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Abstract: Neighbor-distinguishing colorings, which are colorings that induce a
proper vertex coloring of a graph, have been the focus of different studies in graph the-

ory. One such coloring is the set coloring. For a nontrivial graph G, let c : V (G)→ N
and define the neighborhood color set NC(v) of each vertex v as the set containing the
colors of all neighbors of v. The coloring c is called a set coloring if NC(u) 6= NC(v) for

every pair of adjacent vertices u and v of G. The minimum number of colors required in

a set coloring is called the set chromatic number of G and is denoted by χs(G). In recent
years, set colorings have been studied with respect to different graph operations such

as join, comb product, middle graph, and total graph. Continuing the theme of these

previous works, we aim to investigate set colorings of the Cartesian product of graphs.
In this work, we investigate the gap given by max{χs(G), χs(H)} − χs(G � H) for

graphs G and H. In relation to this objective, we determine the set chromatic numbers
of the Cartesian product of some graph families.
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1. Introduction

One of the most well-studied topics in graph theory is the notion of proper vertex

colorings, whose definition we present below. For this paper, we restrict our attention

to simple, undirected, connected graphs.

Definition 1. Let G be a graph. A map c : V (G)→ N is called a proper vertex coloring
if and only if c(u) 6= c(v) whenever u and v are adjacent. If, in addition, |c(V (G))| = k,
then c is called a proper vertex k-coloring. The smallest k for which G has a proper vertex
k-coloring is called the chromatic number of G and is denoted by χ(G).
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1002 Set colorings of the Cartesian product of some graph families

In [3, 4], Chartrand et al. defined the notion of a neighbor-distinguishing coloring,

which can be seen as a generalization of the notion of proper vertex colorings: A

neighbor-distinguishing coloring of a graph is a coloring (of its vertices and/or edges)

that induces a vertex labelling for which any two adjacent vertices are assigned distinct

labels.

An example of a neighbor-distinguishing vertex coloring is multiset coloring, intro-

duced by Chartrand et al. in [2]. Given a vertex coloring c of a graph G that is

not necessarily proper and for each vertex v of G, the multiset M(v) is defined to be

the multiset of colors of the neighbors of v. The coloring c is said to be a multiset

coloring if M(v) 6= M(w) for any two distinct vertices v, w. It is worth noting that in

[3], it has been established that multiset coloring and sigma coloring [4] are, in fact,

equivalent notions.

In this paper, we focus on another neighbor-distinguishing coloring called set coloring.

As indicated in its definition below, for set colorings, we consider the set (i.e., instead

of multiset) of colors of the neighbors of each vertex. This implies, particularly, that

repetition of colors is not taken into account in such sets.

Definition 2 (Chartrand et al., [1]). For a graph G, let c : V (G) → N be a vertex
coloring that is not necessarily proper. For any subset S of V (G), note that c(S) = {c(v) :
v ∈ S}.

1. The neighborhood color set (or NC) of v, denoted by NC(v), is the set c(N(v)); that
is, NC(v) is the set of colors of the neighbors of v.

2. The coloring c is called set neighbor-distinguishing, or simply a set coloring, ifNC(u) 6=
NC(v) for every pair u, v of adjacent vertices of G. If, in addition, we have |c(V (G))| =
k, then c is called a set k-coloring of G.

3. The minimum number of colors required in a set coloring of G is called the set chro-
matic number of G and is denoted by χs(G).

The following results from [1] will prove to be useful in this work.

Proposition 1 (Chartrand et al., [1]). Let G be a graph.

1. Any proper vertex coloring of G is also a set coloring of G; and χs(G) ≤ χ(G).

2. If G is nonempty, then χs(G) = 2 if and only if G is bipartite.

3. If G is connected and χ(G) ≥ 3, then χs(G) ≥ 3.

Set colorings have been studied with respect to different topics. Beginning with the

fundamental work in [1], set colorings have been studied in relation to perfect graphs

[8], random graphs [5], and a bound on the set chromatic number [12]. A number

of research works have focused on set colorings and different graph operations. With

respect to unary graph operations, for example, set colorings have been studied in

relation to middle graph [6, 13] and total graph [14].
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As of this writing, only two studies [7, 10] have dealt with set colorings in relation to

binary graph operations (i.e., join and comb product). Thus, continuing the theme

of previous studies, we aim to investigate set colorings of the Cartesian product of

graphs. We will use the following definition.

Definition 3 ([9]). The Cartesian product G = G1 � G2 of two graphs G1 = (V1, E1)
and G2 = (V2, E2), where V1∩V2 = ∅ and E1∩E2 = ∅, is the graph whose vertex set is V1×V2

and two vertices u = (u1, u2) and v = (v1, v2) are adjacent whenever [u1 = v1 and u2v2 ∈ E2]
or [u2 = v2 and u1v1 ∈ E1].

