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Abstract: The locating rainbow connection number of a graph is defined as the
minimum number of colors required to color vertices such that for every two vertices

there exists a rainbow vertex path and every vertex has a distinct rainbow code. This

rainbow code signifies a distance between vertices within a given set of colors in a
graph. This paper aims to determine the locating rainbow connection number for

vertex-transitive graphs. Three main theorems are derived, focusing on the locating

rainbow connection number for cycles, (n−2)-regular graphs, and complement of cycles
Cn.
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1. Introduction

In the theory of graph, there is a concept known as chromatic coloring. According to

this concept, with G = (V (G), E(G)) being a finite, undirected, and connected graph,

the chromatic coloring of G involves assigning colors to vertices in such a way that

no two adjacent vertices share the same color. To describe the minimum number of
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2 Locating rainbow connection number of a graph

colors required for such a chromatic coloring of G, we utilize the symbol χ(G), which

represents the chromatic number of G.

In addition to the concept of locating chromatic number, Chartrand et al. [5] also

introduced the concept of rainbow coloring in 2008. This concept was inspired by the

undercover communication techniques employed by government agencies to guarantee

the secure transfer of classified information, especially in the aftermath of the 9/11 at-

tacks in 2001 [7]. Since then, this concept has been widely studied, involving a variety

of graph operations and graph classes (e.g., [8], [10], [12], [14], and [15]). Motivated by

the concept of rainbow coloring, in 2010, Krivelevich and Yuster introduced rainbow

vertex coloring of a graph [9]. Following this, the rainbow vertex connection number

of several classes of graphs has been a focus of several studies (e.g., [1] and [13].

Motivated by the concepts of rainbow vertex coloring and dimension partition, a con-

cept that combines both, called locating rainbow coloring of a graph, was introduced

in 2021 [2]. For a natural number k, a coloring of the vertex set of G is termed a

rainbow vertex k-coloring if there exists a function c : V (G) −→ {1, 2, . . . , k} such

that, for any distinct pair of vertices x, y ∈ V (G), there is a rainbow vertex x−y-path,

whose internal vertices are assigned a different color. The rainbow vertex connection

number of G, denoted by rvc(G), is the smallest positive integer k, so G has a rainbow

vertex k-coloring. For i ∈ {1, 2, . . . , k}, let Ri denote the set of vertices that have

the color i and let Π = {R1, R2, . . . , Rk} be an ordered partition of V (G). Thus,

rcΠ(v) = (d(v,R1), d(v,R2), . . . , d(v,Rk)), where d(v,Ri) = min{d(v, y) : y ∈ Ri}
for every i ∈ {1, 2, . . . , k}. Further, rcΠ(v) is called the rainbow code of v of G with

respect to Π. If rcΠ(vj) 6= rcΠ(vl) for distinct j, l ∈ {1, 2, . . . , n}, then the coloring

c is known as a locating rainbow k-coloring of G. The smallest positive integer k for

which a locating rainbow k-coloring exists in the graph G, denoted by rvcl(G), is

called the locating rainbow connection number of graph G [2]. It is important to note

that every locating rainbow k-coloring of G also serves as a rainbow vertex coloring

of G, implying that

rvc(G) ≤ rvcl(G). (1.1)

Several results regarding the rvcl(G) can be found in [2], [4], and [3] with some

required results in this paper as follows.

Lemma 1. [2] Let c be a locating rainbow coloring of G. Let u and v be two distinct
vertices of G. If d(u, x) = d(v, x) for all x ∈ V (G)− {u, v}, then c(u) 6= c(v).

Lemma 2. [4] Let n be an integer with n ≥ 3 and G be a connected graph of order n
containing a cycle. Then, rvcl(G) ≥ 3.

Theorem 1. [4] Let n be an integer with n ≥ 3 and G be a connected graph of order
n ≥ 3. Then, rvcl(G) = n if and only if G is isomorphic to a complete graph of order n.

Theorem 2. [2] Let n be an integer with n ≥ 3 and G be a connected graph of order
n ≥ 3 with rvcl(G) = r. If diam(G) denotes the diameter of G, then n ≤ r × diam(G)r−1.
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Lemma 1 concludes that if c is a locating rainbow coloring of G, then two distinct

vertices which have the same distance to other vertices would not share the same

color. Meanwhile, Theorem 2 demonstrates the assignment of a specific value for

rvcl(G) to determine the maximum number of vertices in a graph G such that every

vertex in G has a distinct rainbow code.

