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Abstract: In this paper we consider an algorithm for determining a basis for the
Terwilliger and quantum adjacency algebras of a distance-regular graph. For the Ter-

williger algebra, we consider the generating set. For the quantum adjacency algebra,

we consider the generating set consisting of the raising, flat, and lowering matrices. We
give optimization method by using generating matrices with a block-matrix structure

so that the number of matrix multiplications required is reduced.
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1. Introduction

In [10], Terwilliger defined the subconstituent algebra, also known as the Terwilliger

algebra, of a commutative association scheme. It is generated by the Bose-Mesner

algebra and the dual Bose-Mesner algebra of the association scheme.

In terms of graphs, the original definition of Terwilliger algebra only covers distance-

regular graphs, which are equivalent to P-polynomial association schemes [2]. The
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2 Algorithm for describing T and Q algebras of a distance-regular graph

class of distance-regular graphs includes strongly regular graphs and therefore Moore

graphs. Strongly regular graphs, in turn, are related to combinatorial designs [5].

In [11], the definition of Terwilliger algebra was extended to cover all finite, undirected,

connected, simple graphs. The generalized Terwilliger algebra has been used to ana-

lyze combinatorial properties of graphs [3, 4, 8] and properties of their automorphism

groups [6, 9, 12].

The Terwilliger algebra of a graph has a natural subalgebra called the quantum ad-

jacency algebra, introduced in [7], generated by the quantum decomposition of the

adjacency matrix (viz. the raising, flat, and lowering matrices). In some graphs, the

quantum adjacency algebra is equal to the Terwilliger algebra. Such equality would

make the Terwilliger algebra 3-generated (and even 2-generated for bipartite graphs).

In [11], some conditions were proved to be equivalent to the equality of the Terwilliger

and quantum adjacency algebras. Those conditions involve isomorphism classes of

modules over the two algebras. In the same paper, the equality has been established

for Hamming graphs and the inequality has been established for bipartite dual polar

graphs.

The aim of this paper is to give an algorithmic approach to the problem of determining

the equality of the Terwilliger and quantum adjacency algebras for distance-regular

graphs. The naive algorithm (which always terminates) is first considered, then some

optimizations are used to reduce computation time. Such an optimized algorithm

would aid the computational study of distance-regular graphs through the use of the

two algebras.

2. Basic concepts

LetG = (X,E) be a finite, undirected, connected, simple graph with order n, diameter

D, and i-th distance matrix Ai for i = 0, 1, . . . , D. Fix any x ∈ X. For each i

(0 ≤ i ≤ D), define the ith dual idempotent E∗i (x) (henceforth written simply E∗i , as

x is fixed) of G to be the diagonal matrix in MatX(C) where

(E∗i )yy = (Ai)xy =

{
1 if d(x, y) = i,

0 if d(x, y) 6= i.

From the definition, the following properties can be derived:

(i) E∗i
t

= E∗i (0 ≤ i ≤ D);

(ii) E∗i E
∗
j = δijE

∗
i (0 ≤ i, j ≤ D) where δij =

{
1, if i = j

0, if i 6= j
;

(iii) E∗0 + E∗1 + · · ·+ E∗D = I;

It can be concluded that E∗0 , E
∗
1 , . . . , E

∗
D form a basis for a subalgebra M∗(x) = M∗

of MatX(C), called the dual Bose-Mesner algebra of G with respect to x.
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The Terwilliger algebra T (x) = T of G with respect to x is the subalgebra of MatX(C)

generated by the adjacency matrix A = A1 and the dual Bose-Mesner algebra M∗ of

G.

The graph G is said to be distance-regular whenever for every i, j ∈ {0, 1, . . . , D}, the

matrix AiAj is a linear combination of A0, A1, . . . , AD, that is,

AiAj =

D∑
h=0

phijAh.

Combinatorially, the above equation means that for every y, z ∈ X, if d(y, z) = h,

then there are exactly phij vertices w ∈ X such that d(y, w) = i and d(w, z) = j.

