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Abstract: Let H be a digraph possibly with loops, and D a multidigraph without
loops. An H-coloring of D is a function ¢ : A(D) — V(H). We say that D is an
H-colored multidigraph whenever we are taking a fixed H-coloring of D. A trail W =
(vo, €0,v1,€1,V2,...,Un—1,€n—1, Un) in D is an H-trail if and only if (c(e;),c(ei+1))
is an arc in H, for each ¢ € {0,...,n — 2}. We say that an H-colored multidigraph is
H-trail-connected if and only if there is an H-trail starting with arc f; and ending with
arc fo, for any pair of arcs fi1 and f2 in D. Let D be an H-colored multidigraph and u
a vertex of D, the auxiliary digraph D, is the digraph of allowed transition throughout
u.

In this paper we give the following characterization: Let D be an H-colored multidi-
graph such that the underlying graph of D, is a disjoint union of complete bipartite
graphs, for every u € V(D). Then D has a Euler H-trail if and only if D is H-trail-
connected and, for every u € V(D), the underlying graph of D,, has a perfect matching.
As a consequence we obtain the well-known characterization of the 2-arc-colored mul-
tidigraphs containing properly colored Euler trail. Finally, we give an infinite family
of digraphs H such that for every multidigraph D without isolated vertices, and every
H-coloring of D, the underlying graph of D, is a disjoint union of complete bipartite
graphs and, possibly, isolated vertices, for every u € V(D).
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1. Introduction

For basic concepts, terminology and notation not defined here, we refer the reader
to [3] and [4]. Throughout this work, we will consider finite directed graphs, and
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2 Characterizing arc-colored digraphs with an Eulerian trail

directed multigraphs (directed graphs allowing parallel arcs). Let D be a directed
graph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively.

A (directed) spanning circuit in a (directed) graph G is defined as a closed (directed)
trail that contains each vertex of G. We will say that a (directed) graph is supereule-
rian if it contains a (directed) spanning circuit. Let T be a (directed) spanning circuit
in G: if T visits each vertex of G exactly once, then T" will be called Hamilton cycle;
and if T visits each edge of GG, then T will be called Fuler trail. We will say that a
(directed) graph is hamiltonian if it has a Hamilton cycle and eulerian if it contains
a Euler trail.

The following graphs were introduced by Harary and Nash-Williams in [12]. Let G be
a graph with p vertices and ¢ edges, for n > 2, L, (G) will denote the graph with ng
vertices that are obtained as follows: for each edge e = uv of G, we take two vertices
f(e,u) and f(e,v) in L,(G) and adding a path with n — 2 new intermediate vertices
connecting f(e,u) and f(e,v); finally, for each vertex u of G, we add an edge joining
f(e,u) and f(g,u), whenever e and g are distinct edges with end point u. They also
proved the following relationships between eulerian graphs and hamiltonian cycles of
L,.(G).

Theorem 1 ([12]). Let G be a graph. The following assertions hold:
1. If G is eulerian, then L,(G) is hamiltonian, for every n > 2.

2. If L,(G) is hamiltonian, for some n > 3, then G is eulerian.

3. G is superulerian if and only if L2(G) is hamiltonian.

For a digraph D, the line digraph of D, denoted by L(D), is the digraph with vertex
set A(D) and A(L(D)) = {(a,b) | a,b € V(L(D)), the head of a coincides with the
tail of b}. Kasteleyn in [14] show that there is a one-to-one correspondence between
the closed directed trails of D and the directed cycles of L(D).

Theorem 2 ([14]).  There is a one-to-one correspondence between the set of closed
directed trails in D and the set of directed cycles in L(D).

Imori et al. [13] introduced the notion of pancircularity as follows. A digraph D with
q arcs is said to be pancircular, if D contains closed trails of every length L for all
2< L <q.

Corollary 1 ([13]). Let D be a digraph. Then, D is pancircular if and only if L(D) is
pancyclic.

A graph G is called edge-colored if each edge has an assigned color. A properly colored
(PC) walk is a walk in which no two consecutive edges have the same color, including
the last and first edges in a closed walk. Several authors have worked with this
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concept, for example, Bang-Jensen et al. [2]. Properly colored walks are of interest
as a generalization of walk in undirected and directed graphs, see [3], as well as, in
graph theory applications, for example, in genetic and molecular biology [7, 8, 17, 18],
channel assignment in wireless networks [1, 19].

Kotzig [15] gave the following characterization of edge-colored multigraphs containing
properly colored closed Euler trail.

