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Abstract: A set B ⊆ V (G) is called a k-total limited packing set in a graph G if

|B∩N(v)| ≤ k for any vertex v ∈ V (G). The k-total limited packing number Lk,t(G) is

the maximum cardinality of a k-total limited packing set in G. This concept introduced
by Hosseini Moghaddam et al. in 2016. Here, we give some results on the k-total limited

packing number of graphs emphasizing trees, especially when k = 2. We also study the

2-(total) limited packing number of some product graphs. Ahmadi et al. introduced
the concept of k-limited packing partition (kLPP) in 2024. A kLPP of graph G is a

partition of V (G) into k-limited packing sets. The minimum cardinality of a kLPP is
called the kLPP number of G and is denoted by χ×k(G), and we obtain some results

for this parameter.
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1. Introduction and preliminaries

In this work, we consider G =
(
V (G), E(G)

)
as a finite simple graph. NG(v) and

NG[v] = NG(v)∪ {v} are used to refer to the open neighborhood and closed neighbor-

hood of a vertex v ∈ V (G), respectively. The minimum and maximum degrees of a

graph G are denoted by δ(G) and ∆(G), respectively. We refer to [15] as a source for

terminology and notation that is not explicitly defined here.

G− indicates the graph obtained from G by removing its isolated vertices. By G[S],

we mean the subgraph induced by the subset S of vertices in G.

A set of vertices S ⊆ V (G) is called a dominating set (DS) in G if every vertex not

in S is adjacent to at least one vertex in S. The domination number of G, denoted
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2 On k-(total) limited packing in graphs

γ(G), is the smallest number of vertices in a dominating set of G. A set S ⊆ V (G)

is a total dominating set (TDS) in the graph G if every vertex in V (G) is adjacent

to a vertex of S. The total domination number of G, denoted γt(G), is the smallest

number of vertices in a total dominating set of G.

A set of vertices S ⊆ V (G) with δ(G) ≥ k − 1 is said to be a k-tuple dominating set

(kTD set) in G provided that for every v ∈ V (G), we have |N [v] ∩ S| ≥ k . The

k-tuple domination number γ×k(G) of graph G is the number of vertices in a smallest

kTD set in G. A k-tuple domatic partition (kTD partition) of a graph G is a partition

of the vertices of G into kTD sets. The largest number of sets that can be obtained

from a vertex partition of G into kTD sets is called the k-tuple domatic number and is

denoted by d×k(G). Notice that when k = 1, S and γ×1(G) are the usual dominating

set and domination number γ(G), respectively. Additionally, d×1(G) = d(G) refers

to the well-studied domatic number (see [4]).

A vertex subset B of a graph G is called a packing (resp. an open packing) provided

that |B ∩ N [v]| ≤ 1 (resp. |B ∩ N(v)| ≤ 1) for each vertex v ∈ V (G). The packing

number ρ(G) and open packing number ρo(G) are defined as the maximum cardi-

nality of a packing set and an open packing set, respectively. To obtain additional

information on these concepts, the reader can refer to [9] and [8].

In 2010, the concept of limited packing (LP) in graphs was introduced by Gallant

et al. [7]. A k-limited packing (kLP) in a graph G is a set B ⊆ V (G) such that

for each vertex v of V (G), the cardinality of the intersection of B and N [v] is at

most k. The maximum cardinality of a k-limited packing set in G is called the k-

limited packing number Lk(G). They also presented some real-world applications of

this concept in network security, market situation, NIMBY and codes. This topic was

next investigated in numerous papers, such as references [2], [3], [5], [6], [11] and [14].

Similarly, a k-total limited packing (kTLP) in G is a set B ⊆ V (G) such that for each

vertex v of V (G), the cardinality of the intersection of B and N(v) is at most k. The

maximum cardinality of a k-total limited packing set in G is called the k-total limited

packing number Lk,t(G). This topic was initially studied in [10], and some theoretical

applications of it were given in [1, 12]. It is worth noting that the latter two concepts

are identical to packing and open packing when k equals 1. Notice that a kLP set is

a kTLP set, too.

A k-limited packing partition (kLPP) of a graph G is a partition of the vertices of G

into kLP sets. This topic was first studied in [1]. The smallest number of sets that

can be obtained from a vertex partition of G into kLP sets is called the k-limited

packing partition number (kLPP number) and is denoted by χ×k(G). This concept

can also be considered as the dual of kTD partition problem. Our main focus for

kTLP sets is on k = 2. This is because for larger values of k, we lose some significant

families of graphs (for instance, γ×k and d×k cannot be defined for trees when k ≥ 3)

or we encounter trivial problems (for instance, L×k(G) = |V (G)| and χ×k(G) = 1 if

k ≥ ∆(G) + 1). On the other side, many results for k ∈ {1, 2} may be generalized to

the general case k. In addition, stronger results may be obtained for small values of k.

For the cartesian product of graphs G and H, denoted G�H, and the direct product

of graphs G and H, denoted G ×H, the vertex set of the product is V (G) × V (H).
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Their edge sets are defined as follows. In G�H, two vertices are adjacent if they are

adjacent in one coordinate and equal in the other. In G×H two vertices are adjacent

if they are adjacent in both coordinates.

Suppose that G is a labeled graph on n vertices, and H is a sequence of n rooted

graphs H1, H2, . . . ,Hn. If we identify the ith vertex of G with the root of Hi, we

obtain a new graph called the rooted product graph. This graph is denoted by G(H).

We here focus on the special case of rooted product graphs for which H consists of n

isomorphic rooted graph. Assume that v is the root vertex of H, we define the rooted

product graph G ◦v H = (V,E), such that V = V (G)× V (H) and

E =

n⋃
i=1

{
(gi, h)(gi, h

′) : hh′ ∈ E(H)
}
∪
{

(gi, v)(gj , v) : gigj ∈ E(G)
}
.

For g ∈ V (G), h ∈ V (H) and ∗ ∈ {�,×, ◦v}, we call Gh = {(g, h) ∈ V (G ∗H)| g ∈
V (G)} a G-layer through h, and gH = {(g, h) ∈ V (G ∗ H)|h ∈ V (H)} an H-layer

through g in G ∗H.

