x2, . . . , xk} ⊆ S. Let x′i be the S-partner of xi for i ∈ [k], and so

dG(xi, x
′
i) ≤ 2. The central vertices of the fans are pairwise at distance at least 3

apart, that is, dG(xi, xj) ≥ 3 for all i and j where 1 ≤ i < j ≤ k. This implies that

x′i 6= x′j for 1 ≤ i < j ≤ k. Therefore, {x′1, x′2, . . . , x′k} ⊆ S and {x1, x2, . . . , xk} ∩
{x′1, x′2, . . . , x′k} = ∅, implying that |S| ≥ 2k.

Claim 2. The graph G is a mop.
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Figure 6. The corresponding hypergraph which is a hypercycle

Proof. Suppose, to the contrary, that G is not a mop. By construction, G is a

planar graph and all interior faces of G are triangles. Thus, G has a vertex v which

does not lie on the outer face. Renaming vertices if necessary, we may assume that

v ∈ V (F1)\{x1}. Since v does not lie on the outer face, it follows that v is enclosed by

maximal outerplanar subgraphs corresponding to the edges e1, e2, . . . , ed of H where

F1 ∈ e1 ∩ ed and ei ∩ ei+1 6= ∅ for i ∈ [d− 1]. If d ≥ 3, then H has a hypercycle (see

Figure 6). Thus, d = 2. In this case, v still lies on the outer face if e1 ∩ e2 = {F1}.
Thus, |e1 ∩ e2| ≥ 2, contradicting the fact that H is linear.

The proof of Theorem 5 now follows from Claims 1 and 2.

5. Mops G satisfying γpr2(G) = γ(G)

In this section, we will show that if G is a mop satisfying γpr2(G) = 2γ(G), then

G ∈ G(F ,H).

Theorem 6. If G is a mop satisfying γpr2(G) = 2γ(G), then G ∈ G(F ,H).

Proof. Let G be a mop satisfying γpr2(G) = 2γ(G) = 2k. If k = 1, then the graph

G contains a dominating vertex x (that is adjacent to every other vertex in G, and

G = G[NG[x]] is a fan centered at x. In this case, trivially G ∈ G(F ,H). Hence we

may assume that k ≥ 2. Let S = {x1, x2, . . . , xk} be a γ-set of G. Since γpr2(G) = 2k,
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it follows that dG(xi, xj) ≥ 3 for all 1 ≤ i < j ≤ k. Thus, NG[xi] ∩ NG[xj ] = ∅.
Clearly, G[NG[xi]] is a fan centered at xi. Let Fi = G[NG[xi]] for i ∈ k and let

F = {Fi : i ∈ [k]}. Further, let V (Fi) = {xi, x1i , x2i , . . . , x
`i
i } where the vertices are

labelled clockwise (see Figure 7). Moreover, we let P (Fi) = x1ix
2
i . . . x

`i
i be the path

Figure 7. The clockwise labelling

Fi − xi. Since S is a dominating set and NG[xi] ∩NG[xj ] = ∅, it follows that S is a

packing of G. Moreover since G is connected, there are edges of G that join vertices

in one fan Fi to a different fan Fj for some i and j where 1 ≤ i < j ≤ k. We proceed

further by proving a series of claims establishing properties of the graph G.

Claim 3. degG(xi) = degFi
(xi) for all i ∈ [k].

Proof. Suppose that degG(xi) > degFi
(xi) for all i ∈ [k]. Thus, the vertex xi

is adjacent to a vertex of Fj for some j with i 6= j and j ∈ [k], implying that

dG(xi, xj) ≤ 2, contradicting our earlier observation that the set S is a packing in

G.