If G is distance-regular, then {A0, A1, . . . , AD} is linearly independent and its span

is closed under multiplication, so they form a basis for a subalgebra M of the algebra

MatX(C) consisting of complex matrices with coordinates indexed by X. Further, we

call M the Bose-Mesner algebra of G, which is none other than the adjacency algebra

of the graph. The Terwilliger algebra T is then also generated by the algebras M and

M∗.

Next, define the raising, flat, and lowering matrices of a (not necessarily distance-

regular) graph G with respect to x (respectively denoted R(x) = R,F (x) = F,L(x) =

L) as follows:

R =

D∑
i=0

E∗i+1AE
∗
i , F =

D∑
i=0

E∗i AE
∗
i , L =

D∑
i=0

E∗i−1AE
∗
i .

Note that the matrices R,F, L have real entries. Furthermore, F is symmetric (in

fact, by reordering the elements of X we can make F a block-diagonal matrix with

each block symmetric), R = Lt, and A = R+ F + L.

The quantum adjacency algebra Q(x) = Q of graph G is defined as the algebra gen-

erated by the raising, flat, and lowering matrices R,F, L.

3. Naive algorithm for determining a basis for T and Q

Let A be a finite-dimensional algebra. Consider the following algorithm:

In the above algorithm, after every iteration of the while loop, S′ will increase in

cardinality but remain linearly independent, until it cannot increase any more because

the product of every two elements of S′ is already a linear combination of the elements

of S′. When the algorithm terminates, B = S′ will span A as every element of A
can be written as a polynomial in terms of the elements of B, and can therefore be

written as the sum of linear combinations of the elements of B.

The above algorithm is very general (can be applied to any finite-dimensional alge-

bra, including T and Q of a non-distance-regular graph), but very unoptimized. It

multiplies all pairs of elements of S′ in each iteration of the while loop, including the
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Algorithm 1 Naive general algorithm for determining a basis for a

finite-dimensional algebra.
Require: r ∈ N; S = {a1, a2, . . . , ar} ⊆ A linearly independent and generates A as an algebra

Ensure: B is a basis of A (linearly independent and spans A)

1: S′, S′′ ← S
2: if 1A /∈ span(S′) then

3: S′ ← S′ ∪ {1A}
4: end if
5: while span(S′) 6= A do

6: r′, r′′ ← |S′|
7: for all i, j ∈ [1, r′]Z do
8: if aiaj /∈ span(S′′) then

9: r′′ ← r′′ + 1
10: ar′′ ← aiaj
11: S′′ ← S′′ ∪ {ar′′}
12: end if
13: end for

14: S′ ← S′′

15: end while
16: B ← S′

pairs whose products are already calculated in the previous iteration. To avoid that,

we can skip multiplications that are already performed.

To algorithmically implement the determination of span(S′) 6= A, we can use a vari-

able d (standing for ”done”) to end the while loop if the product of every two elements

of S′ is a linear combination of the elements of S′.

Now, how do we implement the determination of 1A /∈ span(S′) and aiaj /∈ span(S′′)?

We do not yet have a basis for A, so we cannot use that. Let us use the fact that T and

Q are subalgebras of MatX(C), for which we have the standard basis of cardinality

|X|2. Furthermore, we can define an inner product on MatX(C) with 〈B1, B2〉 =

τ(B1 ◦ B2) for every B1, B2 ∈ A, where τ denotes the entry sum of a matrix and ◦
denotes the Hadamard product of matrices.

Then, if we require that S be an orthonormal set, we can determine whether an

element B of A is in the span of S′ or S′′ by projecting it onto the span. If the

projection is equal to B, then B is in the span; otherwise it is outside the span.

Therefore, B is in the span of V if and only if B − projV (B) = 0.