Notice that the subgraphs induced by the H-layers (resp. the G-layers) of G ◦vH (or

G�H) are isomorphic to H (resp. to G). However, there are no edges between the

vertices of Gh and the vertices of gH in direct product G×H.

The corona product of two graphs G with V (G) = v1, ..., vn and H is defined as the

graph created by taking one copy of G, |V (G)| copies of H and joining vi ∈ V (G)

to every vertex in the ith copy of H. The corona product of the graphs G and H is

denoted by G�H.

Here, we first discuss kTLP, especially when k = 2, and give several sharp bounds

for it. Then, we improve some of these inequalities for trees. In Section 3, we bound

L2 and L2,t for the cartesian product, direct product and rooted product graphs . In

Section 4, we give a lower bound for χ×k, and determine the values of χ×2 for the

corona product. For the sake of convenience, for any graph G by an η(G)-set with

η ∈ {Lk, γt, ρ, ρo, Lk,t} we mean a kLP set, TD set, packing set, open packing set and

kTLP set in G of cardinality η(G), respectively.

2. Results on k-total limited packing

If G is a graph of order n and k ≥ n − 1, then Lk,t(G) = n. Note that k ≥ ∆(G) is

a weaker condition than the previous one. Therefore, we only need to compute the

kTLP number for those graphs G such that k < ∆(G).

It was proved in [1] that the problem of computing the 2TLP number is NP-complete,

even for bipartite graphs and for chordal graphs. Consequently, it would be desirable

to bound this parameter in terms of several invariants of graphs. Several bounds

on the kTLP number (emphasizing trees, especially when k = 2) were given in the

following. If B ⊆ V (G) and |B| = k, then |B ∩N(v)| ≤ k for each vertex v of V (G).

So, k ≤ Lk,t(G) ≤ n.
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Theorem 1. Let G be a graph of order n ≥ 2 with degree sequence d1, d2, . . . , dn such
that d1 ≤ d2 ≤ · · · ≤ dn. Then

Lk,t(G) ≤ max {x| d1 + d2 + · · ·+ dx ≤ kn},

and this bound is sharp.

Proof. Let B = {v1, v2, . . . , v|B|} be an Lk,t(G)-set. Then

d1 + d2 + · · ·+ d|B| ≤ deg(v1) + deg(v2) + · · ·+ deg(v|B|) ≤ k|B|+ k(n− |B|).

So d1 + d2 + · · ·+ d|B| ≤ kn. Therefore, Lk,t(G) ∈ {x| d1 + d2 + · · ·+ dx ≤ kn}.
The sharpness of this bound can be seen as follows. Suppose that G is a complete

graph of order at least k + 2. Then, it is easy to see that Lk,t(G) = k. On the other

hand, k = Lk,t(G) ≤ max {x| x(n− 1) ≤ kn} = k.

Lemma 1. If G is a graph of order n, then Lk,t(G) ≤ n+ k −∆(G).

Proof. Assume that w is a vertex of maximum degree in G. As we mentioned at

the beginning of this section, we assume that k < ∆(G). Otherwise, Lk,t(G) =

n ≤ n + k − ∆(G). Let S be an Lk,t(G)-set. Since |N(w) ∩ S| ≤ k, there is at

least ∆(G) − k vertices in N(w)\S. Hence, |S| ≥ ∆(G) − k. Therefore, we have

Lk,t(G) = |S| = n− |S| ≤ n+ k −∆(G).

We now define the family Ω consisting of all graphs G constructed as follows, and

in the next theorem we show that Ω is the set of all graphs G of order n satisfying

L2,t(G) = n+2−∆(G). Suppose that G is a graph of order n such that V (G) = A∪B
has the following conditions:

(i) |A ∩B| = 3,

(ii) G[A] has a spanning star, and each component of G[B] is a path or a cycle, and

(iii) for every vertex v ∈ B, we have |N(v) ∩B| ≤ 2.

Figure 1 depicts a representative member of Ω.

Theorem 2. If G is a graph of order n, then L2,t(G) ≤ n + 2 − ∆(G). Furthermore,
L2,t(G) = n+ 2−∆(G) if and only if G ∈ Ω.

Proof. Suppose that S is an L2,t(G)-set, and w is a vertex of maximum degree in

G. Notice that each component of G[S] is a path or a cycle, and we have L2,t(G) =

|S| = n− |S| ≤ n+ 2−∆(G) by Lemma 1.

If L2,t(G) = n+2−∆(G), then |S| = ∆(G)−2,
(
V (G)\N [w]

)
⊆ S and |N [w]∩S| = 3.

Based on the above argument, we have G ∈ Ω with N [w] = A and S = B.
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Figure 1. A graph H ∈ Ω with A = {v1, v2, v3, v4, v5} and B = {v1, v3, v5, v6, v7, v8}.

Let now G ∈ Ω, then it suffices to prove that L2,t(G) ≥ n+ 2−∆(G). Assume now

that A∩B = {u1, u2, u3} and |A| = a+1, where w is a vertex of degree a in G[A]. We

claim that ∆(G) = a. Each vertex v ∈ B in G[B] is at most of degree two. So, each

of the vertices u1, u2 and u3 is adjacent to at most two vertices in B. On the other

hand, each of u1, u2, u3 is adjacent to at most a− 2 vertices in A\{u1, u2, u3}. Thus,

deg(u1) ≤ a, deg(u2) ≤ a and deg(u3) ≤ a. For each vertex v ∈ A\{u1, u2, u3}, v is

adjacent to at most a−3 vertices in A\{u1, u2, u3, v} and to at most two vertices in B.

So, deg(v) ≤ a− 1 for every v ∈ A\{u1, u2, u3}. For each vertex v′ ∈ B\{u1, u2, u3},
v′ is adjacent to at most a− 2 vertices in A\{u1, u2, u3} and to at most two vertices

in B. Thus, deg(v′) ≤ a for every v′ ∈ B\{u1, u2, u3}. Hence, ∆(G) ≤ a. But

deg(w) ≥ a, which implies that ∆(G) = a. Note that B is a 2TLP set of G with

|B| = n− |A|+ 3 = n+ 2−∆(G). Therefore, we have L2,t(G) ≥ n+ 2−∆(G).