Theorem 3 (Kotzig [15]). Let G be an edge-colored eulerian multigraph. Then G
has a properly colored closed Euler trail if and only if 6i(z) < >, 6;(z), where 6;(x) is the
number of edges with color i incident with x, for each vertex x of G.

Properly colored directed walk in arc-colored directed graphs have also been studied
by many authors, for example, Gutin et al. [11], Carraher and Hartke [5, 6] and
Gourves et al. [10]. In [21, 22], arc-colored directed graphs are used to model conflict
resolution.

An arc-colored directed graphs D is PC trail-connected, if there is a PC trail starting
with arc f; and ending with arc fs, for any pair of arcs fi, fo in D. Sheng et al. [20]
characterized 2-arc-colored directed graphs containing PC Euler trails.

Theorem 4 ([20]). Let D be a 2-arc-colored directed multigraph. Then D has PC Euler
trail if and only if D is PC trail-connected and for every v € V(D), di (v) = d3_;(v), for
i€ {1,2}.

Different kinds of edge-coloring in directed and undirected graphs have been stud-
ied, for example, in [16] the arcs of a tournament were colored with the vertices
of a poset. We will consider the following edge-coloring. Let H be a directed
graph possibly with loops and D a directed graph without loops. An H-coloring
of D is a function ¢ : A(D) — V(H). We will say that D is an H-colored di-
rected graph, whenever we are taking a fixed H-coloring of D. A directed walk
W = (vo, €9, v1,€1,...,€x—1,Vk) in D, where e; = (v;,v;41) for every i in {0, ..., k—1},
is a directed H-walk if (c(eo),ao,c(er), ..., clex—a),ax—2,c(ex—1)) is a directed walk
in H, with a; = (c(e;),c(eir1)) for every i € {0,...,k —2}. Let W be a directed
H-walk, if W is a directed trail then W will be called H -trail.

The concepts of H-coloring and H-walks were introduced, for the first time by Linek
and Sands in [16], and have been worked mainly in the context of kernel theory and
related topics.

A theoretical reason to study H-walks is that they generalize monochromatic walks
and properly colored walks. To see that H-walks generalize properly colored walks,
notice that if H is a complete graph without loops, then every H-walk is a properly
colored walk. And, if H is a graph that only contains loops, then every H-walk is
a monochromatic walk. Also, notice that if W = (z¢,1,...,z,) is an H-walk such
that (c(xzox1), c(z122),...,c(Tn_12y)) is a path in H, then W is a rainbow walk.
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A motivation for the study of H-walks, in H-colored digraphs, is their possible appli-
cations. For example, suppose that we are working with a communication network,
represented by a digraph D, where each vertex represent a connection point, and
an arc from one connection point A to another connection point B means a way to
send information directly from A to B. Notice that more than one arc from A to B
can exist since there could be different ways to send information. Moreover, due to
different issues (namely risk; such as, damage, attack, virus, blockage, among many
others) some arc transitions may be prohibited. In order to have a robust network
against communications faults, it is desired to have communication routes with al-
lowed arc transition. To represent this situation we can color the arcs of D, where
A(D) = {f1,..., fm}, with colors {c1,...,cn}, such that ¢(f1) = ¢1; and we define
the digraph H, that will determine what arc transitions are allowed, as follows: the
set of vertices of H is the set of colors {c1,...,¢m}, and we add an arc in H from ¢;
to c; whenever the transition from arc f; to arc f; is allowed. So, if it is required to
send a message from point A to point B through the communication network in the
most convenient way, we need to find an H-walk in D from A to B.

Another application can be found in roads, roads can be easily represented with
digraphs placing a vertex at the intersection of two streets, and an arc from a vertex
v to a vertex u if and only if there is a street from v to u without passing through
any other corner. Due to traffic laws, it is not always possible to turn from one street
to another. So, if we want to find a walk from one corner to another that respect the
traffic law, it is not enough to find a walks in a non-arc-colored digraph. So, we can
color the arcs of the digraph as stated above. In this case, the digraph H indicates
which turns are allowed by traffic laws.

Galeana-Séanchez et al. [9] studied the problem of the existence of closed Euler H-
trails in H-colored undirected graphs. They defined the graph G, as follows: Let u be
a vertex of G; G, is the graph such that V(G,) = {e € E(G) | e is incident with u},
and two different vertices a and b are joining by only one edge in G, if and only if
¢(a) and ¢(b) are adjacent in H.

They also showed necessary and sufficient conditions for the existence of closed Euler
H-trails, as follows.