In the case of proper vertex colorings, the relationship between χ(G), χ(H), and

χ(G � H) for arbitrary graphs G and H has been clearly established as follows.

Theorem 1 ([11]). For arbitrary graphs G and H, we have

χ(G � H) = max{χ(G), χ(H)}.

The following result is then an immediate consequence of the preceding theorem and

Proposition 1(1).

Corollary 1. For nontrivial connected graphs G and H,

χs(G � H) ≤ max{χ(G), χ(H)}.

Theorem 1 leads us to a natural question about the set chromatic number of the

Cartesian product of graphs. For arbitrary graphs G and H, are χs(G), χs(H), and

χs(G � H) also related in a relatively straightforward way?

To help answer this question, we investigate the set chromatic number of the Cartesian

product of some families of graphs. We then observe the difference or gap given by

max{χs(G), χs(H)}−χs(G � H) for these different graph families. In the succeeding

sections, we will show that this gap can become negative, zero, or positive, and that

this gap can become arbitrarily large.

Throughout this paper, we will use N to denote the set of positive integers and Nk to

denote the set {1, 2, . . . , k}. Moreover, the vertex and edge sets of the path graph Pm

are to be given by V (Pm) = {1, 2, . . . ,m} and E(Pm) = {{i, i+1} : i = 1, 2, . . . ,m−1},
respectively.

2. Set Chromatic Numbers of Pm � Pn, Pm � Cn, and Pm � Kn

It is quite straightforward to identify graphs G and H for which the gap

max{χs(G), χs(H)} − χs(G � H) is equal to 0. We begin with the following re-

sult on grids (i.e., Pm � Pn) and cylindrical graphs (i.e., Pm � Cn).
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Proposition 2. Let m,n be positive integers.

1. If m+ n ≥ 3, then χs(Pm � Pn) = 2.

2. If n ≥ 3, then χs(Pm � Cn) =

{
2 if n is even,
3 if n is odd.

Proof. Clearly, if m+ n ≥ 3, then the grid Pm � Pn is bipartite. Thus, (1) follows

immediately from Proposition 1(2).

Now, let n ≥ 3. If n is even, then the cylindrical graph Pm � Cn is bipartite and

Proposition 1(2) implies χs(Pm � Cn) = 2 as well. On the other hand, if n is odd,

then χ(Pm � Cn) = 3; thus, it follows that χs(Pm � Cn) = 3, by Proposition 1(1 &

3).

From [1], it is known that χs(Pm) = 2 for any m ≥ 2 and that χs(Cn) = 2 if n ≥ 4 is

even while χs(Cn) = 3 if n ≥ 3 is odd. Thus, given Proposition 2, we see that if G is

a path and H is a path or a cycle, we have max{χs(G), χs(H)} − χs(G � H) = 0.

Notice that in the preceding discussion, the set chromatic numbers involved are only

at most 3. We now turn to the following result.

Theorem 2. Let m,n be positive integers. If n ≥ 4, then χs(Pm � Kn) = n.

Proof. Let G = Pm � Kn. By Corollary 1, we have χs(G) ≤ max{χ(Pm), χ(Kn)}
= n. Thus, we are left to show that χs(G) ≥ n. Suppose, on the contrary, that there

is a set coloring c of G that uses r ≤ n− 1 colors.

Let V1 = {(1, v) : v ∈ V (Kn)} ⊆ V (G) and set k = |c(V1)|; that is, k is the number

of colors used by c to color the vertices in V1. We may assume that c(V1) = Nk. Let

X =
{

(1, x) ∈ V1 : c(1, x) = c(1, y) ∃(1, y) ∈ V1 r {(1, x)}
}
.

Then n − |X| is the number of vertices in V1 whose colors do not repeat in V1; it

follows that k = (n− |X|) + |c(X)| ≥ n− |X|+ 1 and |X| − 1 ≥ n− k.

Now, observe that for each (1, v) ∈ X, we have NC(1, v) = Nk ∪ {c(2, v)}. But the

vertices in X are adjacent to each other; thus, they must have distinct NCs. For this

to hold, only at most one vertex (1, v′) in X may have NC equal to Nk (i.e., c(2, v′) is

also in Nk). This means that the other |X| − 1 vertices in X must have c(2, v) /∈ Nk.

Hence, there must be at least |X|− 1 colors not in Nk; that is, r− k ≥ |X|− 1, which

implies that n − 1 − k ≥ |X| − 1. But this contradicts the previously established

inequality |X| − 1 ≥ n− k.

Therefore, a set coloring of G that uses r ≤ n− 1 colors cannot exist.

Combining Proposition 2, Theorem 2, and the fact, from [1], that χs(Kn) = n for all

n, we have the following remark.
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Remark 1. For every positive integer n ≥ 2, there are graphs G and H such that

max{χs(G), χs(H)} = χs(G � H) = n.