Theorem 3. Let G be an r-regular graph of order n such that Lk,t(G) = n + k − r for
k ≤ r − 1. Then, we have r ≥ n

2
.

Proof. If r = n− 1, then G is a complete graph with Lk,t(G) = k for 1 ≤ k ≤ n− 2.

So, let r ≤ n − 2. Now assume that w ∈ V (G) and that S is an Lk,t(G)-set with

|S| = n+ k− r. Since |N(w)∩S| ≤ k, it follows that |N(w)∩S| ≥ r− k . Obviously,

|S| = n− |S| = r− k. Thus, there are exactly r− k vertices, namely v1, v2, . . . , vr−k,

in N(w) ∩ S. In particular, S = {v1, v2, . . . , vr−k} and w ∈ S. Let U = V (G)\N [w],

clearly U ⊆ S, and U 6= ∅ since r ≤ n − 2. If u ∈ U , then |N(u) ∩ S| ≤ k. So,

any vertex u ∈ U is adjacent to all vertices in S, i.e., every vertex vi ∈ S is adjacent

to all n − r − 1 vertices in U . Note that vi has at least one neighbor in N [w], and

deg(vi) = r. Therefore, n− r − 1 + 1 ≤ r and we get r ≥ n
2 .

Remark 1. If G is an r-regular graph of order n with r < n
2

, then Lk,t(G) < n + k − r
for k ≤ r − 1. In fact, the bound of Lemma 1 is not sharp under these conditions.

Before we state the Theorem 4, we introduce a new concept needed in that theorem.

For any tree T with order n ≥ 3, δ′(T ) denotes the minimum degree of T among all
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non-leaf vertices.

Theorem 4. Let T be a tree of order n ≥ 3 for which δ′(T ) ≥ c for some positive integer
c ≥ 4. Then, we have L2,t(T ) ≤ c−2

c−1
n− c+ 4.

Proof. We prove this theorem by induction on the order of tree T . Since δ′(T ) ≥ c,
we have n ≥ c+1. If n ∈ {c+1, c+2, . . . , 2c−1}, then T ∈ {K1,c,K1,c+1, . . . ,K1,2c−2},
respectively. Hence, L2,t(T ) = 3 ≤ c−2

c−1n − c + 4. Assume that for all tree T ′

of order n′ < n with δ′(T ′) ≥ c, we have L2,t(T
′) ≤ c−2

c−1n
′ − c + 4. Now let T

be a tree of order n ≥ 2c such that δ′(T ) ≥ c and let S be an L2,t(T )-set. We

root T at r, and suppose v′ is a leaf of T at the furthest distance from r, and v′′

is the parent of v′. Assume that L is the set of all leaves in N(v′′). Since v′′ is

adjacent to at least c − 1 leaves, it follows that |L| ≥ c − 1. Suppose that T ′′ be

obtained from T by deleting all the vertices of L. By the induction hypothesis, we

have L2,t(T
′′) ≤ c−2

c−1 |V (T ′′)| − c+ 4 ≤ c−2
c−1 (n− (c− 1))− c+ 4 = c−2

c−1n− 2c+ 6.

On the other hand, |L∩S| ≤ |N(v′′)∩S| ≤ 2. Therefore, we get L2,t(T ) ≤ L2,t(T
′′)+

2 ≤ c−2
c−1n− 2c+ 8 ≤ c−2

c−1n− c+ 4.

Proposition 1. Let G be a graph without isolated vertices such that ∆(G) ≥ 2, then

L2,t(G) ≤ ∆(G)2 + 1

δ(G)
ρo(G).

Proof. Let v ∈ V (G) be an arbitrary vertex, then the set of all vertices at distance

at most two from v has at most ∆(G)
2

+ 1 vertices. Thus, ρo(G) ≥ 2n
∆(G)2+1

, by the

greedy algorithm. Moreover, Lk,t(G) ≤ kn
δ(G) [10], and we get

ρo(G) ≥ 2n

∆(G)
2

+ 1
=

2nδ(G)

(∆(G)
2

+ 1)δ(G)
≥ L2,t(G)

δ(G)

∆(G)
2

+ 1
.

Therefore, we infer that L2,t(G) ≤ ∆(G)2+1
δ(G) ρo(G).

We can improve the above bounds for trees as follows.

Proposition 2. If T is a given tree with ∆(T ) ≥ 2, then

L2,t(T ) ≤ 2ρo(T ).

Proof. We know that L2,t(T ) ≤ 2γt(T ) ([10]). On the other hand, we have ρo(T ) =

γt(T ) for every tree T with at least two vertices ([13]). As a consequence, we have

L2,t(T ) ≤ 2γt(T ) = 2ρo(T ).

We next state a relevant result on 2- total limited packings of graphs, which will be

needed later.
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Lemma 2. (Hosseini Moghaddam et al. [10]) Let G be a graph of order n such that
∆(G) ≥ 2, then ρo(G) + 1 ≤ L2,t(G).

According to the previous lemma and the Proposition 2, we can say ρo(T ) + 1 ≤
L2,t(T ) ≤ 2ρo(T ) for every tree T with ∆(T ) ≥ 2. The next theorem shows how

equality occurs in these bounds.

Theorem 5. Let T be a tree such that ∆(T ) ≥ 2. Then,

(i) ρo(T ) + 1 = L2,t(T ) if and only if T is a star with at least three vertices, and

(ii) L2,t(T ) = 2ρo(T ) if and only if for every L2,t(T )-set S and every γt(T )-set D, we have
|N(s) ∩D| = 1 and |N(d) ∩ S| = 2 for any s ∈ S and any d ∈ D.

Proof. Let T be the star K1,x with x ≥ 2. Then, ρo(T ) = 2 and L2,t(T ) = 3.

Therefore, ρo(T ) + 1 = L2,t(T ).

It remains for us to prove the converse. Assume now that T is a tree with ρo(T )+1 =

L2,t(T ). We claim that diam(T ) ≤ 2. Suppose to the contrary that there exist

two vertices v1, v4 ∈ V (T ) such that d(v1, v4) = 3 and let P = v1v2v3v4 be the path

between them. Assume that S1 is a ρo(T )-set, then |V (P )∩S1| ≤ 2. We now consider

three cases as follows.

