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Abstract: Let C(n, t) denotes the collection of all cacti of order n with exactly t

cycles and Ctn denotes the collection of cacti of order n and t end vertices. In this paper,
we compute three upper bounds of the additively weighted Mostar index of graphs in

C(n, t). We also determine the upper bound of the additively weighted Mostar index

for graphs in Ctn. We characterize all the graphs attaining the bounds.
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1. Introduction

A graph G = (V (G), E(G)) is said to be simple if it has no loops or parallel edges, and

if there is a path connecting every pair of vertices then it’s connected. Throughout this

paper, we consider only simple, finite, connected, undirected graphs. Transmission

of a vertex u is the sum of all distances between u and other vertices of G, denoted

by σG(u) [1]. A graph G is said to be k−transmission regular if σG(u) = k for all

u ∈ V (G) and for some k ∈ N. Topological indices are numerical values associated

with graphs, which are invariant under graph isomorphism. There is a multitude

of topological indices which study structure-activity relations and structure-property

relations of chemical compounds. Mostar index is one used to measure the degree

peripherality of graphs and individual edges of graphs, it also measures the deviation
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2 Sharp bounds on additively weighted Mostar index of Cacti

of a graph from being transmission regular [1]. The Mostar index Mo(G) of a graph

G is defined as [5]

Mo(G) =
∑

e=xy∈E(G)

|nx(e|G)− ny(e|G)| =
∑

e=xy∈E(G)

|σG(x)− σG(y)|

where nx(e|G) denotes the number of vertices closer to x than to y. For a detailed

literature on Mostar index, see [1, 4–6, 13, 19]. Various modified versions of Mostar

index were proposed recently [2, 12], of which a prominent one is additively weighted

Mostar index (also referred as the extended Mostar index). The additively weighted

Mostar index MoA(G) of a graph G is defined as [1]

MoA(G) =
∑

e=xy∈E(G)

(d(x) + d(y))|nx(e|G)− ny(e|G)|

Cacti are connected graphs in which any two cycles have atmost one vertex in common.

Computation of topological indices of different classes of graphs is an ongoing research

problem, especially in the class of cacti. In [11], H Q Liu et al. presented a unified

method to find extremal cacti with respect to some topological indices. In [9], Anhua

Lin et al. computed the lower bounds of Randić index of cacti of a given order with k

pendant vertices and characterized the graphs obtaining the bounds. In [8], Shuchao

Li et al. characterized cacti of order n with r pendant vertices which attains extremal

Zagreb indices. Wang et al. [16] determined the cacti with perfect matching which

has the largest Harary index and established the upper bounds of the Harary index

among cacti. Wang D F et al. [15] computed the upper bound of Hyper Wiener

index for cacti. In 2016, Chen S [3] characterized the extremal cacti for the Gutman

index and computed the first three lower bounds. The extremal PI index for cacti

was determined by Wang C et al. [14]. Shujing Wang [17, 18] determined the lower

bound of the Szeged index and the revised Szeged index for cacti of given order with

fixed number of cycles. In 2019, Hayat et al. determined some sharp bounds of the

Mostar index for cacti of a given order [7]. In [20], Yasmeen F et al. determined the

upper bound of the edge Mostar index for C(n, t). In [10], Hechao Liu determined the

extremal cacti for Sombar index.

In [1], Akbar Ali, Tomislav Doŝlić computed the extrema of additively weighted

Mostar index for trees. In this paper, we determine the first three upper bounds

of the additively weighted Mostar index for graphs in C(n, t). We also determine the

upper bound of the additively weighted Mostar index of cacti in Ctn and characterize

the graphs attaining the bounds.

2. Notations

We use the following notations throughout this paper.
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C(n, t) The collection of all cacti of order n with exactly t cycles.

Ctn The collection of all cacti of order n with t end vertices.

dxy|G The sum of degrees of end vertices of the edge xy.

