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Abstract: Recently a new vertex-degree based molecular structure descriptor was
defined as Sombor index. For a simple graph G, the Sombor index of G, denoted by

SO(G), is defined as
∑

uv∈E(G)

√
d2u + d2v , where dv is the degree of v. In this paper

we study the Sombor index of many kinds of product of graphs, such as join of graphs,
Cartesian product of graphs, tensor product of graphs, and lexicographic product of

graphs. We obtain some formulas for the Sombor index of these product of graphs.
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1. Introduction

Throughout the paper, the graphs are simple. In other words, they are finite and

undirected, without loops and multiple edges. Let G = (V (G), E(G)) be a simple

graph. By order of G we mean the number of vertices of G. The size of G is the

number of edges of G. By e = uv we mean the edge e between u and v. For a vertex

v ∈ V (G), the degree of v is the number of edges incident with v and is denoted by

degG(v) (sometimes we use deg v instead of degG(v) when the graph G determine

from the text) or deg(v,G). A pendant vertex is a vertex with degree one and a

pendant edge is an edge such that one of its end points is pendant vertex. A k–

regular graph is a graph such that every vertex of that has degree k. By δ(G) and

∆(G) we mean the minimum vertex degree and the maximum vertex degree of vertices

of G, respectively. The complement of a graph G is denoted by G. An independent

set S in G is a subset of vertices of G such that the vertices of S are not adjacent.

The edgeless graph (or empty graph), the complete graph, the cycle, and the path of

order n, are denoted by Kn, Kn, Cn and Pn, respectively. Let t and n1, . . . , nt be

some positive integers. By Kn1,...,nt
we mean the complete multipartite graph with

parts size n1, . . . , nt. In particular, the complete bipartite graph with part sizes m and

n is denoted by Km,n. The star of order n, denoted by Sn, is the complete bipartite

graph K1,n−1.
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In chemical graph theory there are many topological indices. Recently, a new index,

Sombor index, has been defined by Ivan Gutman in [5]. For a graph G, the Sombor

index of G, denoted by SO(G), is defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v,

where dv is the degree of v. For example the Sombor index of the star Sn is (n −
1)
√

(n− 1)2 + 1. There are many papers related to properties of Sombor index, for

instance see [1–12, 15, 18] and the references therein.

In graph theory, they are many kinds of product on graphs. Now we recall some

important of them. Let G and H be two disjoint graphs. The disjoint union of G and

H, denoted by G∪H, is the graph with the vertex set V (G)∪V (H) and the edge set

E(G)∪E(H). The graph rG denotes the disjoint union of r copies of G. The join of

G and H that is denoted by G ∨ H is the graph with vertex set V (G) ∪ V (H) and

the edge set E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}.
The Cartesian product of the disjoint graphs G and H, denoted by G2H, is the graph

with vertex set V (G)×V (H) and two distinct vertices (u, v) and (u′, v′) are adjacent

in G2H if and only if u = u′ and v is adjacent to v′ in H or v = v′ and u is adjacent

to u′ in G. The lexicographic product of two disjoint graphs G and H, denoted by

G[H] is the graph with vertex set V (G) × V (H) and two vertices (u, v) and (u′, v′)

are adjacent in G[H] if and only if either u is adjacent with u′ in G or u = u′ and v

is adjacent with v′ in H. The direct product ( or tensor product) of G and H denoted

by G ×H, is the graph with the vertex set V (G) × V (H), and two distinct vertices

(u, u′) and (v, v′) are adjacent in G×H if and only if u is adjacent to v in G and u′

is adjacent to v′ in H.

There are a few papers related to the Sombor index of product of graphs. The most

parts of those papers are related to computation the Sombor index of some special

graphs, see [13, 14, 16, 17]. In this paper we study the Sombor index of the above

product of graphs. More precisely, we find some relations between SO(G ? H) and

SO(G) and SO(H), where ? denotes an operation product on graphs G and H.

2. Join of graphs

We recall that a spanning subgraph of a graph G is a subgraph of G with same vertex

set as the vertex set of G. Let G be a graph. By G = (H1, . . . ,Hk) we mean that

H1, . . . ,Hk are some spanning subgraphs of G such that the edge sets of H1, . . . ,Hk

are disjoint (E(Hi) ∩ E(Hj) = ∅ for every i 6= j) and E(G) = E(H1) ∪ · · · ∪ E(Hk).

In this case we say that H1, . . . ,Hk are a edge-disjoint partition of G. For example

C6 = (3K2, 3K2). In [11], the following result has been proved.