We aim to explore the rvcl(G), specifically focusing on regular graphs where all ver-

tices have the same degree. In this research, we focus on classes of vertex-transitive

graphs, also known as node symmetric graphs, where every pair of vertices is equiva-

lent to some elements of its automorphism group [6]. Let n be the order of a graph G

and t ≥ 3. An (n−t)-regular graph is a graph in which all its vertices have a degree of

n− t. All graphs belonging to the classes of 2-regular graphs or cycles, (n−1)-regular

graphs, (n−2)-regular graphs, and one specific class of (n−3)-regular graphs, namely

complement of cycles Cn, are included in the vertex-transitive graphs. We have deter-

mined the locating rainbow connection number of (n− 1)-regular graphs or complete

graphs in Theorem 1 [2]. Therefore, in this paper, we determine the locating rainbow

connection number of cycles, (n− 2)-regular graphs, and complement of cycles Cn.

2. Main Results

The main results are specifically focused on two subsections: the 2-regular graphs

or cycles, which are extensively discussed in Subsection 2.1, (n − 2)-regular graphs

and complement of cycles Cn in Subsection 2.2. For simplicity, represent the set

{n ∈ Z | x ≤ n ≤ y} as [x, y].

2.1. The Locating Rainbow Connection Number of Cycles

The locating rainbow connection number of cycles are closely tied to the rainbow

vertex connection number of cycles. However, not all rainbow vertex colorings imply

a locating rainbow vertex coloring. Thus, we introduce a new coloring to fulfill the

requirements of locating rainbow colorings on cycles. Some cases require the values

of rainbow vertex connection number of cycles as presented in Theorem 3.

Theorem 3. [11] Let n be an integer with n ≥ 3 and Cn be a cycle of order n. Then,
the rainbow vertex connection number of Cn is

rvc(Cn) =


dn
2
e − 2, for n ∈ {3, 5, 9};

dn
2
e − 1, for n ∈ {4, 6, 7, 8, 10, 11, 12, 13, 15};

dn
2
e, for n = 14 or n ≥ 16.

In Theorem 4, we see that for relatively small orders, rvcl(Cn) differs from rvc(Cn).

For larger orders, rvcl(Cn) = rvc(Cn).

Theorem 4. Let n be an integer with n ≥ 3 and Cn be a cycle of order n. Then, the
locating rainbow connection number of Cn is
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rvcl(Cn) =


3, for n ∈ [3, 7];
dn
2
e − 1, for n ∈ {9, 15} or n ∈ [11, 13];

dn
2
e, for n ∈ {8, 10, 14} or n ≥ 16.

Proof. Let n ≥ 3 and Cn = v1, v2, ..., vn, vn+1 with vn+1 = v1. We consider six

cases.

Case 1. n ∈ [3, 7]

Based on Lemma 2 and Figure 1, we obtain rvcl(Cn) = 3 for n ∈ [3, 7].

Figure 1. Locating rainbow 3-colorings of (a) C3, (b) C4, (c) C5, (d) C6, and (e) C7.

Case 2. n = 8

Suppose that rvcl(C8) = 3. Let c be a locating rainbow 3-coloring of C8. We begin

by considering vertices v1 and v5. Since the vertex coloring of C8 represents the

rainbow vertex coloring, there exist two possible rainbow vertex v1 − v5 paths: P1 =

v1, v2, v3, v4, v5 and P2 = v1, v8, v7, v6, v5. Without loss of generality, let’s assume

the rainbow vertex path is P1 and c(vi) = i − 1 for i ∈ [2, 4]. Next, we focus on

vertices v3 and v7. There are two possible v3 − v7 paths: P3 = v3, v2, v1, v8, v7, and

P4 = v3, v4, v5, v6, v7. Let the rainbow vertex v3 − v7 path be P3. Since c(v2) = 1, we

get rcΠ(v1) = rcΠ(v3) if c(v1) = 2 and c(v8) = 3. Hence c(v1) = 3 and c(v8) = 2.