3. Set chromatic number of Pm � Wn

In this section, we will find graphs G and H such that max{χs(G), χs(H)} <

χs(G � H). For this purpose, we turn to wheel graphs, which are defined as fol-

lows: the wheel graph Wn, where n ≥ 4, is the graph of order n obtained by taking

the join of K1 and Cn−1. Alternatively, Wn is the graph obtained by adding a new

vertex x to the cycle graph Cn−1 and connecting x to all the vertices of Cn−1.

Note that χ(Wn) = 3 if n is odd and χ(Wn) = 4 if n is even. Moreover, the set

chromatic number of wheel graphs has been completely determined in [7].

Proposition 3 ([7]). Let Wn be the wheel graph of order n. Then χs(W4) = 4 and
χs(Wn) = 3 for n ≥ 5.

We will completely determine the set chromatic number of the Cartesian product

Pm � Wn, where m ≥ 2 and n ≥ 4. First, the result below immediately follows.

Corollary 2. Let m,n be positive integers. If n ≥ 5 and n is odd, then χs(Pm �Wn) = 3.

Proof. First, note that χ(Pm � Wn) = max{χ(Pm), χ(Wn)} = 3, by Theorem 1.

Then by Proposition 1(3), we have χs(Pm � Wn) ≥ 3. At the same time, Proposition

1(1) implies χs(Pm � Wn) ≤ 3.

We are left to consider Cartesian products Pm � Wn, where m ≥ 2, n ≥ 4, and n is

even. In this case, note that χ(Pm � Wn) = max{χ(Pm), χ(Wn)} = 4, by Theorem

1. Thus, by Proposition 1(1 & 3), we have χ(Pm � Wn) = 3 or 4 if n is even. We

first consider the possibility that χ(Pm � Wn) = 3.

Consider the partial 3-coloring of Pm � W10, where m ≥ 4, shown in Fig. 1 below. It

is evident that, so far, the NCs of adjacent vertices in Pm �W10 are distinct. Thus, if

3 colors would not be enough to construct a set coloring of Pm � W10 (or Pm � Wn,

where n is even), conflicting NCs may not arise until we consider the graph’s fourth

“layer” or beyond.

In the succeeding lemmas, we establish different properties of any set 3-coloring of

Pm � Wn, assuming that such a coloring exists.

First, we introduce several notations. We will denote the vertex and edge sets of Wn

as follows:

V (Wn) = {v0, v1, ..., vn−1},
E(Wn) = {v0vk : k = 1, 2, ..., n− 1} ∪ {v1v2, v2v3, . . . , vn−2vn−1, vn−1v1}.
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Figure 1. A partial 3-coloring for Pm � W10, where m ≥ 4

Moreover, for each i ∈ {1, 2, ...,m}, we introduce the following notations, as illustrated

in Fig. 2:

• The ith layer of Pm � Wn is the set Li = {(i, v) : v ∈ V (Wn)}.

• The vertex mi = (i, v0) is referred to as the middle vertex of the ith layer of

Pm � Wn.

• The vertices in Ci = {(i, vk) : k = 1, 2, ..., n − 1} are referred to as the cycle

vertices of the ith layer of Pm � Wn.

Figure 2. Notations for the Cartesian product Pm � Wn.

Now, suppose we have a vertex coloring c of Pm � Wn. We also introduce the

notion of blocks (of each layer of Pm � Wn) with respect to this coloring c. For each

i ∈ {1, 2, ...,m}, we define the cyclic sequence si as follows:

si := (c(i, v1), c(i, v2), ..., c(i, vn−1), c(i, v1)).

By a block of si we mean a maximal subsequence of si of the same color. Further if

the vertices in a block are colored α, we refer to the block as an α-block. The length

of a block is the number of vertices in the block.

We are now ready to prove our first lemma.

Lemma 1. Let m,n be positive integers, where m ≥ 2, n ≥ 4 and n is even. Suppose
Pm � Wn has a set 3-coloring c for which c(m1) = 1. Then the following statements hold:
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1. c(mi) ∈ c(Ci) for each i ∈ {1, 2, . . . ,m};

2. c(mi) = 1 for each i ∈ {1, 2, . . . ,m};

3. in any si, where i ∈ {1, 2, . . . ,m}, any 2-block or 3-block must be of length 1;

4. c(C1) = c(Cm) = {1, 2, 3}.

Proof. Let G = Pm � Wn.

1. Suppose, on the contrary, that α := c(mi) /∈ c(Ci) for some i ∈ {1, 2, ...,m}.
Then |c(Ci)| ≤ 2 so we consider two cases. First, suppose |c(Ci)| = 1 and

that c(Ci) = {β}, where β 6= α. Then for any (i, vk) ∈ Ci, there are only two

possibilities for NC(i, vk): {α, β} or {1, 2, 3}. However, |Ci| = n − 1 is odd;

thus, two adjacent vertices in Ci will have the same NC, a contradiction.