ηe(x, y|G) |nx(e|G)− ny(e|G)|.
NG(v) The set of all vertices in G adjacent to the vertex v.

C0(n, k) The cacti bundle with k triangles along with n − 2k − 1

pendant edges incident with a single vertex.

C1(n, r, s) The cacti bundle with r- C4 and s- C3 along with n− 3r−
2s− 1 pendant edges incident with the common vertex.

For the edge e = xy in G, let MoA(e|G) = (dxy|G)ηe(x, y|G) be the contribution by

the edge e onto the additively weighted Mostar index.

3. Upper bound for C(n, k)

In this section, we determine the upper bound of additively weighted Mostar index

of graphs in C(n, t). We use the following lemmas in our discussion.

Lemma 1. [1] Let e = uv be a non pendant bridge of G. Let G1 be the graph obtained
from G by deleting the edge e, identifying its end vertices to a new vertex z and adding a
new pendant edge at z. Then

MoA(G1) > MoA(G).

Lemma 2. Let G be a cacti with cycle Cr = v1v2 . . . vrv1 such that G−E(Cr) has exactly
r components and Gi be the component of G− E(Cr) at the vertex vi, i = 1, 2, . . . , r. Let

G′ = G−
r⋃

i=2

⋃
u∈NGi

(vi)

uvi +

r⋃
i=2

⋃
u∈NGi

(vi)

uv1.

Then MoA(G
′) ≥ MoA(G) and the equality holds if and only if Cr is an end block, i.e.

G ∼= G′.

Proof. Let |V (Gi)| = ni, i = 1, 2, . . . , r and
∑r

i=1 ni = n. Let di denotes the number

of edges in Gi incident with the vertex vi and
∑r

i=1 di = d. From the construction

of the graph G′ it is clear that for every edge e = uv ∈ Gi, every vertex which is

closer to u in G should be closer to u in G′. Also, every vertex which is closer to v

in G should be closer to v in G′ and every vertex which is equi-distant from both the

vertices u and v in G should be equi-distant from both u and v in G′. Thus for every

e = uv ∈ Gi, ηe(u, v|G) = ηe(u, v|G′), i = 1, 2, 3, . . . , r. For every edge e = uv ∈ Gi

such that u, v 6= vi, i = 1, 2, 3, . . . , r, duv|G = duv|G′. For the edges uv ∈ Gi with

v = vi, i = 1, 2, 3, . . . , r, we have duv|G = d(u) + di + 2 and for the corresponding

transformed edge in G′, we have duv|G′ = d(u) +
∑r

j=1 dj + 2. Then
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r∑
i=1

∑
e=uv∈Gi

(MoA(e|G′)−MoA(e|G)) =
r∑

i=1

∑
e=uvi∈Gi

(MoA(e|G′)−MoA(e|G)) (3.1)

=

r∑
i=1

∑
e=uvi∈Gi

(d− di)ηe(u, vi|Gi) > 0. (3.2)

Now, we divide the rest into the following two cases.

Case I. r is even, r = 2k.

For each edge ei = vivi+1 ∈ C2k, i = 1, 2, . . . , 2k − 1 and e2k = v2kv1 we have

ηe(vi, vi+1|G′) = n− 2k and

ηe(vi, vi+1|G) = ((ni + ni−1 + · · ·+ ni−k+1)− (ni+1 + ni+2 + · · ·+ ni+k))

= (n− pi) ≤ (n− 2k)

where pi ≥ 2k with equality if and only if nj = 1 for j = i, i − 1, . . . , i − k + 1 or
nj = 1 for j = i + 1, i + 2, . . . , i + k. For the edge ei = vivi+1 ∈ C2k, i 6= 1 or 2k,
dvivi+1 |G = di + di+1 + 4 and dvivi+1 |G′ = 4. For the remaining two edges in C2k,
dvivi+1 |G = di + di+1 + 4 and dvivi+1 |G′ = 4 + d. Thus,

