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Abstract: Let H be a digraph possibly with loops, and D a multidigraph without

loops. An H-coloring of D is a function c : A(D) → V (H). We say that D is an

H-colored multidigraph whenever we are taking a fixed H-coloring of D. A trail W =
(v0, e0, v1, e1, v2, . . . , vn−1, en−1, vn) in D is an H-trail if and only if (c(ei), c(ei+1))

is an arc in H, for each i ∈ {0, . . . , n − 2}. We say that an H-colored multidigraph is

H-trail-connected if and only if there is an H-trail starting with arc f1 and ending with
arc f2, for any pair of arcs f1 and f2 in D. Let D be an H-colored multidigraph and u

a vertex of D, the auxiliary digraph Du is the digraph of allowed transition throughout
u.

In this paper we give the following characterization: Let D be an H-colored multidi-

graph such that the underlying graph of Du is a disjoint union of complete bipartite
graphs, for every u ∈ V (D). Then D has a Euler H-trail if and only if D is H-trail-

connected and, for every u ∈ V (D), the underlying graph of Du has a perfect matching.

As a consequence we obtain the well-known characterization of the 2-arc-colored mul-
tidigraphs containing properly colored Euler trail. Finally, we give an infinite family

of digraphs H such that for every multidigraph D without isolated vertices, and every
H-coloring of D, the underlying graph of Du is a disjoint union of complete bipartite
graphs and, possibly, isolated vertices, for every u ∈ V (D).
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1. Introduction

For basic concepts, terminology and notation not defined here, we refer the reader

to [3] and [4]. Throughout this work, we will consider finite directed graphs, and
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2 Characterizing arc-colored digraphs with an Eulerian trail

directed multigraphs (directed graphs allowing parallel arcs). Let D be a directed

graph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively.

A (directed) spanning circuit in a (directed) graph G is defined as a closed (directed)

trail that contains each vertex of G. We will say that a (directed) graph is supereule-

rian if it contains a (directed) spanning circuit. Let T be a (directed) spanning circuit

in G: if T visits each vertex of G exactly once, then T will be called Hamilton cycle;

and if T visits each edge of G, then T will be called Euler trail. We will say that a

(directed) graph is hamiltonian if it has a Hamilton cycle and eulerian if it contains

a Euler trail.

The following graphs were introduced by Harary and Nash-Williams in [12]. Let G be

a graph with p vertices and q edges, for n ≥ 2, Ln(G) will denote the graph with nq

vertices that are obtained as follows: for each edge e = uv of G, we take two vertices

f(e, u) and f(e, v) in Ln(G) and adding a path with n− 2 new intermediate vertices

connecting f(e, u) and f(e, v); finally, for each vertex u of G, we add an edge joining

f(e, u) and f(g, u), whenever e and g are distinct edges with end point u. They also

proved the following relationships between eulerian graphs and hamiltonian cycles of

Ln(G).

Theorem 1 ([12]). Let G be a graph. The following assertions hold:

1. If G is eulerian, then Ln(G) is hamiltonian, for every n ≥ 2.

2. If Ln(G) is hamiltonian, for some n ≥ 3, then G is eulerian.

3. G is superulerian if and only if L2(G) is hamiltonian.

For a digraph D, the line digraph of D, denoted by L(D), is the digraph with vertex

set A(D) and A(L(D)) = {(a, b) | a, b ∈ V (L(D)), the head of a coincides with the

tail of b}. Kasteleyn in [14] show that there is a one-to-one correspondence between

the closed directed trails of D and the directed cycles of L(D).

Theorem 2 ([14]). There is a one-to-one correspondence between the set of closed
directed trails in D and the set of directed cycles in L(D).

Imori et al. [13] introduced the notion of pancircularity as follows. A digraph D with

q arcs is said to be pancircular, if D contains closed trails of every length L for all

2 ≤ L ≤ q.

Corollary 1 ([13]). Let D be a digraph. Then, D is pancircular if and only if L(D) is
pancyclic.