Now, suppose |c(Ci)| = 2. Let {β, γ} = c(Ci), where α /∈ {β, γ}. Let b be any

block of si with length at least 2. Then the NCs in b will have to be alternating

with the first and last vertices having NC equal to {1, 2, 3}. This implies that

b must be of odd length. But since si must have an even number of blocks, si
must have an even number of elements. However, the number of elements in si
is n− 1, which is odd, a contradiction.

2. Suppose there is an i ∈ {1, 2, ...,m − 1} such that α := c(mi) 6= c(mi+1) =: β.

By (A1), we must have α ∈ c(Ci) and β ∈ c(Ci+1). Then {α, β} must be a

subset of both NC(mi) and NC(mi+1). Since these NCs must be distinct, we

may assume that NC(mi) = {1, 2, 3} and NC(mi+1) = {α, β}. It follows that

|c(Ci+1)| ≤ 2.

Let γ be the third element of {1, 2, 3} that is neither α nor β. Recall that

β ∈ c(Ci+1); hence, γ /∈ c(Ci+1) because if it were, we would have NC(mi+1) =

{1, 2, 3} = NC(mi), a contradiction. Then c(Ci+1) = {β} or {α, β}.

In the latter case, note that any block of si+1 with color α must be of length

1; otherwise, two adjacent vertices in Ci+1 would both have α and β in their

NCs. Then one of them would have NC equal to {α, β}, which would equal

NC(mi+1) = {α, β}, a contradiction. Since n − 1 is odd, si+1 must have a

β-block of length at least 2.

Thus, whether c(Ci+1) = {β} or c(Ci+1) = {α, β}, it must be the case that si+1

has a β-block of length at least 2. Thus, we may assume that c(i + 1, v1) =

c(i+1, v2) = β. Consider the vertices (i, v1) and (i, v2) and recall that c(mi) = α.

Then α and β are elements of both NC(i, v1) and NC(i, v2). Since these two

NCs must be distinct, one of them would have NC equal to {1, 2, 3} = NC(mi),

a contradiction.

Therefore, for all i ∈ {1, 2, . . . ,m − 1}, we must have c(mi) = c(mi+1). The

result then follows from the assumption that c(m1) = 1.
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3. Let i ∈ {1, 2, . . . ,m} and suppose si has a 2-block with length at least 2. Let

(i, vk) and (i, vk+1) be 2 vertices in Ci with color 2. Then {1, 2} is a subset of

NC(mi), NC(i, vk), and NC(i, vk+1). So two of these NCs must be equal, which

is a contradiction since all three of them must be distinct. Thus, si cannot have

a 2-block (similarly, 3-block) with length at least 2.

4. It is sufficient to prove that c(C1) = {1, 2, 3}. Suppose not; then by (A1), c(C1)

will have to be {1}, {1, 2}, or {1, 3}.

Case A4.1. Suppose c(C1) = {1}.
By (A2), we must have NC(m1) = {1}. Then for any (1, vk) ∈ C1, we have

NC(1, vk) = {1, 2} or {1, 3}; that is, only 2 NCs are available for vertices in C1.

But since |C1| is odd, these 2 NCs will not be sufficient, a contradiction.

Case A4.2. Suppose c(C1) = {1, 2} or {1, 3}. We may assume c(C1) = {1, 2}.

By (A2), we must have NC(m1) = {1, 2}. By (A3), 2-blocks in s1 must all be

of length 1. Now, we will prove that 1-blocks in s1 must all be of odd length.

Let b be such a block; we may assume that the length of b is at least 2. Suppose

b = (c(1, v1), c(1, v2), . . . , c(1, vk)), where k ≥ 2.

Since c(1, vn−1) = c(1, vk+1) = 2 and NC(m1) = {1, 2}, we have NC(1, v1) =

NC(1, vk) = {1, 2, 3} and c(2, v1) = c(2, vk) = 3. Consequently, we have k ≥ 3,

NC(2, vn−1) = {1, 2, 3}, and 2 /∈ c(C2). Consider the sequence

s = (c(2, v2), c(2, v3), . . . , c(2, vk−1)),

where, by (A3), we have c(2, v2) = c(2, vk−1) = 1. Clearly, s cannot have 2

consecutive elements that are both equal to 1. Thus, s must be the alternating

sequence (1, 3, 1, 3, . . . , 3, 1) and k − 2 must be odd. Thus, the length k of b

must also be odd.

Therefore, all the blocks in s1 are of odd length. Since s1 must have an even

number of blocks, it follows that s1 must also have an even number of elements,

a contradiction.

Our second lemma provides further properties of any set 3-coloring, if such exists, of

Pm � Wn if n is even and with the added condition that m ≥ 3.