If A = Q, we can use S = {R/‖R‖, F/‖F‖, L/‖L‖, I/
√
n} if the graph G is not

bipartite or S = {R/‖R‖, L/‖L‖, I/
√
n} if the graph G is bipartite (as F = 0 if

and only if G is bipartite). If A = T and the graph G is distance-regular, let H =

{E∗i AhE
∗
j | h, i, j ∈ [0, D]Z} and S = {B/‖B‖ | B ∈ H \ {0}}. In both cases, S is

orthonormal and generates A, and the identity matrix I = 1A is always in the span

of S.

After the aforementioned changes, the algorithm becomes as follows:

The time complexity of the above algorithm can be calculated as follows. The relevant

lines are 7 (matrix multiplication), 9 (inner product), and 12 (norm calculation).

• Line 7 is executed dim(A)2 times, each with (asymptotic) complexity

O(n2.3728596) ([1]). If we use the more practical Strassen’s algorithm, each
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Algorithm 2 The improvement of Algorithm 1.

Require: A ∈ {T,Q}; S =


{R/‖R‖, F/‖F‖, L/‖L‖, I/

√
n} if A = Q and G is not bipartite

{R/‖R‖, L/‖L‖, I/
√
n} if A = Q and G is bipartite

{B/‖B‖ | B ∈ H \ {0}} if A = T

Ensure: B is a basis of A
1: S′, S′′ ← S

2: r′prev ← 0

3: d← false
4: while d = false do

5: r′, r′′ ← |S′|
6: for all (i, j) ∈ ([1, r′]Z)2 \ ([1, r′prev]Z)2 do
7: a← aiaj
8: for all k ∈ [1, r′′]Z do

9: a← a− 〈a, ak〉ak
10: end for

11: if a 6= 0 then . a /∈ span(S′′)
12: r′′ ← r′′ + 1
13: ar′′ ← a/‖a‖
14: S′′ ← S′′ ∪ {ar′′}
15: end if
16: end for

17: if r′′ = r′ then
18: d← true

19: end if

20: r′prev ← r′

21: S′ ← S′′

22: end while

23: B ← S′

matrix multiplication has complexity O(nlog2 7) ≈ O(n2.807).

• For every (i, j) ∈ [1,dim(A)]Z, line 9 is executed r′′ times; the value of r′′ may

change with (i, j) and is bounded above by dim(A). The number of executions

of line 9 is thus bounded above by dim(A)3. Each execution of line 9 has

complexity O(n2).

• Line 12 is performed dim(A) − r times, each with complexity O(n2). It is

therefore overshadowed by line 7.

From lines 7 and 9, we calculate an upper bound for the time complexity of the

algorithm, if dim(A) is known:

k1 dim(A)2n2.3728596 + k2 dim(A)3n2

As dim(A) is bounded above by n2, we obtain the time complexity figure of O(nc)

where

2.3728596 ≤ c ≤ 8,

or, with Strassen’s algorithm,

2.807 ≤ c ≤ 8.
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The complexity approaches the lower bound when dim(A) << n, and it approaches

the upper bound when logn dim(A) ≈ 2.

4. Block structure optimization for the algorithm for T

Let B ∈ T . Consider that if we sort the vertex set X of a distance-regular graph

G by ascending distance from the fixed point x (by applying a permutation, say

σ : X → X), then B will be mapped to [σ]B[σ], which is equivalent to B.

From now on, let us assume without loss of generality that the vertices of G are

already sorted in ascending distance from x. Let ki be the number of vertices of G

with distance i from x. The dual idempotents will have the form

E∗i = diag(δ0i, δ1i, . . . , δ1i︸ ︷︷ ︸
k1

, δ2i, . . . , δ2i︸ ︷︷ ︸
k2

, . . . , δDi, . . . , δDi︸ ︷︷ ︸
kD

).

Consider an arbitrary B ∈ T with

B =


B00 B01 . . . B0D

B10 B11 . . . B1D

...
...

. . .
...

BD0 BD1 . . . BDD


where Bij is a block of size ki×kj for every i, j ∈ [0, D]Z. We call Bij the (i, j)-block

of B. For every i, j ∈ [0, D]Z we have

E∗i BE
∗
j =



0 . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . Bij . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . 0


Define (i, j)-monoblocks to be matrices of the form E∗i BE

∗
j where B ∈ T .