Case 1. Let V (P ) ∩ S1 = ∅. Set S2 = S1 ∪ {v1, v2}, we show that S2 is a 2TLP

set of T . Since |N(vi) ∩ S1| ≤ 1 and |N(vi) ∩ {v1, v2}| ≤ 1 for 1 ≤ i ≤ 4, it follows

that |N(vi) ∩ S2| ≤ 2 for every vi ∈ V (P ). Let now w be a vertex outside of P , so

|N(w)∩ {v1, v2}| ≤ 1 because T has no cycle. Thus, |N(w)∩S2| ≤ 2 for every vertex

w outside P . Therefore, we conclude that S2 is a 2TLP set of T .

Case 2. Assume V (P ) ∩ S1 = {vi} for 1 ≤ i ≤ 4. First, let i = 1 or 4, by using

similar techniques as in the previous case, S1 ∪ {v2, v3} is a 2TLP set of T . If i = 2

or 3, then S1 ∪ {v1, v4} is a 2TLP set of T .

Case 3. Suppose V (P ) ∩ S1 = {vi, vj} for some 1 ≤ i 6= j ≤ 4. If

(i, j) ∈ {(1, 2), (1, 4), (2, 3), (3, 4)}, then S1 ∪ {v3, v4}, S1 ∪ {v2, v3}, S1 ∪ {v1, v4}
and S1 ∪ {v1, v2} are 2TLP sets of T , respectively.

In each case, we observe that L2,t(T ) ≥ ρo(T ) + 2, which contradicts the assumption

ρo(T ) + 1 = L2,t(T ). Therefore, we deduce that diam(T ) ≤ 2, and T is a star with

at least three vertices.

Let now T be a tree with ∆(T ) ≥ 2. As mentioned earlier, we know that L2,t(T ) =

2ρo(T ) if and only if L2,t(T ) = 2γt(T ). Let S be an L2,t(T )-set, and D be a γt(T )-

set. We now restate the proof of Theorem 7 in [10]. We set U = {(s, d) ∈ V (G) ×
V (G)|s ∈ S, d ∈ D and s ∈ N(d)}, and count the members of U in two ways. Since

|N(s)∩D| ≥ 1 for any s ∈ S, it follows that there is at least one vertex d ∈ D such that

s ∈ N(d). Thus, |S| ≤ |U |. On the other hand, for any d ∈ D we have |N(d)∩S| ≤ 2.

Hence, there exists at most two vertices s1, s2 ∈ S such that s1, s2 ∈ N(d). So, we get

|U | ≤ 2|D|, and |S| ≤ 2|D|. Therefore, L2,t(T ) = 2γt(T ) if and only if the following

statements hold:
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(1) for any s ∈ S, we have |N(s) ∩D| = 1,

(ii) for any d ∈ D, we have |N(d) ∩ S| = 2.

Theorem 6. If G is a graph, then for any edge e ∈ E(G),

Lk,t(G) ≤ Lk,t(G− e) ≤ Lk,t(G) + 2.

Furthermore, these bounds are sharp.

Proof. Any kTLP set of G is also a kTLP set of G − e, so Lk,t(G) ≤ Lk,t(G − e).
Moreover, if C is a cycle on n vertices, then L2,t(C) = L2,t(C − e) = n for every edge

e ∈ E(C).

Suppose now that B is an Lk,t(G− e)-set and e = uv. If u, v ∈ B, then B − {u, v} is

a kTLP set of G, and hence Lk,t(G) ≥ |B| − 2. If u ∈ B and v /∈ B, then B − {u} is

a kTLP set of G, and Lk,t(G) ≥ |B| − 1. If u, v /∈ B, then B is a kTLP set of G, and

we have Lk,t(G) ≥ |B|. Therefore, Lk,t(G− e) ≤ Lk,t(G) + 2.

Let G be a double star ST (x, y), which is the graph obtained by joining the centers of

two stars K1,x and K1,y with an edge, such that x, y ≥ k+ 1. Assume that the center

of stars are u and v, respectively. Then, Lk,t(G− e) = Lk,t(G) + 2 for e = uv.

Theorem 7. Let G have a unique L2,t(G)-set B. Then every leaf of G belongs to B.

Proof. Let B be a unique L2,t(G)-set, and let there exist a leaf l /∈ B with the

support vertex v. If v ∈ B and |N(v) ∩ B| ≤ 1, then B′ = B ∪ {l} is a 2TLP set

which is greater than B, a contradiction. So if v ∈ B, then |N(v) ∩ B| = 2. Let

u ∈ N(v) ∩B. We can easily see that B′′ = (B\{u}) ∪ {l} is an L2,t(G)-set, which is

impossible because B is unique. Hence v /∈ B.

If some neighbor of v, say u′, belongs to B, then B′′ = (B\{u′})∪{l} is an L2,t(G)-set.

This contradicts the assumption. Therefore, we deduce that N [v]∩B = ∅. So B∪{l}
is a 2TLP set, which is a contradiction with the maximality of B. Hence l ∈ B.

If diam(G) = 1, then G is a complete graph, and we know that L2,t(Kn) = 2.

What can be said about the 2TLP number of graphs with diameter 2? The following

theorem is an answer to this question.

Theorem 8. If c ≥ 3 is a positive integer, then there exists a graph G with diam(G) = 2
such that L2,t(G) = c.

Proof. In what follows, we construct a graph G with diameter 2 for which L2,t(G) =

c. Suppose that V1 = {v1, v2, . . . , vc} and V2 = {u1, u2, . . . , u c(c−1)
2
} with V1 ∩ V2 = ∅.

Let G be a graph with vertex set V (G) = V1 ∪ V2 such that G[V1] = cK1, G[V2] =
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K c(c−1)
2

and each pair of distinct vertices in V1 has a unique common neighbor in

V2. Obviously, diam(G) = 2. It remains to show that L2,t(G) = c. We know

|V (G)| = c + c(c−1)
2 and ∆(G) = c(c−1)

2 + 1. Hence, by Theorem 2, L2,t(G) ≤
|V (G)| + 2 −∆(G) = c + 1. But G /∈ Ω, so L2,t(G) ≤ c. On the other hand, V1 is a

2TLP set of G. Thus, L2,t(G) = c.