Theorem 1. [11] Let G be a connected graph. Assume that G = (H1, . . . , Hk). Then

SO(G) ≥ SO(H1) + · · ·+ SO(Hk).
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Moreover, the equality holds if and only if for some j ∈ {1, . . . , k}, Hj = G and the other
subgraphs are empty graphs.

Now we are is a position to prove our results. We begin by the clear following remark.

Remark 1. Let G1 and G2 be two disjoint graphs. Then SO(G1 ∪ G2) = SO(G1) +
SO(G2).

Using Remark 1 and Theorem 1 one can prove a general version of Theorem 1.

Theorem 2. Let G be a graph. Assume that G = (H1, . . . , Hk). Then

SO(G) ≥ SO(H1) + · · ·+ SO(Hk).

In the next theorem we find a relation for the Sombor index of join of graphs.

Theorem 3. Let G1 and G2 be two disjoint graphs with order n1 and n2, respectively.
Then

SO(G1 ∨G2) ≥ SO(G1) + SO(G2) + SO(Kn1,n2) (2.1)

and the equality holds if and only if G1 = Kn1 and G2 = Kn2 .

Proof. Let H1 = G1 ∪ Kn2
and H2 = G2 ∪ Kn1

and H3 = Kn1,n2
. Therefore

G1 ∨G2 = (H1, H2, H3). Since G1 ∨G2 is a connected graph, by Theorem 1 we find

that

SO(G1 ∨G2) ≥ SO(H1) + SO(H2) + SO(H3) (2.2)

On the other hand by Remark 3, SO(H1) = SO(G1), SO(H2) = SO(G2) and

SO(H3) = SO(Kn1,n2
) = n1n2

√
n21 + n22. Hence inequality (2.1) follows.

Now we check the equality of (2.1). By Theorem 1 in (2.2) the equality equality

holds if and only if H1 = G1 ∨ G2, H2 = Kn1+n2 , H3 = Kn1+n2 or H2 = G1 ∨ G2,

H1 = Kn1+n2
, H3 = Kn1+n2

or H3 = G1 ∨ G2, H1 = Kn1+n2
, H2 = Kn1+n2

. It is

easy to check that only the last case can be happen. In other words, the equality

holds if and only if H3 = G1 ∨G2, H1 = Kn1+n2
, H2 = Kn1+n2

. Hence the equality

holds if and only if G1 = Kn1 and G2 = Kn2 (checking the converse of equality is

easy). This completes the proof.
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3. Cartesian product and lexicographic product of graphs

In this section we study the Sombor index of Cartesian product and lexicographic

product of graphs. At first we consider the Cartesian product of connected graphs.

Theorem 4. Let G1 and G2 be two disjoint connected graphs with order n1 and n2,
respectively. Then

SO(G12G2) ≥ n2SO(G1) + n1SO(G2) (3.1)

and the equality holds if and only if G1 = K1 or G2 = K1.

Proof. Let H1 = G1 ∪ Kn1n2−n1
and H2 = G2 ∪ Kn1n2−n2

. One can see that

G12G2 = (H1, . . . ,H1︸ ︷︷ ︸
n2

, H2, . . . ,H2︸ ︷︷ ︸
n1

). Since G12G2 is connected, by Theorem 1,

SO(G12G2) ≥ n2SO(H1) + n1SO(H2) (3.2)

On the other hand by Remark 3, SO(H1) = SO(G1) and SO(H2) = SO(G2). Hence

inequality (3.1) follows.

Now we check the equality of (3.1). By Theorem 1 in (3.2) the equality holds if

and only if H1 = G12G2, n2 = 1 and H2 = Kn1n2
or H2 = G12G2, n1 = 1 and

H1 = Kn1n2
. The first case shows that G2 = K1 and the second case shows that

G1 = K1. Therefore the equality holds if and only if G1 = K1 or G2 = K1 (checking

the converse of equality is easy). This completes the proof.

Now we can generalize Theorem 4 for all graphs.

Theorem 5. Let G1 and G2 be two disjoint graphs with order n1 and n2, respectively.
Then

SO(G12G2) ≥ n2SO(G1) + n1SO(G2) (3.3)

and the equality holds if and only if G1 = Kn1 or G2 = Kn2 .

Proof. Assume that A1, . . . , Ak are the connected components of G1 and B1, . . . , Bs

are the connected components of G2. Thus G1 = A1∪· · ·∪Ak and G2 = B1∪· · ·∪Bs.

One can see that

G12G2 = ∪ki=1 ∪sj=1 Ai2Bj .