2k∑
i=1

∑
e=vivi+1∈C2k

(MoA(e|G′)−MoA(e|G)) = (8k + 2d)(n− 2k)−
2k∑
i=1

(di + di+1 + 4)(n− pi)

≥ (8k + 2d)(n− 2k)− (8k + 2d)(n− 2k) ≥ 0

with equality holds if and only if there exist a j, 1 ≤ j ≤ 2k such that nj = n−2k+1

and ni = 1,for all i 6= j. Thus, MoA(G′) −MoA(G) ≥ 0 where the equality holds

whenever G ∼= G′.

Case II. r is odd, r = 2k + 1.

For each edge ei = vivi+1 ∈ C2k+1, i = 1, 2, . . . , 2k, i 6= k and e2k+1 = v2k+1v1 we

have ηe(vi, vi+1|G′) = n − 2k − 1 and for the edge e = vkvk+1, ηe(vk, vk+1|G′) = 0

and

ηe(vi, vi+1|G) = ((ni + ni−1 + · · ·+ ni−k+1)− (ni+1 + ni+2 + · · ·+ ni+k))

= (n− qi)
≤ (n− 2k − ni−k)

where qi ≥ 2k+1 with equality holds if and only if nj = 1 for j = i, i−1, . . . , i−k+1 or
nj = 1 for j = i+ 1, i+ 2, . . . , i+k. For the edge ei = vivi+1 ∈ C2k+1, i 6= 1 or 2k+ 1,
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Figure 1. The graphs G and G′ in Lemma 3.

dvivi+1
|G = di + di+1 + 4 and dvivi+1

|G′ = 4. For the remaining two edges in C2k+1,
dvivi+1

|G = di + di+1 + 4 and dvivi+1
|G′ = 4 + d. Thus,

2k+1∑
i=1

∑
e=vivi+1∈C2k

(MoA(e|G′)−MoA(e|G)) = (8k + 2d)(n− 2k − 1)−
2k+1∑
i=1

(di + di+1 + 4)(n− qi)

≥ (8k + 2d)(n− 2k − 1)−
2k+1∑
i=1

(di + di+1 + 4)(n− 2k − ni−k)

≥
2k+1∑
i=1

(di + di+1)ni−k − 2d ≥ 0,

since
∑2k+1

i=1 ni−k = n and ni−k ≥ 1 for all i, with equality holds if and only if there

exist a j, 1 ≤ j ≤ 2k + 1 such that nj = n − 2k − 1 and ni = 1, for all i 6= j. Thus,

MoA(G′)−MoA(G) ≥ 0 where the equality holds whenever G ∼= G′.

Lemma 3. Let G be a cacti with the end block Cr = v1v2 . . . vrv1 such that d(v1) > 2
and G′ = G− v2v3 − vr−1vr + v3v1 + vr−1v1. Then MoA(G

′) > MoA(G) (See Figure 1)

Proof. Let |V (G)| = |V (G′)| = n. From the construction of G′ it is clear that

for the edges uv with u, v /∈ Cr, ηe(u, v|G) = ηe(u, v|G′) and duv|G = duv|G′. Now,

we divide the rest into the following two cases.

Case I. r is even.
Let r = 2k, k ≥ 2. For the edge e = uv1 and u /∈ Cr, ηe(u, v1|G) = ηe(u, v1|G′)
and duv1 |G′ = duv1 |G + 2. For the edge v1v2 and v1vr, ηe(v1, vj |G) = (n − 2k) and
ηe(v1, vj |G′) = (n − 2), j = 2, r, also dv1vj |G = d(v1) + 2 and dv1vj |G′ = d(v1) + 3
for j = 2, r. For the edge v1v3 and v1vr−1 in G′, ηe(v1, vj |G′) = (n − (2k − 2)) and
dv1vj |G′ = (d(v1)) + 4 for j = 3, r − 1. For all other edges uv ∈ Cr, ηe(u, v|G) =
(n− 2k), ηe(u, v|G′) = (n− (2k − 2)) and duv|G = duv|G′ = 4. Thus