Lemma 2. Let m,n be positive integers, where m ≥ 3, n ≥ 4 and n is even. Suppose
Pm � Wn has a set 3-coloring c for which c(m1) = 1. Then the following statements hold:

1. For i ∈ {2,m− 1}, we have c(Ci) = {1, 2} or {1, 3}.

2. If i ∈ {2, 3, . . . ,m− 1} and c(Ci) = {1, 2} or {1, 3}, then c(Ci+1) 6= {1}.
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3. If c(C2) = {1, 2}, then c(C3) = {1, 3}.

Proof. Let G = Pm � Wn.

1. It is sufficient to prove the result only for c(C2). By (A4), we have c(C1) =

{1, 2, 3} and so c(C2) 6= {1, 2, 3}. We are now left to show that c(C2) 6= {1}.
Assume the contrary; then NC(m2) = {1}.

We will first consider the blocks in s1. Recall that, by (A3), all 2- and 3-blocks

in s1 must be of length 1. Now, with the assumption that c(C2) = {1}, it is easy

to establish further that 1-blocks can only be of length 1, 2, or 3. Furthermore,

the 1-blocks in s1 satisfy the following:

(a) A 1-block of length 1 or 3 must be between identical colors.

Proof. It is clear that a 1-block of length 1 cannot be between distinct

colors. Now, by way of contradiction, suppose there is a 1-block of length

3 that is between distinct colors. In this case, we must have n ≥ 5. Let

us assume that (c(1, v1), c(1, v2), c(1, v3), c(1, v4), c(1, v5)) = (2, 1, 1, 1, 3).

Then NC(1, v2) = {1, 2}, NC(1, v3) = {1}, and NC(1, v3) = {1, 3}. Since

NC(m2) = {1}, we must also have NC(2, v2) = {1, 3} and NC(2, v4) =

{1, 2}. Then the vertex (2, v3) is adjacent to vertices with NCs {1}, {1, 2},
and {1, 3}. Moreover, only at most one neighbor of (2, v3) is not colored

1. This implies the contradiction that (2, v3) will have NC equal to one of

its neighbors’ NCs.

(b) A 1-block of length 2 must be between distinct colors.

Proof. Suppose there is a 1-block of length 2 that is between identical

colors. Then clearly, the two vertices in the 1-block will have the same

NC, a contradiction.

We now introduce the following: For β ∈ {2, 3}, we define a β-sequence to be

a maximal subsequence of s1 such that the subsequence starts with β and all

of its elements are in {1, β}. Since s1 has at least one of each of the colors 2

and 3, there is at least one 2-sequence and at least one 3-sequence. Moreover,

it is easy to see that 2- and 3-sequences must alternate in s1. Thus, the total

number of 2- and 3-sequences is even.

Now, (B1.1) and (B1.2) imply that in any β-sequence, any occurrence of the

color β, except at the end of the sequence, must be followed by a (1, β), or a

(1, 1, 1, β), or a (1, 1) that is not the start of (1, 1, 1, β). (Note that, in the case

of (1, 1), this may only occur at the end of the subsequence.) This implies that

any β-sequence must be of odd length.

Therefore, s1 has an even number of β-sequences, all of which are of odd length.

This implies that s1 has an even number of elements, a contradiction.
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2. Suppose there is an i ∈ {2, 3, . . . ,m− 1} such that c(Ci) = {1, 2} and c(Ci+1) =

{1}. Then NC(mi) = {1, 2} and NC(mi+1) = {1}. Recall that, by (A3), any

2-block in si must be of length 1.

Suppose (c(i, v1), c(i, v2), . . . , c(i, vk)) is a 1-block in si. Since NC(mi) =

{1, 2}, which is a subset of both NC(i, v1) and NC(i, vk), then NC(i, v1) =

NC(i, vk) = {1, 2, 3} and c(i − 1, v1) = c(i − 1, vk) = 3. Thus, k ≥ 3. Now, if

k ≥ 4, then c(Ci+1) = {1} implies that (NC(i, v2), NC(i, v3), . . . , NC(i, vk−1)

must be an alternating sequence of {1} and {1, 3}. Moreover, NC(i, v2) and

NC(i, vk−1) cannot be {1, 3} because this would produce a 3-block of length at

least 2 in si−1. Therefore, NC(i, v2) = NC(i, vk−1) = {1} and so k must be

odd; that is, any 1-block in si must be of odd length.

Consequently, si only has blocks of odd length. Since the number of blocks in si
must be even and si has an odd number of elements, this leads to a contradiction.

3. Suppose c(C2) = {1, 2}. By (B2), we know that c(C3) 6= {1}. Thus, we are left

to show that c(C3) 6= {1, 2, 3}. Assume the contrary; then NC(m3) = {1, 2, 3}.

By (A3), any 2-block in s2 must be of length 1. Then we may assume that

(c(2, v1), c(2, v2), c(2, v3)) = (1, 2, 1).