Next, we consider vertices v2 and v6. To ensure the existence of a rainbow vertex

path between v2 and v6, we must have c(v5) = 1 or c(v7) = 1. If c(v5) = 1, then

rcΠ(v1) = rcΠ(v4). If c(v7) = 1, then rcΠ(v3) = rcΠ(v8). Both cases lead to contra-

dictions. In the case where the v3− v7 path is P4, we observe a similar contradiction.

Therefore, we can conclude that rvcl(C8) ≥ 4. By defining a locating rainbow

4-coloring of C8, as demonstrated in Figure 2(a), we establish that rvcl(C8) = 4.

Case 3. n = 9

Suppose rvcl(C9) = 3. For i ∈ [1, 9], to ensure the existence of a rainbow vertex path

between vi and v((i+4) (mod 9))+1, it is necessary that every three consecutive vertices

should be assigned distinct colors. However, this requirement leads to a contradiction,

as there would inevitably be at least two vertices sharing both the same color and

rainbow codes. Consequently, we deduce that rvcl(C9) ≥ 4.

To establish rvcl(C9) = 4, we demonstrate a locating rainbow 4-coloring of C9, as

depicted in Figure 2(b).

Case 4. n = 10



A.W.Bustan, et al. 5

Suppose that rvcl(C10) = 4. Let c be a locating rainbow 4-coloring of C10. We start

by examining vertices v1 and v6. Since the vertex coloring of C10 is the rainbow vertex

coloring, there exist two possible rainbow vertex v1−v6 paths: P1 = v1, v2, v3, v4, v5, v6

and P2 = v1, v10, v9, v8, v7, v6. Without loss of generality, assume that the rainbow

vertex path is P1 and c(vi) = i−1 for i ∈ [2, 5]. Since we have four colors, there must

be at least one color used by at least three distinct vertices and the distance between

two vertices with the same color must be more than 2. Next, we categorize this case

into four subcases based on the colors employed by at least three distinct vertices in

C10.

1. Color 1.

Since c(v2) = 1, it follows that c(v6) = c(v9) = 1. Consequently, c(v7) = 2 and

c(v1) = 4. Therefore, rcΠ(v2) = rcΠ(v6) = (0, 1, 2, 1), leading to a contradiction.

2. Color 2.

Since c(v3) = 2, there are three possible combinations of the remaining two

vertices that can be colored with 2. First, if c(v7) = c(v10) = 2, then vertex

v6 and vertex v8 must be colored with either 1 or 3. Consequently, rcΠ(v3) =

rcΠ(v7). Second, if c(v6) = c(v10) = 2, vertices v7 and v8 have to be colored

with either 1 or 3. In this case, c(v9) = 4 and c(v1) = 3. Therefore, if c(v8) = 1,

then rcΠ(v6) = rcΠ(v10) and if c(v8) = 3, then rcΠ(v5) = rcΠ(v9). Third,

c(v6) = c(v9) = 2, which implies c(v1) = 4 and rcΠ(v10) = rcΠ(v4). We get a

contradiction.

3. Color 3.

By employing a similar argument with color 2, we arrive at a contradiction.

4. Color 4.

By employing a similar argument with color 1, we arrive at a contradiction.

Therefore, rvcl(C10) ≥ 5. To prove that rvcl(C10) ≤ 5, we define a locating rainbow

5-coloring of C10 as shown in Figure 2(c). Thus, rvcl(C10) = 5.

Figure 2. A locating rainbow coloring (a) C8, (b) C9, and (c) C10.
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Case 5. n ∈ {11, 12, 13, 15}.
Since rvc(Cn) = dn2 e − 1 by Theorem 3, it follows by Equation (1.1), we have

rvcl(Cn) ≥ rvc(Cn) = dn2 e − 1. Next, we show rvcl(Cn) ≤ dn2 e − 1 by defining

a locating rainbow dn2 e − 1-coloring of Cn as shown in Figures 3. Thus, we have

rvcl(Cn) = dn2 e − 1 for n ∈ {11, 12, 13, 15}.

Figure 3. A locating rainbow coloring of (a) C11, (b) C12, (c) C13, and C15.