A graph G is called edge-colored if each edge has an assigned color. A properly colored

(PC) walk is a walk in which no two consecutive edges have the same color, including

the last and first edges in a closed walk. Several authors have worked with this
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concept, for example, Bang-Jensen et al. [2]. Properly colored walks are of interest

as a generalization of walk in undirected and directed graphs, see [3], as well as, in

graph theory applications, for example, in genetic and molecular biology [7, 8, 17, 18],

channel assignment in wireless networks [1, 19].

Kotzig [15] gave the following characterization of edge-colored multigraphs containing

properly colored closed Euler trail.

Theorem 3 (Kotzig [15]). Let G be an edge-colored eulerian multigraph. Then G
has a properly colored closed Euler trail if and only if δi(x) ≤

∑
j 6=i δj(x), where δi(x) is the

number of edges with color i incident with x, for each vertex x of G.

Properly colored directed walk in arc-colored directed graphs have also been studied

by many authors, for example, Gutin et al. [11], Carraher and Hartke [5, 6] and

Gourvès et al. [10]. In [21, 22], arc-colored directed graphs are used to model conflict

resolution.

An arc-colored directed graphs D is PC trail-connected, if there is a PC trail starting

with arc f1 and ending with arc f2, for any pair of arcs f1, f2 in D. Sheng et al. [20]

characterized 2-arc-colored directed graphs containing PC Euler trails.

Theorem 4 ([20]). Let D be a 2-arc-colored directed multigraph. Then D has PC Euler
trail if and only if D is PC trail-connected and for every v ∈ V (D), d+i (v) = d−3−i(v), for
i ∈ {1, 2}.

Different kinds of edge-coloring in directed and undirected graphs have been stud-

ied, for example, in [16] the arcs of a tournament were colored with the vertices

of a poset. We will consider the following edge-coloring. Let H be a directed

graph possibly with loops and D a directed graph without loops. An H-coloring

of D is a function c : A(D) → V (H). We will say that D is an H-colored di-

rected graph, whenever we are taking a fixed H-coloring of D. A directed walk

W = (v0, e0, v1, e1, . . . , ek−1, vk) in D, where ei = (vi, vi+1) for every i in {0, . . . , k−1},
is a directed H-walk if (c(e0), a0, c(e1), . . . , c(ek−2), ak−2, c(ek−1)) is a directed walk

in H, with ai = (c(ei), c(ei+1)) for every i ∈ {0, . . . , k − 2}. Let W be a directed

H-walk, if W is a directed trail then W will be called H-trail.

The concepts of H-coloring and H-walks were introduced, for the first time by Linek

and Sands in [16], and have been worked mainly in the context of kernel theory and

related topics.

A theoretical reason to study H-walks is that they generalize monochromatic walks

and properly colored walks. To see that H-walks generalize properly colored walks,

notice that if H is a complete graph without loops, then every H-walk is a properly

colored walk. And, if H is a graph that only contains loops, then every H-walk is

a monochromatic walk. Also, notice that if W = (x0, x1, . . . , xn) is an H-walk such

that (c(x0x1), c(x1x2), . . . , c(xn−1xn)) is a path in H, then W is a rainbow walk.
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A motivation for the study of H-walks, in H-colored digraphs, is their possible appli-

cations. For example, suppose that we are working with a communication network,

represented by a digraph D, where each vertex represent a connection point, and

an arc from one connection point A to another connection point B means a way to

send information directly from A to B. Notice that more than one arc from A to B

can exist since there could be different ways to send information. Moreover, due to

different issues (namely risk; such as, damage, attack, virus, blockage, among many

others) some arc transitions may be prohibited. In order to have a robust network

against communications faults, it is desired to have communication routes with al-

lowed arc transition. To represent this situation we can color the arcs of D, where

A(D) = {f1, . . . , fm}, with colors {c1, . . . , cm}, such that c(f1) = c1; and we define

the digraph H, that will determine what arc transitions are allowed, as follows: the

set of vertices of H is the set of colors {c1, . . . , cm}, and we add an arc in H from ci
to cj whenever the transition from arc fi to arc fj is allowed. So, if it is required to

send a message from point A to point B through the communication network in the

most convenient way, we need to find an H-walk in D from A to B.