Since NC(m2) = {1, 2} ⊆ NC(2, v1), we must have NC(2, v1) = {1, 2, 3}.
Then c(1, v1) or c(3, v1) must be equal to 3. Then at least one of NC(1, v2) or

(NC(3, v2) will be equal to NC(m1) = NC(m3) = {1, 2, 3}, a contradiction.

Using Lemmas 1 and 2, we can now prove that a set 3-coloring of Pm � Wn cannot

exist if m ≥ 2 and n is even.

Lemma 3. Let m,n be integers, where m ≥ 2, n ≥ 4, and n is even. Then
χs(Pm � Wn) ≥ 4.

Proof. Let G = Pm � Wn. Suppose, on the contrary, that G has a set 3-coloring c.

We assume, without loss of generality, that c(m1) = 1.

If m = 2, then (A4) implies that NC(m1) = NC(m2) = {1, 2, 3}, which cannot be

true. If m = 3, then by (B1), we may assume that c(C2) = {1, 2}. But in this case,

(A4) and (B3) will lead to a contradiction. Thus, we only consider the case where

m ≥ 4.

Again, we assume without losing generality that c(C2) = {1, 2}. So far, we have

c(C1) = {1, 2, 3}, c(C2) = {1, 2}, and c(C3) = {1, 3} (by (B3)). Now, (B2) implies that

c(C4) 6= {1}. Hence, c(C4) = {1, 2} or {1, 2, 3}.
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Suppose c(C4) = {1, 2}. (Note that, by (A4), we must have m ≥ 5 in this case.) We

will consider the blocks in s3. By (A3), 3-blocks in s3 are all of length 1. We will

show that any 1-block in s3 must be of odd length. Suppose, on the contrary, that s3
has a 1-block, say (c(3, v1), c(3, v2), . . . , c(3, vk)), of even length. Then NC(3, v1) =

NC(3, vk) = {1, 2, 3}. Since c(C2) = c(C4) = {1, 2}, we must have NC(3, vj) = {1}
or {1, 2} for j ∈ {2, 3, . . . , k− 1}. Thus, the sequence (c(3, v2), c(3, v3), . . . , c(3, vk−1))

is an alternating sequence of {1} and {1, 2}. Since the 1-block is of even length, we

may assume that NC(3, v2) = {1, 2}. Thus, c(2, v2) or c(4, v2) is 2. We may assume

c(2, v2) = 2; then {1, 2} ⊆ NC(2, v1). But this is not possible since NC(m2) = {1, 2}
and NC(3, v1) = {1, 2, 3}. Therefore, any block in s3 must be of odd length. Since

there must be an even number of blocks in s3, we have a contradiction; that is,

c(C4) 6= {1, 2}.

Now, suppose c(C4) = {1, 2, 3}. We will consider the blocks in s2. By (A3), 2-blocks

in s2 are all of length 1. We will show that all 1-blocks are also of length 1. Suppose,

on the contrary, that (c(2, v1), c(2, v2), c(2, v3)) = (2, 1, 1). Then NC(2, v2) = {1, 2, 3}
and at least one c(1, v2) or c(3, v2) is 3. But c(1, v2) 6= 3 since otherwise, we will have

NC(1, v1) = {1, 2, 3} = NC(m1). Thus, c(3, v2) = 3. Since NC(m3) = {1, 3}, we

have NC(3, v3) = {1, 2, 3} and c(4, v3) = 2. But this will imply that NC(4, v2) =

{1, 2, 3} = NC(m4), which is a contradiction. Therefore, c(C4) 6= {1, 2, 3} as well.

As there is no more option for c(C4), we can conclude that G has no set 3-coloring.

The desired conclusion follows.

Given Corollary 2 and Lemma 3, our main result on the set chromatic number of the

Cartesian product of path graphs and wheel graphs is now complete.

Theorem 3. Let Pm be the path graph of order m, where m ≥ 2, and Wn be the wheel
graph of order n, where n ≥ 4. Then

χs(Pm � Wn) =

{
3, if n is odd,
4, if n is even.

Remark 2. Let G = Pm, where m ≥ 2, and H = Wn, where n ≥ 6 and n is even. Then,
by the preceding theorem, we have max{χs(G), χs(H)} = 3 < 4 = χs(G � H). That is, we
have found graphs G,H for which the gap max{χs(G), χs(H)} − χs(G � H) is negative.

4. Set chromatic number of Pm � Gn,t

In this section, we consider the following graphs that have been introduced in [1].

Definition 4 ([1]). For an integer n ≥ 2 and an integer t (0 ≤ t ≤ n), let Gn,t denote
the graph of order n + t obtained from Kn with V (Kn) = {v1, v2, ..., vn} by adding t new
vertices u1, u2, ..., ut (if t ≥ 1) and joining each ui to vi for 1 ≤ i ≤ t.

The set chromatic number of this graph family has also been determined in [1].
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Proposition 4 ([1]). For n ≥ 2 and 0 ≤ t ≤ n, we have χs(Gn,t) = n.