Case 6. n = 14 or n ≥ 16

Since rvc(Cn) = dn2 e by Theorem 3, it follows by Equation (1.1), we have rvcl(Cn) ≥
rvc(Cn) = dn2 e for n = 14 or n ≥ 16. Next, we demonstrate the upper bound by

defining a rainbow vertex coloring c : V (Cn) −→ [1, n] as follows.

1. For odd n, we define

c(vi) =

{
i mod dn2 e, for i ∈ [1, n], i 6= dn2 e;
dn2 e, for others.

Utilizing the vertex coloring described above, we observe that color dn2 e is ex-

clusively assigned to vdn2 e, and c(vi) = c(vi+dn2 e) for i ∈ [1, dn2 e − 1]. Therefore,

for any two vertices of Cn, a rainbow vertex path connecting them exists and

we have d(vi, vdn2 e) 6= d(vi+dn2 e, vd
n
2 e). Thus, rcΠ(vi) 6= rcΠ(vj) for distinct

i, j ∈ [1, n].

2. For even n, we define
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c(vi) =


n
2 − 1, for i = n;
n
2 , for i = n− 1;

i mod n
2 , for others.

Utilizing the vertex coloring described above, we have c(vi) = c(vi+ n
2

) for n ∈
[1, n2 − 2]∪ [n2 + 1, n− 2], c(vn

2−1) = c(vn), and c(vn
2

) = c(vn−1). Consequently,

for any two vertices of Cn, there exists a rainbow vertex path. Moreover, we

observe d(vi, Rn
2

) 6= d(vi+ n
2
, Rn

2
) for n ∈ [1, n2 − 2]∪ [n2 + 1, n− 2]. Additionally,

d(vn
2−1, R1) 6= d(vn, R1), and d(vn

2
) 6= d(vn−1). Hence, rcΠ(vi) 6= rcΠ(vj) for

distinct i, j ∈ [1, n].

Since rvcl(Cn) ≥ dn2 e and rvcl(Cn) ≤ dn2 e, we conclude that rvcl(Cn) = dn2 e.

2.2. The Locating Rainbow Connection Numbers of (n − t)-Regular
Graphs for t = {2, 3}

In this subsection, we present two main theorems concerning the locating rainbow

connection number of (n− 2)-regular graphs and complement of cycles Cn. However,

before delving into the theorems, we provide Lemma 3 to aid in the proof process of

both theorems. For simplification, we use the term “entry” to refer to the distance

from a vertex to a set of colors and the combination formula Cr
k is expressed as

r!
k!(r−k)! .

Lemma 3. Let n, t, and r be three integers with n ≥ 5, t = {2, 3}, and r ≥ 2. Let R(n,t)

be a regular graph of order n with all vertices have a degree of n− t, and let r be the locating
rainbow connection number of R(n,t) with r ≥ 3. Then:

(1) each rainbow code contains at most t− 1 of entries 2;

(2) every color can be used for at most 1 +
∑t−1

k=1 C
r−1
t−k vertices;

(3) for every color w, the maximum number of vertices v, such that d(v,Rw) = 2 is

t− 1.

Proof.

(1) Since diam(R(n,t)) = 2, the graph only contains entries of 0, 1, and 2. Each

vertex in R(n,t) is non-adjacent to exactly t − 1 other vertices, resulting in the

rainbow code possibly containing at most t− 1 entries of 2.

(2) Based on the first point in this proof, there are three possible rainbow codes:

those without entry 2 and those with at most t−1 entries of 2. For codes without

entry 2, there is only one possible rainbow code, namely the one consisting of

a single entry 0 and the remaining entries being 1. Next, consider codes that

include entry 2. For t = 2, each vertex is adjacent to only one other vertex,

meaning entry 2 can appear exactly once, resulting in Cr−1
1 or Cr−1

t−1 possible

rainbow codes. For t = 3, each vertex is adjacent to two other vertices, allowing
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two types of rainbow codes that include entry 2: those with exactly one entry 2,

contributing Cr−1
2 or Cr−1

t−1 , and those with exactly two entries 2, contributing

Cr−1
1 or Cr−1

t−2 . By generalizing this pattern, for any t, the total number of

rainbow codes involving entry 2 is given by
∑t−1

k=1 C
r−1
t−k . Hence, every color can

be used for at most 1 +
∑t−1

k=1 C
r−1
t−k times.