Theorem 5 ([9]) Let H be a graph possibly with loops and G be an H -colored multi-
graph without loops. Suppose that G is Eulerian and G, is a complete k,-partite graph, for
every u in V(G) and for some k, in N. Then G has a closed Euler H-trail if and only if
ICF| < 32,4 |CF| for every w in V(G), where {CY,...,C§,} is the partition of V(Gu) into
independent sets.

The rest of the paper is organized as follows. Section 2 is devoted to give some
notation and terminology, which will be used through the paper. In Section 3, we will
study the problem of the existence of Euler H-trail. In order to obtain our results we
define the auxiliary digraph L (D). Then, we will prove that there exists a bijection
between the set of closed Euler H-trails in D and the set of directed cycles in L& (D).
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As a consequence, D has a closed Euler H-trail if and only if L2 (D) is hamiltonian,
for every n > 2. Finally, in Section 4 we give an infinite family of digraphs H such that
for every multidigraph D without isolated vertices, and every H-coloring of D, the
underlying graph of D, is a disjoint union of complete bipartite graph and, possibly,
isolated vertices, for every u € V(D).

2. Notation and Terminology

Let D be a multidigraph. If e is an arc and w and v are vertices such that e = (u,v),
then e is incident from w and to v, we will say that v and v are the tail and the
head of e, respectively. If u = v, then the arc e is a loop. The out-neighborhood
(in-neighborhood) of a vertex u, denoted by NT(u) (N~ (u)), is defined as the set of
all arcs with tail (head) u. A digraph D’ is a subdigraph of D if V(D’) C V(D) and
A(D') C A(D). Let S be a nonempty subset of V(D); the subdigraph of D whose
vertex set is S, and whose arc set is the set of those arcs of D that have both ends in
S, is called the subdigraph of D induced by S, and is denoted by D[S]. The underlying
graph of D is the graph G obtained from D by replacing every arc (u,v) with the
edge uv.

A directed walk in a digraph D is a sequence (vg,eq,v1,€1,...,€,—_1,V%), Where
ei = (vi,vi41) for every ¢ in {0,...,k — 1}. We will say that the direct walk
(vo,e0,v1,€1,...,e5-1,V;) is closed if vg = vi. If v; # v; for all ¢ and j with
i # j, it is called a directed path. A directed cycle is a closed directed walk
(vo,€0,V1,€1,...,€x—1,Vk, €k, Vo), With k > 2, such that v; # v; for all i and j
with ¢ # j. In a digraph D a directed walk in which no arc is repeated is a
directed trail. A closed Euler directed trail in a digraph D, is a closed directed
trail which traverses each arc of D exactly once. If W = (vg, €p,v1,€1, .., €K1, Vk)
and W' = (v, €r, Vg1, €kt1,- - - €4—1,0¢) are two directed walks, the directed walk
(g, €k_1,.-.,€1,01,€0,V0), obtained by reversing W, is denoted by W ! and the di-
rected walk (vo,€q,v1,€1,- -, €k—1,Vk, €k, Vg1, Ckt1,---,Et—1,V¢), Obtaining by con-
catenating W and W' at vy, is denoted by W U W’. If there is no confusion we will
omit adjective “directed”.

A simple graph G is said to be multipartite, if for some positive integer k, there exists
a partition Xy,..., Xj of V(G), such that X; is an independent set in G (that is no
two vertices of X; are adjacent) for every ¢ in {1,...,k}, in this case, also G is called
k-partite. It said that G is a complete k-partite graph whenever G is k-partite and for
every u in X; and for every v in X , with ¢ # j , we have that u and v are adjacent,
denoted by K, . n, where |X;| =n; for every ¢ in {1,...,k}. In the particular case
when k = 2, the graph G is said to be bipartite graph. Let G1,Go, ..., G, be graphs,
the disjoint union, denoted by ., G;, of G1,Ga,...,G,, is the graph with vertex
set, the disjoint union of V(G1),V(G2),...,V(G,) and whose edge set, is the disjoint
union of F(G1), E(G2),...,E(G,). A matching in a graph G is a subset M of E(G),
such that no two elements of M are incident with the same vertex in G. A matching
M saturates a vertex v if some edge of M is incident with v. If every vertex of G is
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B R
(a)D is an H-colored multidigraph (b)LE (D)

Figure 1. The auxiliary digraph L (D)

saturated, the matching M is said to be perfect. We will need the following results.

Theorem 6 (Hall’s Theorem). A bipartite graph with bipartition (X,Y) has a match-
ing that saturates every vertex in X if and only if [N (S)| > |S|, for every S C X.

Lemma 1. Let M and M’ be two perfect matching of a graph G. If M N M’ = 0, then
there exists a partition of the vertices of G into even cycles. Moreover, every cycle alternates
edges between M and M'.