Another application can be found in roads, roads can be easily represented with

digraphs placing a vertex at the intersection of two streets, and an arc from a vertex

v to a vertex u if and only if there is a street from v to u without passing through

any other corner. Due to traffic laws, it is not always possible to turn from one street

to another. So, if we want to find a walk from one corner to another that respect the

traffic law, it is not enough to find a walks in a non-arc-colored digraph. So, we can

color the arcs of the digraph as stated above. In this case, the digraph H indicates

which turns are allowed by traffic laws.

Galeana-Sánchez et al. [9] studied the problem of the existence of closed Euler H-

trails in H-colored undirected graphs. They defined the graph Gu as follows: Let u be

a vertex of G; Gu is the graph such that V (Gu) = {e ∈ E(G) | e is incident with u},
and two different vertices a and b are joining by only one edge in Gu if and only if

c(a) and c(b) are adjacent in H.

They also showed necessary and sufficient conditions for the existence of closed Euler

H-trails, as follows.

Theorem 5 ([9]). Let H be a graph possibly with loops and G be an H-colored multi-
graph without loops. Suppose that G is Eulerian and Gu is a complete ku-partite graph, for
every u in V (G) and for some ku in N. Then G has a closed Euler H-trail if and only if
|Cu

i | ≤
∑

j 6=i |C
u
j | for every u in V (G), where {Cu

1 , ..., C
u
ku
} is the partition of V (Gu) into

independent sets.

The rest of the paper is organized as follows. Section 2 is devoted to give some

notation and terminology, which will be used through the paper. In Section 3, we will

study the problem of the existence of Euler H-trail. In order to obtain our results we

define the auxiliary digraph LH
n (D). Then, we will prove that there exists a bijection

between the set of closed Euler H-trails in D and the set of directed cycles in LH
2 (D).
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As a consequence, D has a closed Euler H-trail if and only if LH
n (D) is hamiltonian,

for every n ≥ 2. Finally, in Section 4 we give an infinite family of digraphs H such that

for every multidigraph D without isolated vertices, and every H-coloring of D, the

underlying graph of Du is a disjoint union of complete bipartite graph and, possibly,

isolated vertices, for every u ∈ V (D).

2. Notation and Terminology

Let D be a multidigraph. If e is an arc and u and v are vertices such that e = (u, v),

then e is incident from u and to v, we will say that u and v are the tail and the

head of e, respectively. If u = v, then the arc e is a loop. The out-neighborhood

(in-neighborhood) of a vertex u, denoted by N+(u) (N−(u)), is defined as the set of

all arcs with tail (head) u. A digraph D′ is a subdigraph of D if V (D′) ⊆ V (D) and

A(D′) ⊆ A(D). Let S be a nonempty subset of V (D); the subdigraph of D whose

vertex set is S, and whose arc set is the set of those arcs of D that have both ends in

S, is called the subdigraph of D induced by S, and is denoted by D[S]. The underlying

graph of D is the graph G obtained from D by replacing every arc (u, v) with the

edge uv.

A directed walk in a digraph D is a sequence (v0, e0, v1, e1, . . . , ek−1, vk), where

ei = (vi, vi+1) for every i in {0, . . . , k − 1}. We will say that the direct walk

(v0, e0, v1, e1, . . . , ek−1, vk) is closed if v0 = vk. If vi 6= vj for all i and j with

i 6= j, it is called a directed path. A directed cycle is a closed directed walk

(v0, e0, v1, e1, . . . , ek−1, vk, ek, v0), with k ≥ 2, such that vi 6= vj for all i and j

with i 6= j. In a digraph D a directed walk in which no arc is repeated is a

directed trail. A closed Euler directed trail in a digraph D, is a closed directed

trail which traverses each arc of D exactly once. If W = (v0, e0, v1, e1, . . . , ek−1, vk)

and W ′ = (vk, ek, vk+1, ek+1, . . . , et−1, vt) are two directed walks, the directed walk

(vk, ek−1, . . . , e1, v1, e0, v0), obtained by reversing W , is denoted by W−1 and the di-

rected walk (v0, e0, v1, e1, . . . , ek−1, vk, ek, vk+1, ek+1, . . . , et−1, vt), obtaining by con-

catenating W and W ′ at vk, is denoted by W ∪W ′. If there is no confusion we will

omit adjective “directed”.