(3) Suppose there are t distinct vertices v1, v2, ..., vt such that d(vi, Rw) = 2 for

i ∈ [1, t]. Consequently, there exist v′1, v
′
2, ..., v

′
t such that viv

′
i /∈ E(G) and

c(v′i) = w for i ∈ [1, t]. Since viv
′
j ∈ E(G) for i ∈ [1, t] and i 6= j, it follows

that d(vi, Rw) = 1, which is a contradiction. Therefore, for every color w, the

maximum number of vertices v such that d(v,Rw) = 2 is t− 1.

2.2.1. The Locating Rainbow Connection Number of (n− 2)-Regular Graphs

Consider a graph G of order n ≥ 4 and n is even. If all vertices in G are of degree

n−2, it is termed an (n−2)-regular graph and denoted by R(n,2). Earlier, in Theorem

1, we derived the locating rainbow connection number for (n − 1)-regular graph. In

this section, we focus on determining the rvcl of (n− 2)-regular graph.

In actuality, (n− 2)-regular graph is obtained by removing n
2 disjoint edges from an

(n−1)-regular graph. The resulting (n−2)-regular graph has the following vertices and

edges: V (R(n,2)) = {vi|i ∈ [1, n]} and E(R(n,2)) = {vivj |i, j ∈ [1, n], i 6= j, j 6= i+ n
2 }.

Theorem 5. Let n be an even integer with n ≥ 4. If R(n,2) is an (n − 2)-regular graph
of order n, then rvcl(R(n,2)) =

n
2
+ 1.

Proof. Suppose that rvcl(R(n,2)) = n
2 . Based on Lemma 3, the number of rainbow

codes that do not contain entry 2 is at most n
2 and the number of codes that contain

entry 2 is at most n
2 − 1. Thus, the maximum number of different rainbow codes is

n− 1, leading to a contradiction. Therefore, we have rvcl(R(n,2)) ≥ n
2 + 1.

Furthermore, we demonstrate that rvcl(R(n,2)) ≤ n
2 + 1 by defining vertex coloring

c : V (R(n,2)) −→ [1, n2 + 1] as follows.

c(vi) =

{
i, for i ∈ [1, n2 + 1];

1, otherwise.

Since diam(R(n,2)) = 2, using n
2 + 1 colors will ensure that for any two vertices u and

v, there exists a u − v rainbow vertex path. Furthermore, we show that all vertices

in R(n,2) have distinct rainbow codes by considering the following.

1. c(vi) 6= c(vj) for distinct i, j ∈ [1, n2 + 1].

2. c(vi) = c(vj) = 1 for distinct i, j ∈ [n2 + 2, n] ∪ {v1}, but d(v1, Rn
2 +1) = 2

and d(vi, Rn
2 +1) = 1 for i ∈ [n2 + 2, n]. Besides that, d(vi, Ri−n

2
) = 2 and

d(vi, Ra) = 1 for a ∈ [1, n2 ], a 6= i− n
2 .
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Thus, rcΠ(vi) 6= rcΠ(vj) for distinct i, j ∈ [1, n]. Therefore, we have rvcl(R(n,2)) ≤
n
2 + 1. Hence, the proof is complete.

For illustration, in Figure 4 we provide a locating rainbow coloring of the regular

graph R(16,2).

Figure 4. A locating rainbow coloring of R(16,2).

2.2.2. The Locating Rainbow Connection Number of the Complement of Cycle
Graphs Cn

The complement of cycle graph, denote by Cn, is obtained by removing a cycle from

a (n − 1)-regular graph. It is easily observed that the complement of cycle Cn is

connected if and only if n ≥ 5 and it lies within the class R(n,t) with t = 3. The

complement of cycle Cn has the following vertices and edges: V (Cn) = {vi|i ∈ [1, n]}
and E(Cn) = {v1vj |j ∈ [3, n − 1]} ∪ {vivj |i ∈ [2, n], j ∈ [1, n], j 6= i − 1, j 6= i, j 6=
(i+ 1) mod n}. In Theorem 6, we determine rvcl(Cn).

Theorem 6. Let n be an integer with n ≥ 5. If Cn is an complement of cycle graph of
order n, then.

rvcl(Cn) =

{
dn
2
e − d n

10
e+ 2, for n ≡ 2 (mod 10) or n ≡ 4 (mod 10);

dn
2
e − d n

10
e+ 1, for others.

