- Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 2016;98:218-30.
- Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34(3):355-61.
- Negaresh R RR, Habibi A, Gharibvand MM. Effects of eight weeks resistance training on muscle hypertrophy and physiological parameters among elderly men. ournal of Geriatric Nursing. 2016;3(1):62-75. [in Persian]
- Verdijk LB, Gleeson BG, Jonkers RA, Meijer K, Savelberg HH, Dendale P, et al. Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol A Biol Sci Med Sci. 2009;64(3):332-9.
- Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, et al. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017;8(12):20428-40.
- Brozek J, Grande F, Anderson JT, Keys Aa. Densitometric Analysis of Body Composition: Revision of Some Quantitative Assumptions. Ann N Y Acad Sci. 1963;110:113-40.
- Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (1985). 2008;104(6):1736-42.
- Mohammadi HR, Khoshnam MS, Khoshnam E. Effects of Different Modes of Exercise Training on Body Composition and Risk Factors for Cardiovascular Disease in Middle-aged Men. Int J Prev Med. 2018;9:9.
- Trappe T, Williams R, Carrithers J, Raue U, Esmarck B, Kjaer M, et al. Influence of age and resistance exercise on human skeletal muscle proteolysis: a microdialysis approach. J Physiol. 2004;554(Pt 3):803-13.
- Mascher H, Andersson H, Nilsson PA, Ekblom B, Blomstrand E. Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise. Acta Physiol (Oxf). 2007;191(1):67-75.
- Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014;42(2):53-61.
- Egawa T, Ohno Y, Goto A, Ikuta A, Suzuki M, Ohira T, et al. AICAR-induced activation of AMPK negatively regulates myotube hypertrophy through the HSP72-mediated pathway in C2C12 skeletal muscle cells. Am J Physiol Endocrinol Metab. 2014;306(3):E344-54.
- Lundberg TR, Fernandez-Gonzalo R, Tesch PA. Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men. J Appl Physiol (1985). 2014;116(6):611-20.
- Rohling M, Herder C, Stemper T, Mussig K. Influence of Acute and Chronic Exercise on Glucose Uptake. J Diabetes Res. 2016;2016:2868652.
- Thomson DM, Fick CA, Gordon SE. AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol (1985). 2008;104(3):625-32.
- Chrysohoou C, Angelis A, Tsitsinakis G, Spetsioti S, Nasis I, Tsiachris D, et al. Cardiovascular effects of high-intensity interval aerobic training combined with strength exercise in patients with chronic heart failure. A randomized phase III clinical trial. Int J Cardiol. 2015;179:269-74.
- Ozcatal Y, Akat F, Tatar Y, Ficicilar H, Serdaroglu B, Topal Celikkan F, et al. Effects of high-intensity interval training (HIIT) on skeletal muscle atrophy, function, and myokine profile in diabetic myopathy. Cytokine. 2023;169:156279.
- Egawa T, Goto A, Ohno Y, Yokoyama S, Ikuta A, Suzuki M, et al. Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice. Am J Physiol Endocrinol Metab. 2015;309(7):E651-62.
- Panahi S A-AH, Gharakhanloo R, Fayazmilani R, Hedayati M, Safarzadeh A, et al. The Effect of 4 Weeks Resistance Training on Murf1 Gene Expression and Muscle Atrophy in Diabetic Wistar Rats. Medical Journal of Tabriz University of Medical Sciences and Health Services. 2016;38(2):6-13. [in Persian]
- Seidi AN, Aghaei, N. Asgharpour, H Ahmadi, M. The Effect of Long-Term High-Intensity Interval Training on the Intracellular Content of MAFbx and Murf1 Proteins in the Left Ventricular of the Heart of Rats with Type 2 Diabetes. Iranian Journal of Diabetes and Metabolism. 2022; 22(3): 176-184.
- Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307(6):E469-84.
- Foletta VC, White LJ, Larsen AE, Leger B, Russell AP. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 2011;461(3):325-35.
- Sheibani Sh DF, Tanideh N, Rahimi M JI, Refahiat M.A. Effect of high intensity interval training and detraining on gene expression of AKT/FoxO3a in cardiac and soleus muscle of male rats Ebnesina - IRIAF Health Administration. 2020;22(2):15-24.[in Persian]
- Sheibani Sh DF, Salesi M, Koushkie Jahromi M, Tanideh N. The effect of high-intensity training and detraining on FOXO3a/MuRF1 and MAFbx levels in soleus muscle of male rats. Ebnesina - IRIAF Health Administration. 2018;20(1):31-40. [in Persian]
- Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol (1985). 2013;114(1):81-9.
- Egawa T. Participation of AMPK in the Control of Skeletal Muscle Mass. 2017:251-75.
- Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol. 2005;37(10):1974-84.
|