When m ≥ 1, n ≥ 2, and 0 ≤ t ≤ n, the preceding proposition and Theorem 1 imply

that

χ(Pm � Gn,t) = max{χ(Pm), χ(Gn,t)} = n.

Thus, by Proposition 1(1), we have χs(Pm � Gn,t) ≤ n. Naturally, we ask whether

there are values of n and t for which this inequality becomes strict.

First, we establish the following lower bound for χs(Pm � Gn,t).

Lemma 4. Let m,n, t be positive integers, where m ≥ 2, n ≥ 3, and 1 ≤ t ≤ n. Then
χs(Pm � Gn,t) ≥ n− t.

Proof. Let G = Pm � Gn,t. Suppose, on the contrary, that c is a set coloring of G

that uses k colors, where k < n− t.

Let p1, p2, ..., pt be the pendant vertices of Gn,t and let w1, w2, ..., wt be the vertices

in Gn,t that are adjacent to p1, p2, ..., pt, respectively. Let V1 =
{

(1, v) ∈ V (G) : v ∈
V (Gn,t) r {p1, p2, ..., pt}

}
. Set k1 := |c(V1)| and without losing generality, assume

c(V1) = Nk1
:= {1, 2, ..., k1}. Let

X =
{

(1, x) ∈ V1 : c(1, x) = c(1, y) ∃(1, y) ∈ V1 r {(1, x)}
}
.

Since k1 ≤ k < n − t < |V1|, we must have |X| > 0. Moreover, n − |X| + 1 ≤ k1 or

|X| ≥ n+ 1− k1.

Then for all (1, x) ∈ X, we have

NC(1, x) =

{
Nk1 ∪ {c(2, x)}, if x /∈ {w1, w2, . . . , wt},
Nk1
∪ {c(2, x), c(1, pi)}, if x = wi ∃i ∈ {1, 2, . . . , t}.

Thus, there are three types of possible NCs for vertices in X.

Type 1: Nk1

Type 2: Nk1
∪ {1 color not in Nk1

}
Type 3: Nk1

∪ {2 colors not in Nk1
}

Note that vertices in X must have distinct NCs. Let qi be the number of vertices in

X that have Type i NC, where i = 1, 2, 3. Then

q1 ∈ {0, 1}, q3 ∈ {0, 1, . . . , t}, q2 = |X| − q1 − q3.

Given that there are q2 vertices in X with Type 2 NC, the number of colors not in

Nk1 must be at least q2. Then

k − k1 ≥ q2 = |X| − q1 − q3 ≥ |X| − 1− t ≥ (n+ 1− k1)− 1− t = n− k1 − t;

thus, k ≥ n− t, which is a contradiction. Therefore, G has no set coloring that uses

less than n− t colors.
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The succeeding lemma shows that the preceding lower bound turns out to be optimal

for a family of values of n and t.

Lemma 5. Let m,n, t be positive integers, where m ≥ 2, n ≥ 7, and n ≥ 3t + 3. Then
χs(Pm � Gn,t) ≤ n− t.

Proof. Let G = Pm � Gn,t, where m ≥ 2, n ≥ 7, and n ≥ 3t + 3. For each

i ∈ {1, 2, . . . ,m}, let Gn,t(i) be the subgraph of Pm � Gn,t induced by the vertices in

V (Gn,t(i)) := {(i, v) : v ∈ V (Gn,t)} ⊆ V (Pm � Gn,t). Then each Gn,t(i) is isomorphic

to Gn,t.

We will construct a vertex coloring c of G that uses exactly k = n− t colors. We first

color the vertices in Gn,t(1) and Gn,t(2). For convenience, we introduce the following

notations:

V (Gn,t(1)) = {a1, a2, . . . , an, p1, p2, . . . , pt},

where a1, a2, . . . , an are the vertices that form a clique in Gn,t(1) and pi is the pendant

connected to ai, for each i = 1, 2, . . . , t. Similarly, let

V (Gn,t(2)) = {b1, b2, . . . , bn, q1, q2, . . . , qt},

where b1, b2, . . . , bn are the vertices that form a clique in Gn,t(2) and qi is the pendant

connected to bi, for each i = 1, 2, . . . , t.

Let r =
⌈
k−2
2

⌉
. We color the vertices of Gn,t(1) and Gn,t(2) by following the procedure

below:

1. For i = 1, 2, . . . , t, t+ 1, . . . , n− r, assign c(ai) = 1.

2. For i = 1, 2, . . . , r, assign c(an−r+i) = 1 + i.

3. For i = 1, 2, . . . , t, assign c(pi) = k − i.

4. For i = 1, 2, . . . , k − r − 1, assign c(bt+i) = r + i.

5. For i = 1, 2, . . . , t, t+ k − r, t+ k − r + 1, . . . , n, assign c(bi) = k.

6. For i = 1, 2, . . . , t, assign c(qi) = 1 + i.

We then complete the coloring c as follows:

• Color the vertices in Gn,t(3), Gn,t(5), Gn,t(7), and so on by copying the coloring

of Gn,t(1); that is, for each i ∈ {3, 5, 7, . . . }, set c(i, v) = c(1, v).