Theorem 9. Assume that a ≥ 3 and b are two integers with a+ 1 ≤ b ≤ 2a. Then, there
exists a tree T for which ρo(T ) = a and L2,t(T ) = b.

Proof. Let a ≥ 3 and b be two integers such that a+ 1 ≤ b ≤ 2a, and b = a+x with

1 ≤ x ≤ a. In what follows, we construct a tree T with ρo(T ) = a and L2,t(T ) = a+x

for a ≥ 3 and 1 ≤ x ≤ a. We distinguish two cases based on the value of x.

Case 1. First, let x = a. Assume P = v1v2 . . . va is a path. We add two leaves ui1
and ui2 to each vi, and obtain tree T . Let S1 be a ρo(T )-set. If |S1| ≥ a+ 1, by the

Pigeonhole principle, there is at least one vertex vi such that |N(vi)∩ S1| ≥ 2, which

is impossible. Hence, ρo(T ) ≤ a. On the other hand, {u11 , u21 , . . . , ua1} is a 1TLP

set of T , so ρo(T ) = a.

Let S2 be an L2,t(T )-set. Similarly, if L2,t(T ) ≥ 2a + 1, there exists at least one

vertex vi such that |N(vi) ∩ S2| ≥ 3, a contradiction. Thus, L2,t(T ) ≤ 2a. Moreover,

{u11
, u12

, u21
, u22

. . . , ua1 , ua2} is a 2TLP set of T , hence L2,t(T ) = 2a = b.

Case 2. Suppose now that 1 ≤ x ≤ a − 1. Consider the star T ′ = K1,a with

V (T ′) = {r, v1, v2, . . . , va} and deg(r) = a. Let T be the tree obtained from T ′

by adding two leaves ui and u′i to each vi for 1 ≤ i ≤ x − 1 and one leaf ui to

each vi for x ≤ i ≤ a − 1. We show that ρo(T ) = a and L2,t(T ) = b. Since

T /∈ Ω, it follows that L2,t(T ) < |V (T )| + 2 − ∆(T ) by Theorem 2. Notice that

|V (T )| = 2a + x − 1 and ∆(T ) = a, thus L2,t(T ) ≤ a + x. On the other hand,

{u1, u2, . . . , ua−1, u
′
1, u
′
2, . . . , u

′
x−1, v1, va} is a 2TLP set of T , so L2,t(T ) = a+ x = b.

Since T is a tree with at least two vertices, ρo(T ) = γt(T ) [10]. Moreover,

{r, v1, v2, . . . , va−1} is a TD set of T , and hence γt(T ) ≤ a. Thus, ρo(T ) ≤ a. It is read-

ily verified that {u1, u2, . . . , ua−1, va} is a 1TLP set of T . Therefore, ρo(T ) = a.

3. On 2-(total) limited packing number of some graph prod-
ucts

Theorem 10. For any graphs G and H, L2,t(G�H) ≥ max{L2,t(G)ρ(H), ρ(G)L2,t(H)}.
Moreover, this bound is sharp.

Proof. Let PG and PH be an L2,t(G)-set and a ρ(H)-set, respectively. Set P =

PG × PH , and suppose to the contrary that P is not a 2TLP set of G�H. There-

fore, there exists a vertex (x, y) ∈ V (G) × V (H) adjacent to three distinct vertices

(g1, h1), (g2, h2), (g3, h3) ∈ P . We distinguish the following cases.
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Case 1. h1 = h2 = h3. If y is adjacent to h1, then x = g1 = g2 = g3, which is

impossible. So, y = h1 = h2 = h3. In such a situation, x is adjacent to g1, g2, g3 ∈ PG,

which contradicts the fact that PG is a 2TLP set in G.

Case 2. At least two vertices from {h1, h2, h3}, say h1 and h2, are distinct. By the

adjacency rule of the Cartesian product graphs, we deduce that {h1, h2} ⊆ NH [y]∩PH .

This contradicts the fact that PH is a packing in H.

Therefore, P is a 2TLP set in G�H. Hence, L2,t(G�H) ≥ |P | = L2,t(G)ρ(H).

Similarly, we have L2,t(G�H) ≥ ρ(G)L2,t(H).

We can show that this bound is sharp in the following way. Let G′ be any connected

graph on the set of vertices {v′1, . . . , v′n}. Let G = G′�K1, in which NG(v′i)\NG′(v′i) =

{vi} for each 1 ≤ i ≤ n. We now consider the graph G�Kr for r ≥ 3, and let Q be

an L2,t(G�Kr)-set. Clearly, ρ(G) = n and L2,t(Kr) = 2. It is not difficult to see that

|Q ∩
(
{vi, v′i} × V (Kr)

)
| ≤ 2 for each 1 ≤ i ≤ n. This implies that

L2,t(G) = |Q| = |Q ∩ V (G�Kr)| = |Q ∩
(
∪ni=1 ({vi, v′i} × V (Kr))

)
|

=
∑n
i=1 |Q ∩

(
{vi, v′i} × V (Kr)

)
| ≤ 2n = L2,t(Kr)ρ(G).

(3.1)

On the other hand, L2,t(G) ≤ 2n since G has 2n vertices. We also know ρ(Kr) = 1,

so max{L2,t(G)ρ(Kr), ρ(G)L2,t(Kr)} = L2,t(Kr)ρ(G).

According to this theorem, we have L2,t(G�Kr) ≥ ρ(G)L2,t(Kr). Therefore, this

bound is sharp.

To show the sharpness of this bound, we present a simpler example by considering

G = Km,n and H = K2 for m,n ≥ 2. We know that L2,t(Km,n) = 4, ρ(K2) = 1 and

L2,t(K2) = ρ(Km,n) = 2. It is easy to see that L2,t(Km,n�K2) = 4.

Theorem 11. Let G and H be graphs with iG and iH isolated vertices, respectively.
Then,

L2,t(G×H) ≥ max {ρo(G−)L2,t(H
−), L2,t(G

−)ρo(H−)}+ iG|V (H)|+ iH |V (G)| − iGiH

and this bound is sharp.