Let B ∈ T be a (i, j)-monoblock and B′ ∈ T be a (j′, k)-monoblock. We say that

B is compatible with B′ if j = j′. The compatibility relation is not symmetric; a

(1, 2)-monoblock is compatible with a (2, 3)-monoblock, but not vice versa.

Now let B,B′ ∈ T be monoblocks. Because the dual idempotents are orthogonal

(E∗i E
∗
j = 0 if i 6= j), the matrix BB′ can be nonzero only if B is compatible with B′.

We consider Algorithm 2 where A = T (using S = {h/‖h‖| | h ∈ H}). By definition,

every element of S = {B/‖B‖ | B ∈ H \ {0}} is a monoblock, and likewise, the

product of any number of elements of S is also a monoblock. Therefore, throughout

the algorithm, all elements of the set S′ are always monoblocks.

Let S′ij be the set of all elements of S′ with nonzero (i, j)-block. (The sets S′ij change

as S′ changes.) Then {S′ij | i, j ∈ [0, D]Z} partitions S′. We obtain the following:



A. Ahmad, et al. 7

Proposition 1. If B,B′ ∈ S′ such that BB′ 6= 0, then B ∈ S′ij , B
′ ∈ S′jk for some

i, j, k ∈ [0, D]Z.

Algorithm 3 The optimized algorithm for T .
Require: S = {B/‖B‖ | B ∈ H \ {0}}, where H = {E∗i AhE

∗
j | h, i, j ∈ [0, D]Z}

Ensure: B is a basis of T
1: S′, S′′ ← S

2: r′prev ← 0
3: d← false

4: while d = false do

5: r′, r′′ ← |S′|
6: for all i, j, k ∈ [0, D]Z do

7: for all (a′, a′′) ∈ S′ij × S′jk such that the multiplication a′a′′ has not been calculated do

8: a← a′a′′

9: for all ã ∈ S′ik do
10: a← a− 〈a, ã〉ã
11: end for

12: if a 6= 0 then
13: r′′ ← r′′ + 1

14: ar′′ ← a/‖a‖
15: S′′ ← S′′ ∪ {ar′′}
16: end if

17: end for

18: end for
19: if r′′ = r′ then

20: d← true

21: end if
22: r′prev ← r′

23: S′ ← S′′

24: end while
25: B ← S′

We calculate the time complexity of the above algorithm as follows. Let C = (cij) be

such that cij = |S′ij |. The optimization reduces the number of matrix multiplications

to τ(C2) = tr(C2J) ≤ tr(C)tr(CJ) = tr(C)r′ ≤ dim(A)2 ≤ n4. The number of

inner product calculations (〈a, ã〉) is reduced to (D + 1)tr(CJ) = (D + 1)r′ ≤ (D +

1) dim(A) ≤ n3. We obtain the time complexity figure of O(nc) where

2.3728596 ≤ c ≤ 6.3728596. (4.1)

With Strassen’s algorithm, we obtain

2.807 ≤ c ≤ 6.807.

5. Optimizations for the algorithm for Q

As discussed before, for distance-regular graphs, every element of the set {B/‖B‖ |
B ∈ H \{0}} only has one nonzero block, which enabled us to optimize the algorithm
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for A = T . On the other hand, for a general graph, R,L can be written as the sum

of D monoblocks, I can be written as the sum of D + 1 monoblocks, and F can be

written as the sum of ≤ D + 1 monoblocks.

Therefore, we can optimize Algorithm 2 for A = Q by reducing the number of opera-

tions in the calculation of matrix product by only multiplying compatible monoblocks

in the decomposition of each matrix. We can also reduce the number of operations

in the calculation of inner product by only multiplying monoblocks with the same

position ((i, j)-monoblock with (i, j)-monoblock). This optimization is not restricted

to distance-regular graphs.