Figure 8. The edges e1v = v−v and e2v = vv+ (top) and the path uCv = uwxv (bottom)

By Claim 3, the vertex xi is not adjacent to any vertex of Fj for all i, j ∈ [k] where

i 6= j. Before we prove the following claims, we introduce some additional terminology

and notation. Let C be the unique Hamiltonian cycle of G. We write
−→
C to indicate

the clockwise orientation on C. Moreover, the successor of a vertex v on
−→
C we denote
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by v+ and the predecessor we denote by v−. Observe that every vertex v is incident to

exactly two Hamiltonian edges v−v and vv+. For notational convenience, we denote

e1v = v−v and e2v = vv+. For two vertices u and v on C, we use u
−→
Cv to indicate the

(u, v)-path that follows the orientation on
−→
C and all edges of the path are Hamiltonian

edges (see Figure 8). A cycle in a mop is alternating if its edges alternate between

Hamiltonian edges and diagonal.

Figure 9. The graph when xp−1
i x

p1
j1
∈ E(G) or xp+1

i x
p`
j`
∈ E(G)

Claim 4. Let xpi be a vertex of Fi which is adjacent to vertices xp1j1 , x
p2
j2
, . . . , x

p`
j`
∈

V (G) \ V (Fi) where these vertices occur in the clockwise orientation on
−→
C . (It is possible

that js = js+1 for some s, implying that in this case the vertices xpsjs and x
ps+1

js+1
are in the

same fan). Then, xp−1
i xp1j1 ∈ E(G) or xp+1

i x
p`
j`
∈ E(G) (see Figure 9).

Proof. Suppose xp−1i xp1

j1
/∈ E(G) and xp+1

i xp`

j`
/∈ E(G). Since G is 2-connected, there

exists an (xp−1i , xp1

j1
)-path or an (xp`

j`
, xp+1

i )-path, neither of which contains the vertex

xpi . Suppose, without loss of generality, that there exists an (xp−1i , xp1

j1
)-path P that

does not contain the vertex xpi (see Figure 10). Clearly, G′ = G[V (P ) ∪ {xpi }] is a 2-

connected subgraph. By Lemma 1, the graph G′ is a mop. Because xp−1i xp1

j1
/∈ E(G),

it follows that xpi is adjacent to a vertex in V (P ) \ {xp−1i , xp1

j1
}, contradicting the fact
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that xp1

j1
is the first vertex that xpi is adjacent to on C−V (Fi). Thus, xp−1i xp1

j1
∈ E(G).

The case xp+1
i xp`

j`
∈ E(G) can be proved similarly and this completes the proof.

Figure 10. An (xp−1
i , x

p1
j1

)-path P that does not contain the vertex xp
i

By Claim 4, renaming vertices if necessary, we may assume that xp−1i xp1

j1
∈ E(G).

With this assumption, we have the following claim.

Figure 11. The mop induced by {xp
i , x

p−1
i , x

pi1
i1

, x
pi1
−1

i1
, x

pi2
i2

, x
pi2
−1

i2
, . . . , x

pit
it

, x
pit
−1

it
}

Claim 5. If xp−1
i xp1j1 ∈ E(G), then there exist fans Fi1 , Fi2 , . . . , Fit such that Fit = Fjs

for some s ∈ [`] such that, for each fan Fiq , there are exactly two vertices x
piq
iq

and x
piq−1

iq
of

Fiq such that {xpi , x
p−1
i , x

pi1
i1
, x

pi1−1

i1
, x

pi2
i2
, x

pi2−1

i2
, . . . , x

pit
it
, x

pit−1

it
} induced a mop (see Figure

11).

Proof. We will find an alternating cycle by the following method. We start the cycle

from the path xpi x
p−1
i . From the vertex xp−1i , we follow the Hamiltonian edge e2

xp−1
i

.
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Since S is a packing in G, the edge e2
xp−1
i

is incident to a vertex of some fan in F ,

Fi1 say. Because dG(xi, xj) ≥ 3 for all 1 ≤ i < j ≤ k, the edge e2
xp−1
i

is incident to

a vertex x
pi1
i1

which is not the center of Fi1 (see Figure 12). We first construct the

Figure 12. The edge e2
x
p−1
i

alternating path

xpi x
p−1
i x

pi1
i1
x
pi1
−1

i1
.