MoA(G′)−MoA(G) =
∑

uv1,u/∈Cr

2(ηe(u, v1|G)) + 8(2k − 4) + 2(d(v1) + 3)(n− 2)

− 2(d(v1) + 2)(n− 2k) + 2(d(v1) + 4)(n− 2k + 2)− 8(n− 2k)

≥
∑

uv1,u/∈Cr

2(ηe(u, v1|G)) + 8(2k − 4)

+ 2(n− 2) + 2(d(v1))(n− 2k + 2) + 16 > 0.
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Since n− 2 > n− 2k and all other quantities are positive.

Case II. r is odd.
Let r = 2k + 1, k ≥ 2 be odd. For the edge e = uv1 and u /∈ Cr, ηe(u, v1|G) =
ηe(u, v1|G′) and duv1 |G′ = duv1

|G + 2. For the edge v1v2 and v1vr, ηe(v1, vj |G) =
(n − 2k − 1) and ηe(v1, vj |G′) = (n − 2) for j = 2, r, also dv1vj |G = d(v1) + 2 and
dv1vj |G′ = d(v1) + 3 for j = 2, r. For the edge v1v3 and v1vr−1 in G′, ηe(v1, vj |G′) =
(n − 2k + 1) and dv1vj = (d(v1)) + 4 for j = 3, r − 1. For all other edges uv ∈ Cr,
ηe(u, v|G) = (n− 2k − 1), ηe(u, v|G′) = (n− 2k + 1)) and duv|G = duv|G′ = 4. Thus

MoA(G′)−MoA(G) =
∑

uv1,u/∈Cr

2(ηe(u, v1|G)) + 8(2k − 4) + 2(d(v1) + 3)(n− 2)

− 2(d(v1) + 2)(n− 2k − 1) + 2(d(v1) + 4)(n− 2k + 1)− 8(n− 2k − 1)

≥
∑

uv1,u/∈Cr

2(ηe(u, v1|G)) + 8(2k − 4) + 2(n− 2) + 2(d(v1))(n− 2k + 1)

+ 16 > 0.

Since n−2 > n−2k−1, n−2k+1 > n−2k−1 and all other quantities are positive.

Thus MoA(G′) > MoA(G).

Lemma 4. Let C4 = v1v2v3v4v1 be the end block of G with d(v1) ≥ 2. Let G′ =
G− v3v4 + v1v3. Then MoA(G

′) > MoA(G).

Proof. Let |V (G)| = |V (G′)| = n. Then for all the edges uv ∈ G, u, v /∈ C4,

we have ηe(u, v|G) = ηe(u, v|G′) and duv|G = duv|G′. For the edge v1u with u /∈
C4, ηe(u, v1|G) = ηe(u, v1|G′) and duv1

|G′ = duv1 |G + 1. For every edge uv ∈ C4,

ηe(u, v|G) = n−4 and ηe(u, v|G′) = n−2 for u = v1, v = v4 and ηe(u, v|G′) = n−3 for

u = v1, v = v2 or v3 and ηe(u, v|G′) = 0 for u = v2, v = v3. Also, dv1v4 |G = dv1v4 |G′
and dv1v2 |G′ = dv1v2 |G + 1 and dv2v3 |G = dv3v4 |G = 4 = dv2v3 |G′ but dv1v3 |G′ =

(d(v1) + 3. Thus,

MoA(G′)−MoA(G) =
∑

uv1,u/∈C4

(ηe(u, v1|G)) + (d(v1) + 2)(n− 2) + 2(d(v1) + 3)(n− 3)

− 8(n− 4)− 2(d(v1) + 2)(n− 4)

=
∑

uv1,u/∈C4

(ηe(u, v1|G)) + 2(d(v1) + 3) + (d(v1) + 2)(n− 2)− 6(n− 4) > 0,

if d(v1) ≥ 4. If d(v1) = 2 or 3 by direct calculations, MoA(G′)−MoA(G) > 18 > 0.