More specifically, consider that every element of S ∈ {{R/‖R‖, F/‖F‖, L/‖L‖, I/
√
n},

{R/‖R‖, L/‖L‖, I/
√
n}} can be written as the sum of ≤ D+1 monoblocks with differ-

ent horizontal and vertical positions (for instance, I/
√
n can be written as the sum of

the matrices E∗0/
√
n,E∗1/

√
n, . . . , E∗D/

√
n, which are respectively a (0, 0)-monoblock,

(1, 1)-monoblock, ..., and (D,D)-monoblock). From there we can inductively obtain

that the product of finitely many elements of S (not necessarily distinct) can also

be written as the sum of ≤ D + 1 monoblocks with different horizontal and vertical

positions.

Therefore, the number of operations in a matrix multiplication in the algorithm (where

A = Q) is bounded above by (D+1) maxi k
2.3728596
i , whereas the number of operations

in an inner product calculation in the algorithm is bounded above by (D+1) maxi k
2
i .

Generally, they are bounded above by n2.3728596 and n2, and therefore the optimiza-

tion reduces the coefficient of the time complexity.

6. Example and results of algorithm implementation

We consider as an example the working of Algorithm 3 for the Terwilliger algebra

of the Petersen graph. The following chart shows the 14 elements of S, divided by

monoblock positions, where i[h]j :=
E∗i AhE

∗
j

‖E∗i AhE∗j ‖
. 0[0]0 0[1]1 0[2]2

1[1]0 1[0]1, 1[2]1 1[1]2, 1[2]2

2[2]0 2[1]1, 2[2]1 2[0]2, 2[1]2, 2[2]2

 .
The algorithm runs without finding a new element of S′′ until it reaches i = k = 2,

j = 1, a = 2[1]1, and a′ = 1[1]2. At that point, we obtain a new elementM/‖M‖ of S′′,

where M = M2 − 〈M2, 2[2]2〉2[2]2, M2 = M1 − 〈M1, 2[1]2〉2[1]2 = M1 − 0 · 2[1]2 = M1,

and M1 = aa′ − 〈aa′, 2[0]2〉2[0]2. The rest of the algorithm runs without finding any

other element of S′′. Therefore, we conclude that the dimension of the Terwilliger

algebra is 15, with basis B = S ∪ {M/‖M‖}.
Below is a table detailing the computational times, in seconds, of applying Algorithm

2 to Q (with and without optimization) and applying Algorithms 2 and 3 to T , in

the context of the odd graphs O3 (Petersen graph), O4, and O5. The exponents c

and coefficients k of the time complexities knc for each algorithm were obtained by

exponential regression.
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Algorithm O3 O4 O5 c k · 106

Algorithm 2 for Q 0.044 5.111 763.625 3.853 6.026

Optimized Algorithm 2 for Q 0.013 0.968 184.858 3.775 1.894

Algorithm 2 for T 0.043 5.045 759.505 3.860 5.798

Algorithm 3 for T 0.004 0.140 16.845 3.295 1.671

Order of graph 10 35 126

Table 1. Computational times of applying the algorithms to odd graphs.

We observe that the optimization for Algorithm 2 for Q reduces the time complexity

exponent slightly and reduces the time complexity coefficient significantly, whereas

Algorithm 3 for T reduces both the exponent and coefficient significantly with respect

to Algorithm 2.

7. Conclusion and open problems

We have given an optimized algorithm for determining T in distance-regular graphs

and optimizations for determining Q in general graphs. We also calculated the algo-

rithmic time complexity both analytically and experimentally for odd graphs.

There are still some problems that remain:

• Can we obtain a tighter upper bound for (4.1)?

• What conditions of distance-regular graphs enable tighter upper bounds for

(4.1)?

• Is there a more efficient algorithm for determining the basis of the Terwilliger

and quantum adjacency algebras of a distance-regular graph?

• What optimizations can we do for determining the basis of the Terwilliger and

quantum adjacency algebras of a non-distance-regular graph?
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