• Color the vertices in Gn,t(4), Gn,t(6), Gn,t(8), and so on by copying the coloring

of Gn,t(2); that is, for each i ∈ {4, 6, 8, . . . }, set c(i, v) = c(2, v).

The procedure above will yield the following NCs:
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• NC(ai) = {1, 2, . . . , r + 1} ∪ {k} ∪ {k − i}, for i = 1, 2, . . . , t

• NC(at+i) = {1, 2, . . . , r + 1} ∪ {r + i}, for i = 1, 2, . . . , k − r − 1

• NC(at+k−r) = NC(an−r) = {1, 2, . . . , r + 1} ∪ {k}

• NC(an−r+i) = [{1, 2, . . . , r + 1}r {i+ 1}] ∪ {k}, for i = 1, 2, ..., r

• NC(pi) = {1, 1 + i}, for i = 1, 2, . . . , t

• NC(bi) = {r + 1, r + 2, . . . , k} ∪ {1} ∪ {1 + i}, for i = 1, 2, . . . , t

• NC(bt+i) = [{r + 1, r + 2, . . . , k}r {r + i}] ∪ {1}, for i = 1, 2, . . . , k − r − 1

• NC(bt+k−r) = NC(bn−r) = {r + 1, r + 2, . . . , k} ∪ {1}

• NC(bt+k−r+i) = NC(bn−r+i) = {r+ 1, r+ 2, . . . , k}∪{i+ 1}, for i = 1, 2, . . . , r

• NC(qi) = {k, k − i}, for i = 1, 2, . . . , t

• NC(i, v) = NC(1, v) for each i ∈ {3, 5, 7, . . . }

• NC(i, v) = NC(2, v) for each i ∈ {4, 6, 8, . . . }

Now, observe that, for i = 1, 2, . . . , t, we have NC(bi) 6= NC(bn−r) if 1+i /∈ {r+1, r+

2, . . . , k} ∪ {1}. This means that we need t colors not in {r + 1, r + 2, . . . , k} ∪ {1};
thus, it is necessary that r − 1 ≥ t. A similar argument can be made to ensure

that NC(a1), NC(a2), . . . , NC(at) are all not equal to NC(an−m); that is, we need

t colors not in {1, 2, . . . , r + 1} ∪ {k}. Since there are only k − (r + 2) colors not in

{1, 2, . . . , r + 1} ∪ {k}, we must have k − (r + 2) ≥ t. Note that k−2
2 ≤

⌈
k−2
2

⌉
≤ k−1

2 .

This gives us k − (r + 2) ≥ k − 2 − k−1
2 = k−3

2 = n−t−3
2 . The condition n ≥ 3t + 3

ensures that r − 1 ≥ t and k − (r + 2) ≥ n−t−3
2 ≥ t both hold.

It is then easy to verify that c is indeed a set (n− t)-coloring of G.

In Figure 3, we present a set 7-coloring of P2 � G9,2 that has been constructed using

the procedure discussed in the proof of Lemma 5.

Figure 3. A set 7-coloring of P2 � G9,2

Combining Lemmas 4 and 5, we have the following theorem.
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Theorem 4. Let m,n, t be positive integers, where m ≥ 2, n ≥ 7, and n ≥ 3t+ 3. Then
χs(Pm � Gn,t) = n− t.

The preceding theorem allows us to make the following remark.

Remark 3. Let G = Pm and H = Gn,t, where m ≥ 2, n ≥ 7, and n ≥ 3t + 3. We then
have

max{χs(G), χs(H)} − χs(G � H) = t.

Since t can be chosen arbitrarily (i.e, there exists an n corresponding to any t), this demon-
strates that the gap max{χs(G), χs(H)} − χs(G � H) can become arbitrarily large.

5. Conclusion and Recommendation

In the literature, the notion of set colorings has been studied in relation to different

graph operations such as middle graph, total graph, join, and comb product. In this

work, we continued the theme of such previous papers by studying the set chromatic

numbers of the Cartesian product of some graph families. Our general objective was

to investigate the gap max{χs(G), χs(H)}−χs(G � H) for graphs G and H. We have

proved that this gap can become negative, zero, or positive, and that it can become

arbitrarily large. Moreover, in relation to this objective, we determined the exact set

chromatic numbers of the Cartesian product of some families of graphs.

The following questions may prove to be interesting for future research: (1) Can the

gap become arbitrarily large in the negative direction? More precisely, for any positive

integer t, are there graphs G and H for which max{χs(G), χs(H)}−χs(G � H) ≤ −t?
(2) Can we establish sharp lower and upper bounds for χs(G � H) for arbitrary

graphs G and H?
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