From x
pi1
−1

i1
, again, we follow the Hamiltonian edge e2

x
pi1
−1

i1

. If x
pi1
−1

i1
is not adjacent

to any vertex in V (G) \ V (Fi1), then, by the orientation,

e2
x
pi1
−1

i1

= x
pi1−1
i1

x
pi1
i1

but x
pi1
i1

has occurred once on the edge e2
xp−1
i

. This contradicts the fact that C is a

Hamiltonian cycle. Thus, e2
x
pi1
−1

i1

is incident to a vertex x
pi2
i2

which is not the center

of a fan Fi2 ∈ F \ {Fi1}. We now add x
pi2
i2

and x
pi2−1
i2

to the path (see Figure 13),

yielding the alternating path

xpi x
p−1
i x

pi1
i1
x
pi1
−1

i1
x
pi2
i2
x
pi2
−1

i2
.

Similarly, the vertex x
pi2−1
i2

is adjacent to a vertex x
pi3
i3
∈ V (Fi3) via the Hamiltonian

edge e2
x
pi2
−1

i2

where x
pi3
i3

is not the center of Fi3 and we add x
pi3
i3

and x
pi3−1
i3

to the

path. We keep applying this method until we meet the fan Fi again. Because C is

the (unique) Hamiltonian cycle in the mop G, by this choice, the path will return to

Fi. If the path contains a Hamiltonian edge that joins the vertex x
pit−1
it

to the vertex

in Fi which is not xpi , then xpi does not lie on the outer face, contradicting the fact

that G is an outerplanar graph. Thus, x
pit−1
it

is adjacent to xpi via e2
x
pit
−1

it

. Thus,

C ′ : xpi x
p−1
i x

pi1
i1
x
pi1
−1

i1
x
pi2
i2
x
pi2
−1

i2
. . . x

pit
it
x
pit−1
it

xpi
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Figure 13. The alternating path xp
i x

p−1
i x

pi1
i1

x
pi1
−1

i1
x
pi2
i2

x
pi2
−1

i2

Figure 14. The alternating cycle C′ : xp
i x

p−1
i x

pi1
i1

x
pi1
−1

i1
x
pi2
i2

x
pi2
−1

i2
. . . x

pit
it

x
pit
−1

it
xp
i

is an alternating cycle as required (see Figure 14). Since G[V (C ′)] induced a 2-

connected subgraph of G, by Lemma 1 the graph G[V (C ′)] is a mop. This completes

the proof of Claim 5.

We now use Claim 5 to construct a hypergraph. For Fi1 , Fi2 , . . . , Fi` , if there are

two vertices x
pj

ij
, x

pj−1
ij

∈ V (Fij ) for j ∈ [`] such that G[{xpj

ij
, x

pj−1
ij

: j ∈ [`] ] is a

mop, then we say that Fi1 , Fi2 , . . . , Fi` are linked. In the following, we construct

the corresponding hypergraph HG of a mop G satisfying 2γ(G) = γpr2(G). Let

V (HG) = {Fi : i ∈ [k]} and E(HG) = {e = {Fi1 , Fi2 , . . . , Fir} : Fi1 , Fi2 , . . . , Fir are

linked in G}. We call HG the linked hypergraph of G. Let B be a mop and let CB
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denote the (unique) Hamiltonian cycle in B, and let a, b ∈ V (B). For notational

convenience, we let aBb denote the path a
−→
CBb.

Figure 15. The mop Be1

Claim 6. If G is a mop with HG as the linked hypergraph, then HG is a linear hypertree.

Proof. We first show that HG is linear. Suppose to the contrary that there exists

two hyperedges e1, e2 ∈ E(HG) such that |e1∩e2| ≥ 2. Renaming vertices if necessary,

we may assume that {F1, F2} ⊆ e1 ∩ e2. Thus, F1 and F2 are linked twice by two

different maximal outerplanar subgraphs. So, there exist xt11 , x
t1−1
1 ∈ V (F1) and

xq12 , x
q1−1
2 ∈ V (F2) such that, for some W1 ⊆ V (G) \ (V (F1) ∪ V (F2)), the graph

G[{xt11 , x
t1−1
1 , xq12 , x

q1−1
2 } ∪W1] is a mop corresponding to the hyperedge e1 and we

call this mop Be1 (see Figure 15).