Thus by Remark 1

SO(G12G2) =

k∑
i=1

s∑
j=1

SO(Ai2Bj). (3.4)
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Suppose that n′i and m′j are the order of Ai and Bj , respectively, for i = 1, . . . , k and

j = 1, . . . , s. Thus n1 = n′1 + · · ·+ n′k and n2 = m′1 + · · ·+m′s. Using Theorem 4 we

find that

k∑
i=1

s∑
j=1

SO(Ai2Bj) ≥
k∑

i=1

s∑
j=1

(m′jSO(Ai) + n′iSO(Bj))

=

s∑
j=1

m′j

k∑
i=1

SO(Ai) +

k∑
i=1

n′i

s∑
j=1

SO(Bj) (3.5)

and the equality holds if and only if for i = 1, . . . , k and j = 1, . . . , s, Ai = K1 or

Bj = K1. Thus the equality holds if and only if A1 = A2 = · · · = Ak = K1 or

B1 = B2 = · · · = Bs = K1. That is G1 = Kn1
or G2 = Kn2

. On the other hand, by

Remark 1

s∑
j=1

m′j

k∑
i=1

SO(Ai) +

k∑
i=1

n′i

s∑
j=1

SO(Bj) = n2SO(G1) + n1SO(G2). (3.6)

Now by combining (3.4), (3.5) and (3.6) we conclude that

SO(G12G2) ≥ n2SO(G1) + n1SO(G2)

and the equality holds if and only if G1 = Kn1 or G2 = Kn2 . The proof is complete.

In continue we investigate the Sombor index of the lexicographic product of graphs.

One can check the following remark.

Remark 2. Let G and H be two graphs. Then G[H] is connected if and only if G is
connected.

Theorem 6. Let G1 and G2 be two disjoint graphs with order n1 and n2, respectively.
Suppose that G1 is connected. Then

SO(G1[G2]) ≥ n2SO(G1) + n1SO(G2) (3.7)

and the equality holds if and only if G1 = K1 or G2 = K1.

Proof. Let H1 = G1 ∪ Kn1n2−n1 and H2 = G2 ∪ Kn1n2−n2 . One can see that

G1[G2] = (H1, . . . ,H1︸ ︷︷ ︸
n2

, H2, . . . ,H2︸ ︷︷ ︸
n1

). Since (by Remark 2) G1[G2] is connected, by

applying Theorem 1 we find that

SO(G1[G2]) ≥ n2SO(H1) + n1SO(H2) (3.8)
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On the other hand by Remark 3, SO(H1) = SO(G1) and SO(H2) = SO(G2). There-

fore inequality (3.7) follows.

Now we check the equality of (3.7). By Theorem 1 in (3.8) the equality holds if

and only if H1 = G1[G2], n2 = 1 and H2 = Kn1n2 or H2 = G1[G2], n1 = 1 and

H1 = Kn1n2
. The first case shows that G2 = K1 and the second case shows that

G1 = K1. So the equality holds if and only if G1 = K1 or G2 = K1 (checking the

converse of equality is easy). This completes the proof.

We end this section by a generalization of Theorem 6 for all graphs.

Theorem 7. Let G1 and G2 be two disjoint graphs with order n1 and n2, respectively.
Then

SO(G1[G2]) ≥ n2SO(G1) + n1SO(G2) (3.9)

and the equality holds if and only if G1 = Kn1 or G2 = K1.

Proof. Suppose that A1, . . . , Ak are the connected components of G1. Thus G1 =

A1 ∪ · · · ∪Ak. One can check that

G1[G2] = A1[G2] ∪A2[G2] ∪ · · · ∪Ak[G2].

Thus by Remark 1

SO(G1[G2]) =

k∑
i=1

SO(Ai[G2]). (3.10)

Suppose that for i = 1, . . . , k, n′i is the order of Ai. Thus n1 = n′1 + · · · + n′k. By

Theorem 6 we obtain that

k∑
i=1

SO(Ai[G2]) ≥
k∑

i=1

(n2SO(Ai) + n′iSO(G2)) = n2

k∑
i=1

SO(Ai) +

k∑
i=1

n′iSO(G2).

(3.11)

and the equality holds if and only if for i = 1, . . . , k, Ai = K1 or G2 = K1. Thus

the equality holds if and only if A1 = A2 = · · · = Ak = K1 or G2 = K1. That is

G1 = Kn1 or G2 = K1. On the other hand, by Remark 1

n2

k∑
i=1

SO(Ai) +

k∑
i=1

n′iSO(G2) = n2SO(G1) + n1SO(G2) (3.12)

Now by considering (3.10), (3.11) and (3.12) we conclude that

SO(G1[G2]) ≥ n2SO(G1) + n1SO(G2)

and the equality holds if and only if G1 = Kn1 or G2 = K1. The proof is complete.
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4. Direct product of graphs

In this section we study the Sombor index of direct product of graphs. We note that

the direct product of graphs are also called the tensor product of graphs and the

Kronecker product of graphs. The Sombor index of direct product of graphs is more

complicated than the previous product of graphs. We start with the following remark.