Proof. Suppose first that G and H are graphs without isolated vertices. Let PG and

PH be a ρo(G)-set and an L2,t(H)-set, respectively. Set P = PG × PH , and assume

for the sake of contradiction that P is not a 2TLP set of G×H. Hence, there exists a

vertex (x, y) ∈ V (G×H) adjacent to three distinct vertices (g, h), (g′, h′), (g′′, h′′) ∈ P .

Then g = g′ = g′′ because PG is a ρo(G)-set. So h 6= h′ 6= h′′ and |N(y) ∩ PH | ≥ 3,

a contradiction. Therefore, P is a 2TLP set in G × H, and L2,t(G × H) ≥ |P | =

ρo(G)L2,t(H). We have L2,t(G×H) ≥ L2,t(G)ρo(H) by a similar fashion.

We have

L2,t(G×H) = L2,t(G
− ×H−) + iG|V (H)|+ iH |V (G)| − iGiH .
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Therefore,

L2,t(G×H) ≥ max {ρo(G−)L2,t(H
−), L2,t(G

−)ρo(H
−)}+iG|V (H)|+iH |V (G)|−iGiH .

In what follows, we show that this bound is sharp. Let G be a bipartite graph without

isolated vertices. Then, L2,t(G × K2) = L2,t(2G) = 2L2,t(G). On the other hand,

L2,t(G × K2) ≥ max {ρo(G)L2,t(K2), L2,t(G)ρo(K2)} = max {2ρo(G), 2L2,t(G)} =

2L2,t(G).

Theorem 12. Let G be a graph of order n with iG isolated vertices. If H is a rooted
graph at v, then

n(L2,t(H)− 1) + iG ≤ L2,t(G ◦v H) ≤ nL2,t(H).

Furthermore, these bounds are sharp.

Proof. Note that any H-layer in G◦vH is isomorphic to H. So, each L2,t(G◦vH)-set

intersects every H-layer is at most L2,t(H) vertices. Hence, L2,t(G◦vH) ≤ nL2,t(H).

On the other side, let PH be an L2,t(H)-set. We can readily observe that P =⋃
g∈V (G)

(
{g} × (PH\{v})

)
is a 2TLP set in G ◦v H, so we have n(L2,t(H) − 1) ≤

|P | ≤ L2,t(G ◦v H).

Suppose that there exists an L2,t(H)-set PH not consisting of v. Notice that P =⋃
g∈V (G)

(
{g}×PH

)
is a 2TLP set in G◦vH, and we have nL2,t(H) = |P | ≤ L2,t(G◦v

H). Thus, we conclude that L2,t(G ◦v H) = nL2,t(H) in this case.

Assume now that v has degree two in all subgraphs induced by every L2,t(H)-set PH ,

that is degH[PH ](v) = 2. Suppose that for every 2TLP set P ′H in H, |P ′H\N [v]| ≤
L2,t(H)−3. Assume that P is an L2,t(G◦vH)-set. Note that exactly iG components of

G◦vH are isomorphic to H, which implies that each of these components has exactly

L2,t(H) vertices in P .Moreover, we have one component isomorphic to G− ◦v H.

Let P− = P ∩ (G− ◦v H) and P−g = P− ∩ gH for every g ∈ V (G−). We now

show that L2,t(G
− ◦v H) = (n − iG)(L2,t(H) − 1). Assume that L2,t(G

− ◦v H) >

(n− iG)(L2,t(H)− 1). Hence, there exists at least one vertex g1 ∈ V (G−) for which

|P−g1 | = L2,t(H). Otherwise, |P−| =
∑
gi∈V (G−) |P−gi | ≤

∑
gi∈V (G−) L(2,t(H) − 1) =

(n− iG)(L2,t(H)− 1), which is a contradiction.

Since G− has no isolated vertex, there exists a vertex g2 ∈ V (G−) for which g1g2 ∈
E(G). If |P−g2 | = L2,t(H), then both (g1, v) and (g2, v) have three neighbors in P−,

which is impossible. Therefore |P−g2 | ≤ L2,t(H)− 1 for all g2 ∈ NG(g1). Now let g2 be

an arbitrary neighbor of g1 in G−. If |P−g2 | = L2,t(H)−1, then |N(G◦vH)[g2H][(g2, v)]∩
P−g2 | = 2. This implies that |N(G−◦vH)(g1, v)∩P−| ≥ 3 or |N(G−◦vH)(g2, v)∩P−| ≥ 3,

a contradiction. Thus, |P−g2 | ≤ L2,t(H)− 2 for all g2 ∈ NG(g1).

The above argument provides a guarantee that for every vertex g1 ∈ V (G) such that

|P−g1 | = L2,t(H), we have |P−g2 | ≤ L2,t(H)− 2 for all g2 ∈ NG(g1). This implies that

L2,t(G
− ◦v H) ≤ n− iG

2
L2,t(H) +

n− iG
2

(L2,t(H)− 2) = (n− iG)(L2,t(H)− 1),
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which contradicts the assumption L2,t(G
−◦vH) > (n−iG)(L2,t(H)−1). So L2,t(G

−◦v
H) ≤ (n − iG)(L2,t(H) − 1). It follows that L2,t(G

− ◦v H) = (n − iG)(L2,t(H) − 1)

by using the corresponding inequality obtained from the first steps of the proof.

Therefore, L2,t(G ◦v H) = L2,t(G
− ◦v H) + iGL2,t(H) = (n − iG)(L2,t(H) − 1) +

iGL2,t(H) = n(L2,t(H)− 1) + iG.

Theorem 13. For any graphs G and H,

L2(G�H) ≤ min{L2(G)|V (H)|, L2(H)|V (G)|},

and this bound is sharp.

Proof. Let V (H) = {v1, v2, . . . , v|V (H)|}. It is obvious that G�H contains |V (H)|
disjoint G-layers. Suppose now that P is an L2(G�H)-set, thus Pi = P ∩ Gvi is a

2LP set in (G�H)[Gvi ] for each 1 ≤ i ≤ |V (H)|. Therefore, |Pi| ≤ L2(G), which

leads to

L2(G�H) = |P | =
|V (H)|∑
i=1

|Pi| ≤ L2(G)|V (H)|.