3. H-trails

In what follows, H will be a digraph possibly with loops, and D will be a multidigraph
without loops.
Throughout the paper we will use the auxiliary digraphs D, and L (D), which are
defined below.

Definition 1. Let D be an H-colored multidigraph and u be a vertex of D. D, is the
digraph such that V(D,) = {f(e,u) | e € A(D) and e is incident with u}, and two different
vertices f(e,u) and f(g,u) are joining by only one arc from f(e,u) to f(g,u) in D, if and
only if e = (z,u) and g = (u, y), for some x and y in V (D), and (c(e),c(g)) € A(H).
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Observation 1. D, is a bipartite digraph with bipartition (X,Y’), where X =
{f(e,u) € V(Dy,) | e = (z,u) for some z € V(D)} and Y = {f(e,u) € V(D,) | e =
(u,y) for some y € V(D)}. Moreover, if (f(e,u), f(g,u)) € A(Dy), then f(e,u) € X
and f(g,u) €Y.

Definition 2. Let D be an H-colored multidigraph with |A(D)| = ¢q. For n > 2, LY (D)
is the digraph with ng vertices, obtained as follows: for each arc e = (u,v) of D, we take two
vertices f(e,u) and f(e,v) in L (D), and adding a directed path from f(e, u) to f(e,v) with
n — 2 new intermediate vertices. And the rest of the arcs of LI (D) are defined as follows:
(fle,u), f(g,u)) € A(LY(D)) if and only if e = (z,u) and g = (u,%), for some z and y in
V(D), and (c(e),c(g)) € A(H).

Notice that the digraph L (D) can be constructed as follows: take the disjoint union
of Dy, for every u € V(D), and for every e = (u,v) € A(D), we add a directed path
from f(e,u) to f(e,v) with n — 2 new intermediate vertices, see Figure 1.

Observation 7. For every e = (u,v) € A(D), we have that d* (f(e,u)) = d~ (f(e,v)) =1
in L (D), for each n > 2. Moreover, when n = 2, we have that NT(f(e,u)) = {f(e,v)} and

N™(f(e,0)) = {f(e,u)}-

Theorem 8. Let D be an H-colored multidigraph. Then there is a bijection between the
set of closed H-trails in D and the set of directed cycles in LE (D).

Proof. Let D be an H-colored multidigraph, P the set of closed H-trails in

D and C the set of directed cycles in L (D). Consider T : P — C de-

fined by T(zg,eo,21,€1,Z2,-- s Tn-1, €n—1,Zn) = (f(eo,x0), f(eo,z1), f(e1,x1),

fler,za), .., flen1,2n1), f(en—1,2n), f (€0, 20)).

Claim 1. T is well-defined.

First we will prove that T'(P) = C € C.

It follows from the definition of L (D) that (f(e;, z:), f(ei,i11)) is an arc of LE (D),

for every 7 € {0,...,n — 1}.

Let e; and e;11 be consecutive arcs in P (if i = n, then e;11 = e1). Notice that e; and

ei+1 are incident with z;41. Since P is a closed H-trail, we have that (c(e;), c(eit+1))

is an arc in H and (f(e;, zi+1), f(€ir1,7iy1)) € A(LL(D)). Hence, C is a closed walk

in LI (D). Since P is a closed H-trail, it follows that C' does not repeat a vertex and

Cis a cycle, i.e., T(P) =C € C.

Next, we will prove that if P, = Py, then T(Py) = T(P).

Let P = (xo,e0,%1,€1,%2,...,Tn_1,6n—1,T,) and Po = (yo, fo,y1, f1,Y2,
o ¥Yn—1sSn—1,Yn) in P such that P, = P5.

Since P, = P, we have that A(P;) = A(P,) and there exists k € N such that

€i = fitk(modn) (since the arcs are traversed in the same order but the first arc is not

necessarily the same). It follows from the definition of T that V(T'(P1)) = V(T'(P))

and their are ordered the same. Then, we have that T'(P,) = T'(P,). Therefore, T is

well-defined.
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Claim 2. T is injective.

Let P, and P, in P such that P; # Ps.

If A(P1) # A(P), then V(T'(P1)) # V(T'(FP2)) and T(P1) # T(P;). Otherwise,
since P, # Ps, there exists {e1,ea} C A(Py) = A(P2) such that e; = (z1,y1) is the
arc preceding es = (22,y2) at P; and e; is not the arc preceding ey at P». Hence,
(flex,y1), flez,x2)) € A(T(P1)) and (f(e1,v1), f(ea,x2)) & A(T(P2)). Therefore,
T(Py) # T(P2) and T is injective.