A simple graph G is said to be multipartite, if for some positive integer k, there exists

a partition X1, . . . , Xk of V (G), such that Xi is an independent set in G (that is no

two vertices of Xi are adjacent) for every i in {1, . . . , k}, in this case, also G is called

k-partite. It said that G is a complete k-partite graph whenever G is k-partite and for

every u in Xi and for every v in Xj , with i 6= j , we have that u and v are adjacent,

denoted by Kn1,...,nk
where |Xi| = ni for every i in {1, . . . , k}. In the particular case

when k = 2, the graph G is said to be bipartite graph. Let G1, G2, . . . , Gn be graphs,

the disjoint union, denoted by
⋃n

i=1 Gi, of G1, G2, . . . , Gn is the graph with vertex

set, the disjoint union of V (G1), V (G2), . . . , V (Gn) and whose edge set, is the disjoint

union of E(G1), E(G2), . . . , E(Gn). A matching in a graph G is a subset M of E(G),

such that no two elements of M are incident with the same vertex in G. A matching

M saturates a vertex v if some edge of M is incident with v. If every vertex of G is
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Figure 1. The auxiliary digraph LH
2 (D)

saturated, the matching M is said to be perfect. We will need the following results.

Theorem 6 (Hall’s Theorem). A bipartite graph with bipartition (X,Y ) has a match-
ing that saturates every vertex in X if and only if |N(S)| ≥ |S|, for every S ⊆ X.

Lemma 1. Let M and M ′ be two perfect matching of a graph G. If M ∩M ′ = ∅, then
there exists a partition of the vertices of G into even cycles. Moreover, every cycle alternates
edges between M and M ′.

3. H-trails

In what follows, H will be a digraph possibly with loops, and D will be a multidigraph

without loops.

Throughout the paper we will use the auxiliary digraphs Du and LH
n (D), which are

defined below.

Definition 1. Let D be an H-colored multidigraph and u be a vertex of D. Du is the
digraph such that V (Du) = {f(e, u) | e ∈ A(D) and e is incident with u}, and two different
vertices f(e, u) and f(g, u) are joining by only one arc from f(e, u) to f(g, u) in Du if and
only if e = (x, u) and g = (u, y), for some x and y in V (D), and (c(e), c(g)) ∈ A(H).
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Observation 1. Du is a bipartite digraph with bipartition (X,Y ), where X =

{f(e, u) ∈ V (Du) | e = (x, u) for some x ∈ V (D)} and Y = {f(e, u) ∈ V (Du) | e =

(u, y) for some y ∈ V (D)}. Moreover, if (f(e, u), f(g, u)) ∈ A(Du), then f(e, u) ∈ X

and f(g, u) ∈ Y .

Definition 2. Let D be an H-colored multidigraph with |A(D)| = q. For n ≥ 2, LH
n (D)

is the digraph with nq vertices, obtained as follows: for each arc e = (u, v) of D, we take two
vertices f(e, u) and f(e, v) in LH

n (D), and adding a directed path from f(e, u) to f(e, v) with
n − 2 new intermediate vertices. And the rest of the arcs of LH

n (D) are defined as follows:
(f(e, u), f(g, u)) ∈ A(LH

n (D)) if and only if e = (x, u) and g = (u, y), for some x and y in
V (D), and (c(e), c(g)) ∈ A(H).

Notice that the digraph LH
n (D) can be constructed as follows: take the disjoint union

of Du, for every u ∈ V (D), and for every e = (u, v) ∈ A(D), we add a directed path

from f(e, u) to f(e, v) with n− 2 new intermediate vertices, see Figure 1.

Observation 7. For every e = (u, v) ∈ A(D), we have that d+(f(e, u)) = d−(f(e, v)) = 1
in LH

n (D), for each n ≥ 2. Moreover, when n = 2, we have that N+(f(e, u)) = {f(e, v)} and
N−(f(e, v)) = {f(e, u)}.

Theorem 8. Let D be an H-colored multidigraph. Then there is a bijection between the
set of closed H-trails in D and the set of directed cycles in LH

2 (D).