Similarly, we have L2(G�H) ≤ L2(H)|V (G)|.
For sharpness consider G = P2 and H = Km,n for m,n ≥ 2. We observe that

L2(Km,n) = 2 [7], and L2(P2) = 2. It is easy to see that L2(G�H) = 4.

Theorem 14. Let G and H be graphs with iG and iH isolated vertices, respectively.
Then,

L2(G×H) ≥ max {ρo(G−)L2(H−), L2(G−)ρo(H−), ρ(G−)L2,t(H
−), L2,t(G

−)ρ(H−)}
+iG|V (H)|+ iH |V (G)| − iGiH .

Moreover, this bound is sharp.

Proof. Assume first that G and H are graphs without isolated vertices. Let PG, P ′G,

PH and P ′H be an L2,t(G)-set, a ρo(G)-set, a ρ(H)-set and an L2(H)-set, respectively.

Set P = PG×PH and P ′ = P ′G×P ′H , and suppose to the contrary that P and P ′ are

not 2LP sets of G ×H. So there exist vertices (x, y), (x′, y′) ∈ V (G ×H) such that

|N [(x, y)] ∩ P | ≥ 3 and |N [(x′, y′)] ∩ P ′| ≥ 3, respectively.

If (x, y) ∈ P , then (x, y) is adjacent to two distinct vertices (g, h), (g′, h′) ∈ P . So

|N [y]∩ PH | ≥ 2, which is impossible. If (x, y) ∈ V (G×H)\P , then (x, y) is adjacent

to three distinct vertices (g, h), (g′, h′), (g′′, h′′) ∈ P . We observe that h = h′ = h′′

because PH is a ρ(H)-set. Hence g 6= g′ 6= g′′ and |N(x) ∩ PG| ≥ 3, a contradiction.

Therefore, P is a 2LP set in G ×H and L2(G ×H) ≥ |P | ≥ L2,t(G)ρ(H). We have

L2(G×H) ≥ ρ(G)L2,t(H) by a similar method.

If (x′, y′) ∈ P ′, then (x′, y′) is adjacent to two distinct vertices (g1, h1), (g2, h2) ∈ P ′.
We have g1 = g2 because P ′G is a ρo(G)-set. Thus, h1 6= h2 and |N [y′] ∩ P ′H | ≥ 3,

which is impossible. If (x′, y′) ∈ V (G × H)\P ′, then (x′, y′) is adjacent to three
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distinct vertices (g1, h1), (g2, h2), (g3, h3) ∈ P ′. g1 = g2 = g3 since P ′G is a ρo(G)-set,

so h1 6= h2 6= h3 and |N [y′] ∩ P ′H | ≥ 3, a contradiction. Therefore P ′ is a 2LP set

in G × H, and L2(G × H) ≥ ρo(G)L2(H). We get L2(G × H) ≥ L2(G)ρo(H) by a

similar fashion. Therefore,

L2(G×H) ≥ max {ρo(G)L2(H), L2(G)ρo(H), ρ(G)L2,t(H), L2,t(G)ρ(H)}.

We now suppose that G and H are arbitrary graphs. Then,

L2(G×H) = L2(G− ×H−) + iG|V (H)|+ iH |V (G)| − iGiH ≥

max {ρo(G−)L2(H−), L2(G−)ρo(H
−), ρ(G−)L2,t(H

−), L2,t(G
−)ρ(H−)}+

iG|V (H)|+ iH |V (G)| − iGiH .

In what follows, we show the sharpness of this bound. Let G be a bipartite graph

without isolated vertices. Then, L2(G×K2) = L2(2G) = 2L2(G). On the other hand,

L2(G×K2) ≥ max {ρo(G)L2(K2), L2(G)ρo(K2), ρ(G)L2,t(K2), L2,t(G)ρ(K2)} =

max {2ρo(G), 2L2(G), 2ρ(G), L2,t(G)} = 2L2(G).

We end this section by studying the 2LP number of rooted product graphs.

Theorem 15. Let G be a graph of order n. If H is a graph with root v, then

L2(G ◦v H) =

{
L2(G) + n(L2(H)− 1) if v ∈ PH for every L2(H)-set PH ,

nL2(H) if v /∈ PH for some L2(H)-set PH .

Proof. We consider two cases based on the membership of v to L2(H)-sets.

Case 1. Assume that v belongs to any L2(H)-set PH , and P ′ be an L2(G)-set. Set P =

(P ′×{v})∪
(
V (G)× (PH\{v})

)
. It can be readily seen that P is a 2LP set in G◦vH.

Therefore, L2(G ◦v H) ≥ |P ′ × {v}|+ |V (G)× (PH\{v})| = L2(G) + n(L2(H)− 1).

On the other hand, let B be an L2(G ◦v H)-set. Then Bg = B ∩ gH is a 2LP set in

(G◦vH)[gH] for every g ∈ V (G). Note that Bg is not an L2((G◦vH)[gH])-set for some

g ∈ V (G) since v belongs to every L2(H)-set. Hence, |B ∩ gH| = |Bg| ≤ L2(H) − 1

if (g, v) /∈ B, which means |B ∩ (gH|\{(g, v)})| ≤ L2(H) − 1. Also if (g, v) ∈ B,

then |B ∩ (gH|\{(g, v)})| ≤ L2(H) − 1 as well. In addition, B ∩ Gv is a 2LP set in

(G ◦v H)[Gv]. Thus, |B ∩Gv| ≤ L2(G), and we have

L2(G ◦v H) = |B| = |B ∩Gv|+
∑

g∈V (G)

|B ∩ (gH|\{(g, v)})| ≤ L2(G) + n(L2(H)− 1).
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Therefore, L2(G ◦v H) = L2(G) + n(L2(H)− 1).

Case 2. Assume that there exists an L2(H)-set PH for which v /∈ PH . Let gPH =

{g} × PH for every g ∈ V (G), and let P ′′ = ∪g∈V (G)
gPH . We can easily see that

P ′′ is a 2LP set in G ◦v H, so L2(G ◦v H) ≥ |P ′′| = nL2(H). On the other hand,

let P be an L2(G ◦v H)-set. We can easily observe that the set Pg = P ∩ gH is a

2LP set in (G ◦v H)[gH] for every g ∈ V (G). So L2(H) = L2(G ◦v H)[gH] ≥ |Pg|.
Therefore, L2(G ◦v H) = |P | =

∑
g∈V (G) |Pg| ≤

∑
g∈V (G) L2(H) = nL2(H). This

leads to L2(G ◦v H) = nL2(H).