Claim 3. T is surjective.

Let C be a cycle in L¥(D). Tt follows from Observation 2 and the fact that
(f(e,z), f(e,y)) isin A(LE (D)), for every e = (x,y) € A(D), that C must be of the
form C = (f(eo, o), f(eo,y0), fle1,w1), fler,y1),---, f(eq7 xQ)’ f(eq7 yq), f(eo, 7o),
where e; = (z;,y;) € A(D).

Consider the sequence P = (xg, g, %1, €1, L2, - - ., Tq, €q5 T0)-

Claim 3.1. P is a closed H-trail in D.

For cach k € {1,...,q}, (f(ex i), flensn,ans1)) € A(C) C A(LE(D)) (the
subindices are taken modulo g + 1). So, it follows from the definition of Li(D)
that yr—1 = xx and (c(ex—1),c(ex)) € A(H). Hence, P is a closed H-walk in D.

On the other hand, since C is a cycle, it follows that e; appears just once in P, for
every i € {1,...,q}, and P is a closed H-trail.

It follows from the definition of T' that T'(P) = C. Therefore, T is surjective.

By Claims 2 and 3, we have that T is a bijection. O

The underlying graph of LZ (D) and D, will be denoted by UL (D) and UD,,
respectively. It follows from the definition of UL (D) that M; = {f(e,z)f(e,y) €
E(ULE (D)) | e= (z,y) € A(D)} is a perfect matching, that we will called the joint
matching of ULE (D).

Theorem 9. Let D be an H-colored multidigraph. There exists a partition of the arcs of
D into closed H-trails if and only if UD has a perfect matching, for every x € V(D).

Proof. Let D be an H-colored multidigraph and M the joint matching of UL (D).
Suppose that there exists a partition of the arcs of D into closed H-trails, say P =
{P1,..., P}

It follows from Theorem 8 that C = {C1,...,Cy} is a set of cycles in L& (D), where
T(P,) = C;. Since P = {Py,..., P} is a partition of the arcs of D, we have that
V(C:) NV(C;) = 0 (because A(P) N A(P;) = 0) and V(L (D)) = UL, V(Cy)
(because A(D) = Ule A(P;)). Therefore, C is a partition of the vertices of L (D)
into cycles. Moreover, C' = {C},...,C}} is a partition of the vertices of UL (D)
into cycles, where C! is the underlying cycle of C;, for each C; € C.

By construction of C!, we have that C! alternate edges between M; and E(ULE (D))\
M. Hence, M = Ule E(C;)\ My is a perfect matching of ULL (D)\ M. Therefore,
for every x € V(D), My = M N E(UD,) is a perfect matching of UD,,.
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Conversely, suppose that M is a perfect matching of UL (D) \ M;. Then, by
Lemma 1, we have that there exists a partition of UL (D) into even cycles, say
C'={C1,...,C}}, such that every cycle alternate edges between M and M.

Since C] alternate edges between M; and M, C] must be of the form C] =
(fler, 1), fler,x2), f(e2,22), flea, @3),..., f(en,zn), flen, 1), fle1, 1))

It follows from Observation 2 that if (f(e1,z1), f(e1,22)) € A(LY (D)), then C] is
a directed cycle in L¥ (D). Otherwise, (f(e1,x2), f(e1,z1)) € A(LE (D)) and C;71
is a directed cycle in LI(D). And then C; will the directed cycle, i.e., C; = C! or
C; = C’;fl, for every i € {1,...,k}.

Let C ={Cy,...,Cy}. Since C' is a partition of the vertices of UL (D) into cycles,
it follows that C is a partition of the vertices of L& (D) into directed cycles.

It follows from Theorem 8 that P = {Py,..., Py} is a set of closed H-trails, where
P, = T~Y(C;). Since C is a partition of the vertices of LE (D), it follows that P is a
partition of the arcs of D into closed H-trails. O

Definition 3. Let D be an H-colored multidigraph. The H-line digraph, denoted by
L (D), is the digraph such that V(L (D)) = A(D), and two different vertices e = (z,y)
and g = (u,v) are joining by only one arc from e to g in L (D) if and only if y = v and

(c(e), c(g)) € A(H).

Notice that L (D) can be obtained from LI (D) by contracting the arc
(f(e,u), f(e,v)) (and deleting the corresponding loop), for each e = (u,v) € A(D), in
LI(D).

In view of the Theorem 9, we can conclude the following version of Theorem 1 for
H-colored multidigraphs.