Remark 3. Let G and H be two graphs. Suppose that G is bipartite with parts X and
Y . One can see that X×V (H) and Y ×V (H) are two independent sets in G×H. Therefore
G×H is bipartite.

We note that if G and H are connected, then G × H is not essentially connected.

Now we prove one of the main results of this section.

Theorem 8. Let G1 and G2 be two disjoint graphs with size m1 and m2, respectively.
Suppose that G1 is bipartite. Then

SO(G1 ×G2) ≥ 2m2SO(G1). (4.1)

Moreover, if G1 ×G2 is connected, then SO(G1 ×G2) > 2m2SO(G1).

Proof. Let X and Y be the parts of the bipartite graph G1. Assume that e = ab is

an edge of G2. One can see that the induced subgraph on X×{a}∪Y ×{b} in G1×G2

is isomorphic to G1. In addition, X × {b} ∪ Y × {a} in G1 ×G2 is isomorphic to G1.

Thus for every edge of G2, we have two edge-disjoint copies of G1. By considering

these kinds of subgraphs, it is not hard to see that G1 × G2 can be partitioned to

2m2 edge-disjoint copies of G1. Thus by Theorem 1, SO(G1×G2) ≥ 2m2SO(G1). If

G1 ×G2 is connected, then by Theorem 1 the equality does not hold.

In the next result we investigate the Sombor index of direct product of two bipartite

graphs.

Theorem 9. Let G1 and G2 be two disjoint bipartite graphs with size m1 and m2,
respectively. Then

SO(G1 ×G2) ≥ max{2m2SO(G1), 2m1SO(G2),m2SO(G1) +m1SO(G2)}. (4.2)

Proof. Let X1 and Y1 be the parts of the bipartite graph G1 and, X2 and Y2 be the

parts of the bipartite graph G2. It is not hard to check that G1 × G2 is a union of

two disjoint bipartite graphs, say H1 and H2, where the parts of H1 are X1×X2 and

Y1 × Y2, and the parts of H2 are X1 × Y2 and Y1 ×X2.

Suppose that e = ab is an edge of G1. One can see that the induced subgraph on

{a} × X2 ∪ {b} × Y2 in H1 is isomorphic to G2. Similarly, if e′ = a′b′ is an edge of

G2, then the induced subgraph on X1 × {a′} ∪ Y1 × {b′} in H1 is isomorphic to G1.
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Therefore we obtain two edge partitions of H1; H1 can be partitioned to m1 copies

of G2 and H1 can be partitioned to m2 copies of G1. Thus by Theorem 2,

SO(H1) ≥ m1SO(G2) and SO(H1) ≥ m2SO(G1). (4.3)

Similarly, we can partition the edges of H2 as m1 edge-disjoint copies of G2 or m2

edge-disjoint copies of G1. Therefore by Theorem 2,

SO(H2) ≥ m1SO(G2) and SO(H2) ≥ m2SO(G1). (4.4)

Since SO(G) = SO(H1) + SO(H2), by (4.3) and (4.4) the result follows.

Remark 4. We note that in Theorem 9 the equality holds. For example, let G1 be a
bipartite graph with size m1 and G2 = m2K2, where m2 is a positive integer. One can
see that G1 × G2 = 2m2G1. Thus SO(G1 × G2) = 2m2SO(G1). On the other hand, by
Theorem 2, for every graph G, SO(G) ≥ mSO(K2), where m is the size of G. This shows
that

max{2m2SO(G1), 2m1SO(G2),m2SO(G1) +m1SO(G2)} = 2m2SO(G1) = SO(G1 ×G2).

Therefore in Theorem 9 the equality holds for the graphs G1 and G2.

Conjecture 10. We think that Theorem 9 holds for every two graphs G1 and G2.
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[2] K.C. Das, A.S. Çevik, I.N. Cangul, and Y. Shang, On Sombor index, Symmetry

13 (2021), no. 1, Article ID: 140

https://doi.org/10.3390/sym13010140.

[3] K.C. Das and I. Gutman, On Sombor index of trees, Appl. Math. Comput. 412

(2022), Article ID: 126575.

https://doi.org/10.1016/j.amc.2021.126575.



M.R. Oboudi 9
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