Similarly, there exist xt21 , x
t2−1
1 ∈ V (F1) and xq22 , x

q2−1
2 ∈ V (F2) such that the induce

subgraph G[{xt21 , x
t2−1
1 , xq22 , x

q2−1
2 } ∪ W2] for some W2 ⊆ V (G) \ (V (F1) ∪ V (F2))

is a mop corresponding to the edge e2 and we call this mop Be2 . Without loss of

generality, let t1 < t2.

First, we may assume that q1 < q2. Recall that aGb is a path from the vertex a to

the vertex b passing Hamiltonian edges of G in clockwise direction. Clearly, x1 is

enclosed by the cycle

xt2−11 Be2x
q2
2 F2x2F2x

q1−1
2 Be1x

t1
1 F1x

t2−1
1 (see Figure 16)

or x2 is enclosed by the cycle

xq2−12 Be2x
t2
1 F1x1F1x

t1−1
1 Be1x

q1
1 F2x

q2−1
2 (see Figure 17).

Therefore, x1 or x2 does not lie on the outer face, contradicting the fact that G is

an outerplanar graph. Thus, we may assume that q2 < q1. Clearly, x1 and x2 are

enclosed by the cycle

xt2−11 Be2x
q2
2 F2x

q1−1
2 Be1x

t1
1 F1x

t2−1
1 (see Figure 18)

or xt11 , x
t2−1
1 , xq22 , x

q1−1
2 are enclosed by the cycle

xt1−11 Be1x
q1
2 F2x2F2x

q2−1
2 Be2x

t2
1 F1x1F1x

t1−1
1 (see Figure 19).



M.A. Henning, P. Kaemawichanurat 15

Figure 16. The cycle that encloses x1

Figure 17. The cycle that encloses x2

Figure 18. The cycle that encloses x1 and x2

Therefore, x1 and x2 or xt11 , x
t2−1
1 , xq22 , x

q1−1
2 do not lie on the outer face, contradicting

that fact that G is an outerplanar graph. Hence, HG is linear. We show next that
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Figure 19. The cycle that encloses x
t1
1 , x

t2−1
1 , x

q2
2 , x

q1−1
2

Figure 20. The cycle that encloses x
t1
1

HG is a hypertree. Suppose, to the contrary, that HG is not a hypertree. Thus, there

exists a hypercycle CHG
which is a subhypergraph of HG. We may let E(CHG

) =

{e1, e2, . . . , e`}, {Fi+1} = ei ∩ ei+1 for all i ∈ [` − 1] and {F1} = e` ∩ e1. By the

definition of ei, there exists the maximal outerplanar subgraph Bei which contains a

fan from each of Fi and Fi+1, and a maximal outerplanar subgraph Be` which contains

a fan from each of F` and F1. Renaming vertices if necessary, we may let xti−1i , xtii ∈
V (Bei) ∩ V (Fi) and xpi

i+1, x
pi−1
i+1 ∈ V (Bei) ∩ V (Fi+1) and xt`−1` , xt`` ∈ V (Be`) ∩ V (F`)

and xp`

1 , x
p`−1
1 ∈ V (Be`)∩V (F1). Since x1, x2, . . . , x` are in the Hamiltonian cycle C,

the vertex xt11 is enclosed by the cycle

x1F1x
t1−1
1 Be1x

p1

2 F2x2F2x
t2−1
2 Be2x

p2

3 . . . xti−1i Beix
pi

i+1Fi+1xi+1Fi+1 . . . x
t`−1
` Be`x

p`

1 F1x1,

(see Figure 20) contradicting that fact thatG is an outerplanar graph. This establishes

Claim 6.
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Claim 7. Each Fi has at least five vertices.