Theorem 10. Let D be an H-colored multidigraph. Then,

a. If Lf(D) is hamiltonian, for some n > 1, then D has a closed Euler H-trail.

b. D has a closed Euler H-trail if and only if LY (D) is hamiltonian, for every n > 1.
Definition 4. Let D be an H-colored multidigraph with ¢ arcs. We will say that D is an

H-pancircular multidigraph if and only if it contains a closed H-trail of length L, for every
2<L<gq.

Corollary 2.  Let D be an H-colored multidigraph with q arcs. Then, D is an H-
pancircular multidigraph if and only if L{{(D) is pancyclic.

An H-colored multidigraph D is H-trail-connected, if and only if there is an H-trail
starting with arc f; and ending with arc fs, for any pair of arcs f; and f in D.

Theorem 11. Let D be an H-colored multidigraph such that UD,, = Ufil Kny my, for
every u in V(D) and some ky > 1. Then D has a closed Euler H-trail if and only if D is
H -trail-connected and, for every u € V(D), ni' =mj§ for each i € {1,... ,ku}.
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Proof. Let D be an H-colored multidigraph and D, = Uf;l Kyp my, for every u in
V(D) and some k, > 1.

Suppose that D has a closed Euler H-trail. Then, D is H-trail-connected and by
Theorem 9, UD,, has a perfect matching, for every u € V (D), say M,,. Since UD,, =
Uf;l Kyv e and M, is a perfect matching, we have that nj' = mj', for every i €
{1,..., Ky}

Conversely, suppose that D is H-trail-connected and, for every u € V(D), n¥ = m
for every i € {1,...,k,}. Hence, UD,, = Uf;l Ky pe.

It follows from Theorem 6 that UD,, has a perfect matching, for every u € V(D).
Then, by Theorem 9, D has a a partition of the arcs of D into closed H-trails, say
P=A{P,...,P}.

If Kk =1, then D has a closed Euler H-trail. Otherwise, since D is H-trail-connected,
there is an H-trail in D starting with arc e; € A(P;) and ending with arc e; €
A(D)\ A(Py), say Q1.

Let g1 = (x1,22) € A(Q1) be the first arc in A(Q1) \ A(P1) and go = (z¢, z1) the arc
prior to g1 in Q1. Hence, go € A(P1) and (c(go),c(g1)) € A(H). Suppose, without
loss of generality, that g; € A(Pz).

Let P, = (21, f1,.-.,%0,90,%1) and Py = (x1,91,%2,-.., fo,21). By the definition
of closed H-trail, we have that {(c(g0),c(f1)), (c(fo),c(g1))} € A(H). By the defi-
nition of D,,, we have that the arcs (f(go,x1), f(f1,21)), (f(fo,21), f(g1,21)) and
(f(go,z1), f(g1,21)) are in A(D,). So, it follows from the Observation 1 and the
fact that UD,, = Uf;ll anclmzcl that (f(fo,21), f(f1,21)) € A(Dy,). Therefore,
(c(fo),c(f1)) € A(H) and Ty = Py U P> = (21, f1,...,%0, 90,21, 91, %2, ..., fo,z1) is a
closed H-trail.

If A(Th) = A(D), then T; is a closed Euler H-trail. Otherwise, there is an H-trail in
D starting with arc ez € A(T) and ending with arc eq € A(D) \ A(T}), say Qo.

Let g3 = (v1,v2) € A(Q2) be the first arc in A(Q2) \ A(T1) and go = (vg,v1) the arc
prior to g3 in Q2. Hence, g € A(T) and (c¢(g2),c(g3)) € A(H). Suppose, without
loss of generality, that g3 € A(Ps).

Let T1 = (1}1, f37 592, 1}1) and Pg = (1}1,93,1}27 ey fg,’Ul). By the definition of
closed H-trail, it follows that {(c(g2),c(f3)), (c(f2),c(g3))} € A(H). By the defi-
nition of D,,, we have that the arcs (f(g2,v1), f(f3,v1)), (f(f2,v1), f(g3,v1)) and
(f(g2,v1), f(g3,v1)) are in A(D,,). It follows from the Observation 1 and the fact
that UD,, = Uf;ll Kn,’;l,njl that the arc (f(f2,v1), f(f3,v1)) isin A(D,,). Therefore,
(c(f2),c(f3)) € A(H) and To = Th U P3 = (v1, f3,...,02,V1,93,V2, ..., f2,01) is &
closed H-trail.

If A(Tz) = A(D), then T is a closed Euler H-trail. Otherwise, we can repeat this
procedure and after a finite number of steps we obtain that D has a closed Euler
H-trail. O

Let D be an c-arc-colored multidigraph and v € V(D). We will say that F, = {e €
A(D) | e is incident with v}, and ¢(F,) = {i| there exists e € F, such that c(e) = i}.