Thus, MoA(G′)−MoA(G) > 0.

Proposition 1. If n ≥ 7, then MoA(C0(n, k)) = n3 − 3n2 + 2n− 6k.
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Proof. Let u be the vertex in C0(n, k) with d(u) > 2. For the n − 2k − 1 pendant

edges e = xy, ηe(x, y|C0(n, k)) = n− 2 and dxy|C0(n, k) = n− 1 + 1 = n. For the 2k

edges e = xy on the cycle incident at u, ηe(x, y|C0(n, k)) = n− 3 and dxy|C0(n, k) =

n−1+2 = n+1. For the remaining k edges e = xy on the cycles, ηe(x, y|C0(n, k)) = 0

and dxy|C0(n, k) = 4. Thus, MoA(C0(n, k)) = (n−2k−1)n(n−2)+2k(n+1)(n−3) =

n3 − 3n2 + 2n− 6k.

Now we obtain the maximum value of additively weighted Mostar index of C(n, k).

Theorem 1. Let G ∈ C(n, k). Then MoA(G) ≤ n3 − 3n2 + 2n − 6k with equality holds
if and only if G ∼= C0(n, k).

Proof. Let G ∈ C(n, k) be the graph with the maximum additively weighted Mostar

index. By Lemma 1, all the bridges of G should be pendant edges. By Lemma 2, all

the cycles and pendant edges should be attached to a single vertex, by Lemma 3, 4

every cycle in such a graph should be a triangle. Thus G ∼= C0(n, k), by Proposition 1,

MoA(C0(n, k)) = n3 − 3n2 + 2n− 6k.

Proposition 2. If r, s ≥ 1, then MoA(C
1(n, r, s)) = n3 − 2n2r − 3n2 + nr2 + 11nr +

2n+ 2r2 + 2rs− 42r − 6s.

Proof. Let u be the vertex in C1(n, r, s) with d(u) > 2. For the n − 3r − 2s − 1

pendant edges e = xy, ηe(x, y|C1(n, r, s)) = n − 2 and dxy|C1(n, r, s) = n − r. For

the 2r edges e = xy on the 4− cycle incident on u, ηe(x, y|C1(n, r, s)) = n − 4 and

dxy|C1(n, r, s) = n − r + 1. For the remaining 2r edges e = xy on the 4− cycle,

ηe(x, y|C1(n, r, s)) = n−4 and dxy|C1(n, r, s) = 4. For the 2s edges e = xy on the 3−
cycle incident on u, ηe(x, y|C1(n, r, s)) = n−3 and dxy|C1(n, r, s) = n−r+1. For the

remaining s edges e = xy on the 3− cycle, ηe(x, y|C1(n, r, s)) = 0 and dxy|C1(n, r, s) =

4. Thus, MoA(C1(n, r, s)) = (n−r)(n−2)(n−3r−2s−1)+(n−r+1)(n−4)2r+4(n−
4)2r+(n−r+1)(n−3)2s = n3−2n2r−3n2+nr2+11nr+2n+2r2+2rs−42r−6s.

Using Lemma 1- 4 and Proposition 2, we obtain the next result.

Corollary 1. Let G ∈ C(n, k) with exactly r even cycles and s odd cycles where k =
r+s, r ≥ 1, s ≥ 1. Then MoA(G) ≤ n3−2n2r−3n2+nr2+11nr+2n+2r2+2rs−42r−6s
and the equality holds if and only if G ∼= C1(n, r, s).

Proposition 3. Let G1, G2, G3, G5, G6 be graphs in C(n, k) plotted as in Figure 2 and
Figure 3. Then

(a.) MoA(G1) = n3 − 7n2 + 24n− 2k − 44.