Proof. The proof is partitioned into two cases as outlined below.

1. n ∈ {5, 6}
Based on Lemma 2, Theorem 2, and Figure 5, we obtain rvcl(Cn) = 3.

2. n ≥ 7

Suppose rvcl(Cn) = dn2 e − d
n
10e + 1 for n ≡ 2 (mod 10) or n ≡ 4 (mod 10).

Based on Lemma 3(2), the number of rainbow codes that do not include entry

2 is at most dn2 e − d
n
10e+ 1. Since rvcl(Cn) < dn2 e, there must be at least one
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Figure 5. C5, C6.

color used at least three timesen. Hence there are only dn2 e−d
n
10e sets of colors

that produce a rainbow code containing entries of 2.

Thus, according to Lemma 3(3), 2(dn2 e − d
n
10e) is the maximum number of

vertices with a rainbow code containing entries of 2. Meanwhile, for two pair

sets of colors Ra and Rb that produce entry 2 in a rainbow code, there exist three

distinct vertices u, v, w such that d(u,Ra) = 2 and d(u,Rb) = 1, d(v,Ra) = 1

and d(v,Rb) = 2, and d(w,Ra) = d(w,Rb) = 2. Consequently, any two sets of

colors result in at most three distinct rainbow codes containing entries of 2.

Therefore, the maximum number of distinct rainbow codes is (dn2 e − d
n
10e +

1) + ((b (dn2 e−d
n
10 e)

2 c)× 3). Since ((dn2 e − d
n
10e+ 1) + ((b (dn2 e−d

n
10 e)

2 c)× 3)) < n,

which leads to a contradiction. Similarly, for other values of n, contradictions

are obtained. Therefore, rvcl(Cn) ≥ dn2 e−d
n
10e+2 for n ≡ 2 (mod 10) or n ≡ 4

(mod 10), and rvcl(Cn) ≥ dn2 e − d
n
10e+ 1 for other values of n.

Furthermore, we will show that rvcl(Cn) ≤ dn2 e − d
n
10e+ 2 for n ≡ 2 (mod 10)

or n ≡ 4 (mod 10), and rvcl(Cn) ≤ dn2 e − d
n
10e+ 1 for other values of n. using

the following coloring steps. For simplification, r is assumed to represent the

number of colors given to a graph Cn.

(a) Assign colors 2, 3, ..., r − 1 to the vertices v4+(i−1)5, v6+(i−1)5 sequentially

for i ∈ [1, r−2
2 ] and even r.

(b) Assign colors 2, 3, ..., r − 1 to the vertices v4+(i−1)5, v6+(i−1)5 sequentially

for i ∈ [1, r−3
2 ] and odd r.

(c) In the graph colored with even r, set c(vn) = r.

(d) In the graph colored with odd r, set c(vn) = r. Furthermore, if n − (6 +

( r−3
2 − 1)5) ∈ {3, 4}, then c(vn−1) = r− 1; and if n− (6 + ( r−3

2 − 1)5) = 5,

then c(vn−2) = r − 1.

(e) Finally, color all remaining uncolored vertices with color 1.

Since diam(Cn) = 2, there will always be a rainbow path connecting any two

vertices in the graph Cn.
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Furthermore, the colors 2, 3, ..., r that are assigned only once to the vertices in

the graph Cn result in all vertices assigned with these colors having distinct

rainbow codes. For color 1, c(v1) = 1 and it is adjacent to the vertices colored

with 2, 3, ..., r − 1. Additionally, for any two distinct vertices vi and vj with

c(vi) = c(vj) = 1 for i, j ∈ [2, n], there is always at least one set of colors Ra for

a 6= 1, such that d(vi, Ra) = 2 and d(vj , Ra) = 1. As a result, all vertices in the

graph Cn have distinct rainbow codes. Therefore, we obtain rvcl(Cn) = dn2 e −
d n

10e+ 2 for n ≡ 2 (mod 10) or n ≡ 2 (mod 10); and rvcl(Cn) = dn2 e− d
n
10e+ 1

for other values of n.

Figure 6. A locating rainbow coloring of (a) C9, (b) C10, and (c) C11.