Proof. Suppose, to the contrary, that |V (Fi)| ≤ 4. Let Fj ∈ e \ {Fi} be a fan which

is linked with Fi in e. We pair xj with x2i and each vertex xq ∈ S \ {xj , xi} with

its own private neighbor x′q in Fq. Thus, (S \ {xi}) ∪ {x2i } ∪ {x′q : q ∈ [k] \ {i}} is a

semi-PD-set of G. Clearly, γpr2(G) < 2k, a contradiction. Therefore, |V (Fi)| ≥ 5.

The following claim follows readily from the property that G is a mop.

Claim 8. If Fi is linked in ej and ej′ by the edges xt−1
i xti and xp−1

i xpi , respectively, then
xt−1
i xti 6= xp−1

i xpi .

Finally, we need only prove that every fan Fi has property J defined in Section 4.

Figure 21. Pairing when x
tj−1

i = x
tq
i and x

tq
i is already paired with x′q

Claim 9. Every fan Fi has property J .

Proof. Suppose, to the contrary, that there exists a linked set JFi
such that JFi

dominates Fi. Let e1, e2, . . . , ep ∈ E(HG) be all subfamilies of F that are linked to

Fi. Renaming hyperedges if necessary, we assume that |ej | = 2 for all j ∈ [r] and

|ei| ≥ 3 for all r < j ≤ p. We, further, let x
tj−1
i x

tj
i be the linked edge of Fi in ej .

For the case when 1 ≤ j ≤ r, we let {F ′j} = ej \ {Fi}. By the construction on JFi
in

Section 4(b), we let {vj} = {xtj−1i , x
tj
i } ∩ JFi

. For the case when r < j ≤ p, we focus

on the clockwise orientation on Bej , and we let F ′j and F ′′j be the fans in ej \ {Fi}
that occur consecutively before and after Fi, respectively. Clearly,

JFi
= {vj : j ∈ [r]} ∪ {xtj−1i , x

tj
i : r < j ≤ p}.

We let x′j and x′′j be the centers of F ′j and F ′′j , respectively. We pair x′j with vj

for all j ∈ [r] and we pair x
tj
i and x

tj−1
i with x′j and x′′j , respectively. We remark

that if x
tj−1
i = x

tq
i for some q ∈ [`] and x

tq
i is already paired with x′q, then we pair
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x′′j with its own private neighbor in F ′′j and still pair x
tj
i with x′j (see Figure 21).

We note from the figure that the vertices that are assigned the same number are

paired. We let Z be the set of these private neighbors. Observe that, if all vertices

in {vj : j ∈ [r]} ∪ {xtj−1i , x
tj
i : r < j ≤ p} are distinct, then Z = ∅. Moreover,

|JFi
∪ Z| = r + 2(p − r) = 2p − r. We let X = {x′j : j ∈ [p]} ∪ {x′′j : r < j ≤ p}.

Figure 22. Pairing yq with own neighbor y′q

Now we have that |S \ (X ∪ {xi})| = k − (r + 2(p − r) + 1) = k − 2p + r − 1. For

notational convenience, we rename the vertices in S \ (X ∪ {xi}) to be y1, y2, . . . , y`
where ` = k−2p+ r−1. We pair each vertex yq ∈ S \ (X ∪{xi}) with its own private

neighbor y′q in the same fan (see Figure 22). We let Y = {y′q : q ∈ [`]}, and note that

(S \ {xi}) ∪ Y ∪ (JFi ∪ Z) is a semi-PD-set of G. Moreover,

γpr2(G) ≤ |(S \ {xi}) ∪ Y ∪ (JFi ∪ Z)| = (k − 1) + `+ 2p− r = 2k − 2,

contradicting the fact that γpr2(G) = 2γ(G). Thus, Fi has the property J and this

completes the proof of Claim 9.

By the properties of the graph G established in Claims 3–9, we infer that G ∈ G(F ,H).

This completes the proof of Theorem 6.
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