(b.) MoA(G2) = n3 − 7n2 + 24n− 2k − 42.

(c.) MoA(G3) = n3 − 5n2 + 10n− 4k − 12.
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Figure 2. G1, G2, G3 = C2(n, k) of Proposition 3 and Theorem 2.

Figure 3. G4 = C1(n, 1, k − 1), G5 and G6 = C3(n, k) of Proposition 3 and Theorem 2.

(d.) MoA(G5) = n3 − 7n2 + 20n− 2k − 48.

(e.) MoA(G6) = n3 − 5n2 + 10n− 4k − 12.

Proof. Let u be the central vertex where the cycles and pendant edges coincides. In

G1, for n−2k−2 pendant edges, dxy|G1 = n−2 and ηe(x, y|G1) = n−2 and for 2k−2

edges of the cycle incident on u, dxy|G1 = n − 1 and ηe(x, y|G1) = n − 3. For one

bridge dxy|G1 = n and ηe(x, y|G1) = n− 6 and for two edges in the remaining cycle

incident on the bridge, dxy|G1 = 5 and ηe(x, y|G1) = n − 3 and for the remaining

edges, the contribution is zero. Thus, MoA(G1) = (n− 2k− 2)(n− 2)(n− 2) + 2(k−
1)(n − 1)(n − 3) + (n − 6)n + 10(n − 3) = n3 − 7n2 + 24n − 2k − 44. In G2, for

n − 2k − 1 pendant edges, dxy|G1 = n − 2 and ηe(x, y|G1) = n − 2 and for 2k − 4

edges of the cycle incident on u, dxy|G1 = n − 1 and ηe(x, y|G1) = n − 3. For

the two edges in the cycle which are not incident at u, the contribution is 6(n − 3).

For the three edges in the remaining cycle, the contributions are (n − 1)(n − 5),

(n+ 1)(n− 7) and 12 respectively. For the remaining edges, the contribution is zero.

Thus, MoA(G2) = (n− 2k − 1)(n− 2)(n− 2) + 2(k − 2)(n− 1)(n− 3) + (n+ 1)(n−
7) + (n− 1)(n− 5) + 12(n− 3) + 12 = n3 − 7n2 + 24n− 2k − 42.

Similarly, MoA(G3) = (n− 2k− 3)(n− 1)(n− 2) + 3(n− 2) +n(n− 4) + 2k(n− 3)n =

n3 − 5n2 + 10n − 4k − 12 and MoA(G5) = (n − 2k − 3)(n − 2)(n − 2) + 2(k −
1)(n − 3)(n − 1) + 2(n − 1)(n − 5) + 8(n − 5) = n3 − 7n2 + 20n − 2k − 48. Also,

MoA(G6) = (n− 2k− 2)(n− 2)(n− 1) + 2(k− 1)(n− 3)(n) + (n+ 1)(n− 5) + 4(n−
2) + n(n− 4) + 5 = n3 − 5n2 + 10n− 4k − 12.

Now we establish the next upper bound of additively weighted Mostar index for cacti

in C(n, t).
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Theorem 2. Let G ∈ C(n, k)|C0(n, k) with n ≥ 7. Then MoA(G) ≤ n3 − 5n2 + 14n −
4k − 36 and the equality holds if and only if G ∼= C1(n, 1, k − 1).

Proof. Let G be the cacti in C(n, k)|C0(n, k) which attains the maximum additively

weighted Mostar index. Then there are four cases.

Case I. G has a cycle which is not an end block.