Corollary 3.  Let D be a c-arc-colored multidigraph such that c(F,) = {c{,c5}, for
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every v € V(D). Then, D is PC Euler if and only if D is PC trail-connected and for every
v e V(D), df,(v) = d;gf,(”): forie {1,2}.

Proof. Suppose that D is a c-arc-colored multidigraph. Then, D is an H-
colored multidigraph, where H is the complete digraph without loops and V(H) =
{1,2,...,c}. Notice that if P is a (closed) trail in D, then P is a PC (closed) trail if
and only if P is a (closed) H-trail.

Suppose that ¢(F,) = {c}, s}, for every v € V(D). Let u be a vertex in V(D).
Claim 1. UDy = Kn,m, U Kny m,, where n; = d (u) and m; = djg_i(u).

Let Ef = {f = (u,z) € A(D) | for some z € V(D)} and E,; = {f = (x,u) €
A(D) | for some z € V(D)}. Hence, Fu ={feEf|cf)=c'}and F. ={f €
E;, | c(f) = ¢*} are independent sets in UD,, for every i € {1,2}. Moreover, for
every i € {1,2}, fg € E(UD,) if and only if f € Fi. and g € Fgg

Notice that \F+| = d+ (u) and |FZ = dgu (u). Therefore, UD,, = Kpny m;, U Kny mys
where n; = d_. ( )andmz—dd (u)

Suppose that D is PC Euler. Then D is PC trail-connected and D has a closed Euler
H-trail. It follows from Theorem 11 and Claim 1 that dcg( u) = dj?_i( u), for every
ie{1,2}.

Conversely, supposed that D is PC trail-connected and for every v € V (D), dt( )=
dey (v), for i € {1,2}. Since D is PC trail-connected, we have that D is H-trail-
connected.

It follows from Claim 1 and dJr (u) = dgy_ (u), for i € {1,2}, that UD,, = Ky, », U
K, n,. Hence, by Theorem 11, "D has a closed Euler H- trail, i.e., D is PC Euler. O

Corollary 4 ([20]). Let D be a 2-arc-colored multidigraph. Then D is PC Euler if and
only if D is PC trail-connected and for every v € V(D), df (v) = d3_;(v), fori € {1,2}.

Theorem 12. Let D be an H-colored multidigraph. Then D is H-trail-connected if and
only of LY (D) is strongly connected.

Proof. Let D be an H-colored multidigraph.

Suppose that D is H-trail-connected. Let f(e,u) and f(g, ) in V(LI (D)).

Since D is an H-trail-connected graph, there exists an H-trail such that e = (uq, us)

is the first arc and g = (z1,22) is the last arc, say P = (uj,e,ug,€1,...,21,9,T2).

Notice that T"(P) = (f(e,u1), f(e,uz), f(e1,u2), ..., f(g,x1), f(g,22)) is a path.

Since f(e,u) and f(g,r) are in V(LI (D)), it follows that (u = u; or u = up) and

(r = 21 or z = x5). Therefore, there exits a path from f(e,u) to f(g,x) and L& (D)

is strongly connected.

Conversely, suppose that LE (D) is strongly connected. Let e = (z,y) and g = (u, )

in A(D).

Since L4 (D) is strongly connected, there exists a path from f(e,x) to f(g,v),

say P. It follows from Observation 1 that P must be of the form P =
)

(f(e.), fley) fler,y)s- -, flg.u), f(g,0)). So, THP) = (x,e,y,e1,... 0,
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is an H-trail such that its first arc is e and its last arc is g. Therefore, D is H-trail-
connected. O

The next assertion follows directly from the previous results.

Corollary 5. Given a 2-arc-colored multidigraph, we can check in polynomial time
whether D has a close PC Euler trail.

4. H-coloring

After reading Theorem 11 arises naturally the following question: when does a mul-
tidigraph satisfy the hypothesis that UD,, = Uf;l Kpu e, for every w in V(D)? In
this section we give an infinite family of digraphs H such that for every multidigraph
D without isolated vertices, and every H-coloring of D, UD, = Ufil Kyv my, for
every u € V(D).

Recall that V(D,,) is the set of arcs in D incident with u, so in this section we will
use a simplified notation for the vertices of D, the vertex f(e,u) will denote by e.
In the remainder of this section we will denote the empty graph with n vertices by
Kn,O-

Theorem 13. Let H be a digraph, possibly with loops, such that for every pair of vertices
w and v of H, Ni(u) = Ni(v) or Nfi(u) N Nj(v) = 0. Then, for every multidigraph
D without isolated vertices, and every H-coloring of D, UD, = Uf;l Knu my, for every
u € V(D) and for some ky, > 1.