All regular graphs discussed in this research are vertex-transitive graphs. Hence, we

conclude this paper with an open problem: What is the locating rainbow connection

number of any regular graph which is not vertex-transitive?

Acknowledgements: The authors would like to thank LPDP from the Ministry of

Finance Indonesia, the Ministry of Education, Culture, Research, and Technology,

and Institut Teknologi Bandung for their support in this research.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no data sets

were generated or analyzed during the current study.

References

[1] A.W. Bustan and A.N.M. Salman, The rainbow vertex-connection number of star

fan graphs, CAUCHY: Jurnal Matematika Murni dan Aplikasi 5 (2018), no. 3,

112–116.

https://doi.org/10.18860/ca.v5i3.5516.



12 Locating rainbow connection number of a graph

[2] A.W. Bustan, A.N.M. Salman, and P.E. Putri, On the locating rainbow connection

number of a graph, J. Phys. Conf. Ser. 1764 (2021), no. 1, Article ID: 012057.

https://doi.org/10.1088/1742-6596/1764/1/012057.

[3] , On the locating rainbow connection number of amalgamation of complete

graphs, J. Phys. Conf. Ser. 2543 (2023), no. 1, Article ID: 012004.

https://doi.org/10.1088/1742-6596/2543/1/012004.

[4] A.W. Bustan, A.N.M. Salman, P.E. Putri, and Z.Y. Awanis, On the locating

rainbow connection number of trees and regular bipartite graphs, Emerg. Sci. J. 7

(2023), no. 4, 1260–1273.

https://doi.org/10.28991/ESJ-2023-07-04-016.

[5] G. Chartrand, D. Erwin, M.A. Henning, P. J. Slater, and P. Zhang, The locating-

chromatic number of a graph, Bull. Inst. Combin. Appl 36 (2002), 89 –101.

[6] W.K. Chiang and R.J. Chen, The (n, k)-star graph-a generalized star graph, In-

form. Process. Lett. 56 (1995), no. 5, 259–264.

https://doi.org/10.1016/0020-0190(95)00162-1.

[7] A.B. Ericksen, A matter of security, Graduating Engineer & Computer Careers

24 (2007), 28.

[8] D. Fitriani, A.N.M. Salman, and Z.Y. Awanis, Rainbow connection number of

comb product of graphs, Electron. J. Graph Theory Appl. 10 (2022), no. 2, p461

https://doi.org/10.5614/ejgta.2022.10.2.9.

[9] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most)

reciprocal to its minimum degree, J. Graph Theory 63 (2010), no. 3, 185–191.

https://doi.org/10.1002/jgt.20418.

[10] I.S. Kumala and A.N.M. Salman, The rainbow connection number of a flower

(Cm,Kn) graph and a flower (C3, Fn) graph, Procedia Comput. Sci. 74 (2015),

168–172.

https://doi.org/10.1016/j.procs.2015.12.094.

[11] X. Li and S. Liu, Tight upper bound of the rainbow vertex-connection number for

2-connected graphs, Discrete Appl. Math. 173 (2014), 62–69.

https://doi.org/10.1016/j.dam.2014.04.002.

[12] S. Nabila and A.N.M. Salman, The rainbow connection number of origami graphs

and pizza graphs, Procedia Comput. Sci. 74 (2015), 162–167.

https://doi.org/10.1016/j.procs.2015.12.093.

[13] D.N.S. Simamora and A.N.M. Salman, The rainbow (vertex) connection number

of pencil graphs, Procedia Comput. Sci. 74 (2015), 138–142.

https://doi.org/10.1016/j.procs.2015.12.089.

[14] B.H. Susanti, A.N.M. Salman, and R. Simanjuntak, The rainbow 2-connectivity of

Cartesian pro-ducts of 2-connected graphs and paths, Electron. J. Graph Theory

Appl. 8 (2020), no. 1, 145–156.

https://dx.doi.org/10.5614/ejgta.2020.8.1.11.

[15] R.F. Umbara, A.N.M. Salman, and P.E. Putri, On the inverse graph of a finite

group and its rainbow connection number, Electron. J. Graph Theory Appl. 11

(2023), no. 1, 135–147.

https://doi.org/10.5614/ejgta.2023.11.1.11.


	Introduction
	Main Results
	References