Then there are the following two possibilities, either G has a cycle which is incident

on a pendant vertex or G has a cycle which is incident on another cycle other than

the common vertex. In both the subcases, by Lemma 2 all except one cycle should

be incident on a single vertex. By Lemma 3 and Lemma 4 all the cycles should be

C3. If G has a cycle which is incident on a pendant vertex. By Lemma 1 except one

bridge, all other bridges should be pendant edges and incident on the common vertex,

thus G should be of the form G1(see Figure 2) and by Proposition 3, MoA(G1) =

n3−7n2−2k+24n−44. If G has a cycle which is incident on another cycle other than

the common vertex, G should be of the form G2(see Figure 2) and by Proposition 3,

MoA(G2) = n3 − 7n2 + 24n− 2k − 42.

Case II. G has one bridge which is not a pendant edge.

Then by Lemma 1 to Lemma 4 all the cycles should be C3 and are end blocks.

Also, all except one edge are pendant edges and incident on the common vertex,

thus G should be isomorphic to G3(see Figure 3) and by Proposition 3, MoA(G3) =

n3 − 5n2 − 4k + 10n− 12.

Case III. G has a cycle which is not C3.

Then by Lemma 1 all the bridges are pendant edges and by Lemma 2 all the cycles

should be end blocks. Also, by Lemma 3 and Lemma 4 all except one cycle are C3.

Thus G must be either one of the form G4 or G5(see Figure 3). Now by Proposition 2,

MoA(G4) = n3 − 5n2 + 14n− 4k − 36 and by Proposition 3, MoA(G5) = n3 − 7n2 +

20n− 2k − 48.

Case IV. G has a pendant edge which is not incident on the common vertex.

Then by Lemma 2 all the cycles and all except one pendant edges should be incident

on a common vertex. By Lemma 3 and Lemma 4 all the cycles should be C3. Thus

G should be of the form G6(see Figure 3) and by Proposition 3, MoA(G6) = n3 −
5n2−4k+10n−12. Clearly, MoA(G4) ≥MoA(Gi), i = 1, 2, 3, 4, 5, 6 whenever n ≥ 7,

hence the result.

As a consequence of the theorem, we get the third upper bound.

Corollary 2. Let G ∈ C(n, k)|{C0(n, k), C
1(n, 1, k − 1)} with n ≥ 7. Then MoA(G) ≤

n3 − 5n2 +10n− 4k− 12 and the equality holds if and only if G ∼= C2(n, k) or G ∼= C3(n, k)

4. Upper bound for Ctn

In this section, we find the upper bound of the additively weighted Mostar index of

cacti of order n with t pendant vertices.



10 Sharp bounds on additively weighted Mostar index of Cacti

Figure 4. Graphs G and G′ in Lemma 5.

Lemma 5. Let G be a graph as in Figure 4 with two adjacent bridges e1 = uv and e2 = vw
and H1, H2, H3 be the components of G− {e1, e2} at the vertices u, v, w respectively. Let G′

be the graph obtained by moving the components H2, H3 of G to u with |V (H1)| ≥ |V (H3)|.
Then MoA(G

′) ≥MoA(G)(as in Figure 4).

Proof. Let n1, n2, n3 be the number of vertices of H1, H2, H3 respectively and

n1 + n2 ≥ n3 and let d(u) = d1 + 1 and d(v) = d2 + 2 and d(w) = d3 + 1 be the

degrees of vertices u, v, w respectively. Then

Edge ηe(u, v|G) Sum of degrees

ux, x 6= v ηe(u, x|G) = ηe(u, x|G′) dux|G+ d2 + d3 = dux|G′
vx, x 6= u,w ηe(v, x|G) = ηe(v, x|G′) dvx|G+ d1 + d3 − 1 = dvx|G′
wx, x 6= v ηe(w, x|G) = ηe(w, x|G′) dwx|G+ d1 + d2 = dwx|G′

uv
ηe(u, v|G) = |n2 + n3 − n1|

ηe(u, v|G′) = n− 4

duv|G = d1 + d2 + 3

duv|G′ = d1 + d2 + d3 + 3

vw
ηe(v, w|G) = |n1 + n2 − n3|

ηe(v, w|G′) = n− 2

dvw|G = d2 + d3 + 3

dvw|G′ = 3

MoA(G′)−MoA(G) =
∑

ux,x 6=v

(d2 + d3)ηe(u, x|G) +
∑

vx,x6=u,w

(d1 + d3 − 1)ηe(v, x|G)

+
∑

wx,x6=v

(d1 + d2)ηe(w, x|G) + (n− 4)(d1 + d2 + d3 + 3)

− |n2 + n3 − n1|(d1 + d2 + 3)

+ 3(n− 2)− |n1 + n2 − n3|(d2 + d3 + 3) > 0.