Proof. Suppose that H is a digraph, possibly with loops, such that for every pair of
vertices u and v of H, N (u) = N (v) or N (u) N N (v) = 0.

Let D be an H-colored multidigraph without isolated vertices and u € V(D).

We define Vy = {e € V(UD,) : dup,(e) = 0}. Notice that UD,[Vo] = Ky o, for
a non-negative integer m. Thus, we only need to prove that each component in
UD, —Vy is a complete bipartite graph.

Let B be a component of UD,, with at least two vertices. It follows from Observation
1 that B is a bipartite graph with partite sets Xp = X NV(B) and Yg =Y NV (B),
where X and Y are the partite sets of D,, defined in Observation 1.

Now we will prove that every vertex in Xp is adjacent to every vertex in Yp. So,
let x € Xp and y € Yp. Since B is a component of UD,,, there is an xy-path in B,
namely T'= (z = ey, €2, ..., €2, = ¥).

Notice that for every i € {1,...,p}, e 1 € Xp and ey € Yp. It fol-
lows from the definition of D, that (c(e2i—1),c(e2;)) and (c(ezit1)—1),cle2))
are arcs of H, ie., Nj(c(ezi—1)) N Ni(c(ez@t1)—1)) # 0. So, by hypothesis,
Nfi(c(e2i—1)) = Njj(c(eas1)—1)). Thus, Nj(c(er)) = Nj(c(ezp-1)). Moreover,
c(eap) € Nir(c(ezp—1)) = Nir(c(er)). Hence, x = e; and y = ey, are adjacent in B
and B is a complete bipartite graph.
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Therefore, every component in UD, — Vj is a complete bipartite graph and UD,, =
Ufﬁl Ky my, for every u € V(D) and for some k, > 1. O

Proposition 1. Let H be a complete digraph with a loop in each vertex. Then, for every
multidigraph D without isolated vertices, and every H-coloring of D, UD, is a complete
bipartite graph or an empty graph, for every u € V(D).

Proof. Suppose that H is a complete digraph with a loop in each vertex. Let D be
an H-colored multidigraph without isolated vertices, and u a vertex of D.

Case 1. d(u) =0 or d*(u) = 0.

It follows from Observation 1 that UD,, is an empty graph.

Case 2. d™ (u) # 0 and d*(u) # 0.

Let X = {e € A(D) : e = (x,u) for some x € V(D)} and Y = {f € A(D) : f =
(u, ) for some x € V(D)}. Since d™ (u) # 0 and d*(u) # 0, we have that X # () and
Y # 0.

Consider e € X and f € Y. Since H is a complete graph with a loop at each vertex,
it follows that (c(e),c(f)) is an arc in H. Therefore, (e, f) is an arc in D,,.

It follows by Observation 1 that V(UD,) = X UY. Therefore, UD, is a complete
bipartite graph. ]

Corollary 6. Let H be a digraph such that d¥(z) = 1, for every vertex z in V(H).
Then, for every multidigraph D without isolated vertices, and every H-coloring of D, UD,, =
Uf;l Ky my, for every u € V(D) and for some ky > 1.

Proof. Let H be a digraph such that d*(x) = 1, for every vertex x in V(H). Hence,
for every pair of vertices, u and v, in H, we have that N (u) = Nj;(v) or Nj(u) N
N (v) = 0.

Therefore, by Theorem 13, every multidigraph D without isolated vertices, and every
H-coloring of D, UD,, = UfL Ky my, for every u € V(D) and for some k, > 1. O

Corollary 7. Let H be a digraph such that d~(z) = 1, for every vertex x in V(H).
Then, for every multidigraph D without isolated vertices, and every H-coloring of D, UD,, =
Ufﬁl Ky my, for every u € V(D) and for some ky > 1.

Corollary 8. If H is a digraph with only loops, then for every multidigraph D without
1solated vertices, and every H-coloring of D, UD,, = U'.““' Ky my, for every u € V(D) and

i=1
for some k, > 1.

Corollary 9. If H is a cycle, then for every multidigraph D without isolated vertices,
and every H-coloring of D, UD,, = UfL Koy ,mu, for every u € V(D) and for some k, > 1.

Corollary 10. If H is a path with a loop only in the end wvertices, then for every
multidigraph D without isolated vertices, and every H-coloring of D, UD,, = Uk“'

v Ky
=1 n,L ,mi b
for every uw € V(D) and for some ky, > 1.
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