4. Results on vertex partitioning into k-limited packings

In the previous sections, we studied about k-limited packings in graphs. In the fol-

lowing, we state two theorems for the vertex partitioning into k-limited packing sets.

As we said before, χ×k(G) is the minimum cardinality of kLPP in G. In the next

theorem, we discuss the relationship between Lk(G) and χ×k(G).

Theorem 16. If G is a graph of order n ≥ 2, then χ×k(G) ≥ 2
√
n− Lk(G).

Proof. We first prove that χ×k(G) × Lk(G) ≥ n. Let {B1, B2, . . . , Bχ×k(G)} be a

kLPP of G. Then,

χ×k(G)× Lk(G) =

χ×k(G)∑
i=1

Lk(G) ≥
χ×k(G)∑
i=1

|Bi| = n

and equality holds when each set Bi is an Lk(G)-set. So χ×k(G)+Lk(G) ≥ χ×k(G)+
n

χ×k(G) .

On the other hand, χ×k(G) ≤ n
k because every subset of V (G) of cardinality at most k

is a kLP set. We observe that the function g(x) = x+ n
x is decreasing for 1 ≤ x ≤

√
n,

and it is increasing for
√
n ≤ x ≤ n

k . Therefore χ×k(G) + Lk(G) ≥ 2
√
n.

This bound is sharp for the complete graph K4, the cycle C4 and the star S4.

We end with a study of the 2LPP number of corona product graphs. If v is a vertex

of maximum degree in G, then |NG�H [v]| = ∆(G) + 1 + |V (H)|. So we need at

least d∆(G)+1+|V (H)|
2 e 2-limited packing sets in every 2LPP of G � H. Therefore

χ×2(G�H) ≥ d∆(G)+1+|V (H)|
2 e.

Theorem 17. If G and H are two graphs, then

χ×2(G�H) ∈ {χ×2(G), χ×2(G) + 1, χ×2(G) + 2, . . . , χ×2(G) + d |V (H)|
2
e}.

Proof. Let P = {P1, P2, . . . , Pχ×2(G)} be a 2LPP of G, and let V (G) =

{v1, v2, . . . , vn} and V (H) = {u1, u2, . . . , un′}.
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Since G is a subgraph of G � H, χ×2(G) ≤ χ×2(G � H). That χ×2(G � H) =

χ×2(G) can be seen as follows. If |NG[vi] ∩ (∪χ×2(G)
j=1 Pj)| ≤ 2χ×2(G) − n′ for each

vi ∈ V (G), then we place the vertices of each copy of H in the members of P such

that |NG�H [vi] ∩ Pj)| ≤ 2 for each 1 ≤ i ≤ n and 1 ≤ j ≤ χ×2(G). So the equality

holds.

We now have two cases based on the behavior of |V (H)| and prove the upper bound.

• Let |V (H)| be even. In the worst case, if there exists a vertex vi ∈ V (G)

such that 2χ×2(G) − 1 ≤ |NG[vi] ∩ (∪χ×2(G)
j=1 Pj)| ≤ 2χ×2(G), then we add new

sets Pχ×2(G)+1, Pχ×2(G)+2, . . . , Pχ×2(G)+d |V (H)|
2 e to P and put the vertices of each

copy of H in these sets two by two until there are no vertices left. Therefore

χ×2(G�H) = χ×2(G) + d |V (H)|
2 e.

• Let |V (H)| be odd. If there exists a vertex vi ∈ V (G) such that |NG[vi] ∩
(∪χ×2(G)
j=1 Pj)| = 2χ×2(G), then χ×2(G � H) = χ×2(G) + d |V (H)|

2 e as before. Hence

χ×2(G) ≤ χ×2(G�H) ≤ χ×2(G) + d |V (H)|
2 e.

In what follows, we show that χ×2(G �H) can take all values between χ×2(G) and

χ×2(G) + d |V (H)|
2 e. It is enough to consider the graph G as Ka,a and graph H as

Ka+b−1 for a ≥ 1 and b ≥ 0. Let P = {P1, P2, . . . , Pχ×2(G)} be a 2LPP of G = Ka,a.

Now we define a labeling for the vertices in each 2-limited packing set Pj in such a

way that if vi ∈ V (G) belongs to Pj , then vi has the label j for every 1 ≤ i ≤ n and

1 ≤ j ≤ χ×2(G). For example, we assign the labels from {1, 2, . . . , a} to the vertices

of G as shown in Figure 2, which is equivalent to a 2LPP for G with the smallest

cardinality.

1 2 3 4 a

1 2 3 4 a

Figure 2. An example for the labeling vertices of V (Ka,a).

We first show that χ×2(G �H) = χ×2(G) + d b2e. We have |NG�H [vi]| = |NG(vi)| +
1 + |V (H)| = 2a+ b for each vi ∈ V (G). (a+ 1) closed neighbors of each vi ∈ V (G)

are labeled as above. If vi ∈ Pk, i.e., vi has label k, then |NG[vi] ∩ Pk| = 2 and

|NG[vi] ∩ Pj | = 1 for each j 6= k, as we see in figure 2. It is clear that j has a − 1

values. We put (a − 1) unlabeled neighbors of vi one by one in the sets Pj with the

previous condition. Thus, b vertices are still unlabeled. We consider the new labels

a+1, a+2, . . . , a+d b2e, and then label the remaining b vertices two by two with them.

Therefore, χ×2(G�H) = χ×2(G) + d b2e.
Note that if a = 1 and b ≥ 1, then χ×2(G � H) = χ×2(G) + d b+1−1

2 e = χ×2(G) +

d |V (H)|
2 e. If b = 0, then χ×2(G�H) = χ×2(G). By putting the appropriate values of

a 6= 1 and b 6= 0, the rest of the possible values for χ×2(G�H) can be obtained.
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