Since ηe(w, x|G) ≥ |n1 + n2 − n3| and (n− 4) ≥ |n2 + n3 − n1|.

Lemma 6. Let G′ be a graph as in the previous lemma with two adjacent bridges e1 = uv
and e2 = vw and G′′ = G′ + uw. Then MoA(G

′′) > MoA(G
′)(as in Figure 5).
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Figure 5. Graphs G′ and G′′ in Lemma 6.

Figure 6. Graphs G and G′ in Lemma 7.

Proof. From direct calculations we obtain,

MoA(G′′)−MoA(G′) =
∑

ux,x 6=v

ηe(u, x|G′) + 2(d(u) + 3)(n− 3)− (d(u) + 2)(n− 4)− 3(n− 2)

=
∑

ux,x 6=v

ηe(u, x|G′) + (d(u) + 1)(n− 3) + (d(u)− 1) > 0.

Lemma 7. Let G and G′ be two graphs shown in Figure 6 with n ≥ 7 vertices. Then
MoA(G

′) > MoA(G).

Proof. From direct calculations we obtain,

MoA(G′)−MoA(G) = (n3 − 5n2 + 12n− 32)− (n3 − 7n2 + 23n− 42) = 2n2 − 11n+ 10 > 0.

Lemma 8. Let G and G′ be two graphs shown in Figure 7 with n ≥ 7 vertices and t ≥ 1
pendant vertices. Then MoA(G

′) > MoA(G).

Proof. From direct calculations,

MoA(G′)−MoA(G) = (n3 − 5n2 + 12n+ 2t− 32)− (n3 − 5n2 + 8n+ 2t− 8) = 4n− 24 > 0.



12 Sharp bounds on additively weighted Mostar index of Cacti

Figure 7. Graphs G and G′ in Lemma 8

Figure 8. Graphs G0 and G10 in Theorem 3.

Using these results we obtain the following.

Theorem 3. Let G ∈ Ctn be a cacti with n ≥ 7 vertices and t pendant edges, then

(a.) MoA(G) ≤MoA(G0) If n and t are of different parity.

(b.) MoA(G) ≤MoA(G10), If n is odd and t = 0.

(c.) MoA(G) ≤MoA(G20), If n is even t = 0.

(d.) MoA(G) ≤MoA(G12), If both n and t are of same parity with n > 5,t > 0.

where G0, G10, G20, G12 are graphs shown in Figure 8,9.

Proof. Let G ∈ Ctn be the graph with the maximum additively weighted Mostar

index. Then by Lemma 2, all the cycles are end blocks and by Lemma 3, 4 all the

cycles are triangles. Also by Lemma 6, 7 the graph G cannot have two adjacent non-

trivial bridges. If the parity of n and t are different, then G should have at least one

pendant edge, thus G ∼= G0. If n is odd and t = 0 then by Lemma 3, 4, 7, G ∼= G10.

If n is even and t = 0 then G should have at least one bridge or G should have at

Figure 9. Graphs G20 and G12 in Theorem 3.
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least one cycle which is not C3, then by Lemma 7, G ∼= G20. If both n and t are odd

or even with t > 0 then by Lemma 6, 8, G ∼= G12.

When n = 5 and t = 1, then the graph G = C3 � P3, obtained by attaching P3 onto

a vertex of C3 has the largest additively weighted Mostar index among C15 .
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