Proof. Let D be an H-colored multidigraph, P the set of closed H-trails in

D and C the set of directed cycles in LH
2 (D). Consider T : P → C de-

fined by T (x0, e0, x1, e1, x2, . . . , xn−1, en−1, xn) = (f(e0, x0), f(e0, x1), f(e1, x1),

f(e1, x2), . . . , f(en−1, xn−1), f(en−1, xn), f(e0, x0)).

Claim 1. T is well-defined.

First we will prove that T (P ) = C ∈ C.
It follows from the definition of LH

2 (D) that (f(ei, xi), f(ei, xi+1)) is an arc of LH
2 (D),

for every i ∈ {0, . . . , n− 1}.
Let ei and ei+1 be consecutive arcs in P (if i = n, then ei+1 = e1). Notice that ei and

ei+1 are incident with xi+1. Since P is a closed H-trail, we have that (c(ei), c(ei+1))

is an arc in H and (f(ei, xi+1), f(ei+1, xi+1)) ∈ A(LH
2 (D)). Hence, C is a closed walk

in LH
2 (D). Since P is a closed H-trail, it follows that C does not repeat a vertex and

C is a cycle, i.e., T (P ) = C ∈ C.
Next, we will prove that if P1 = P2, then T (P1) = T (P2).

Let P1 = (x0, e0, x1, e1, x2, . . . , xn−1, en−1, xn) and P2 = (y0, f0, y1, f1, y2,

. . .,yn−1,fn−1, yn) in P such that P1 = P2.

Since P1 = P2, we have that A(P1) = A(P2) and there exists k ∈ N such that

ei = fi+k(modn) (since the arcs are traversed in the same order but the first arc is not

necessarily the same). It follows from the definition of T that V (T (P1)) = V (T (P2))

and their are ordered the same. Then, we have that T (P1) = T (P2). Therefore, T is

well-defined.
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Claim 2. T is injective.

Let P1 and P2 in P such that P1 6= P2.

If A(P1) 6= A(P2), then V (T (P1)) 6= V (T (P2)) and T (P1) 6= T (P2). Otherwise,

since P1 6= P2, there exists {e1, e2} ⊆ A(P1) = A(P2) such that e1 = (x1, y1) is the

arc preceding e2 = (x2, y2) at P1 and e1 is not the arc preceding e2 at P2. Hence,

(f(e1, y1), f(e2, x2)) ∈ A(T (P1)) and (f(e1, y1), f(e2, x2)) 6∈ A(T (P2)). Therefore,

T (P1) 6= T (P2) and T is injective.

Claim 3. T is surjective.

Let C be a cycle in LH
2 (D). It follows from Observation 2 and the fact that

(f(e, x), f(e, y)) is in A(LH
2 (D)), for every e = (x, y) ∈ A(D), that C must be of the

form C = (f(e0, x0), f(e0, y0), f(e1, x1), f(e1, y1), . . . , f(eq, xq), f(eq, yq), f(e0, x0)),

where ei = (xi, yi) ∈ A(D).

Consider the sequence P = (x0, e0, x1, e1, x2, . . . , xq, eq, x0).

Claim 3.1. P is a closed H-trail in D.

For each k ∈ {1, . . . , q}, (f(ek, yk), f(ek+1, xk+1)) ∈ A(C) ⊆ A(LH
2 (D)) (the

subindices are taken modulo q + 1). So, it follows from the definition of LH
2 (D)

that yk−1 = xk and (c(ek−1), c(ek)) ∈ A(H). Hence, P is a closed H-walk in D.

On the other hand, since C is a cycle, it follows that ei appears just once in P , for

every i ∈ {1, . . . , q}, and P is a closed H-trail.

It follows from the definition of T that T (P ) = C. Therefore, T is surjective.

By Claims 2 and 3, we have that T is a bijection.

The underlying graph of LH
n (D) and Dx will be denoted by ULH

n (D) and UDx,

respectively. It follows from the definition of ULH
2 (D) that MJ = {f(e, x)f(e, y) ∈

E(ULH
2 (D)) | e = (x, y) ∈ A(D)} is a perfect matching, that we will called the joint

matching of ULH
2 (D).

Theorem 9. Let D be an H-colored multidigraph. There exists a partition of the arcs of
D into closed H-trails if and only if UDx has a perfect matching, for every x ∈ V (D).

Proof. Let D be an H-colored multidigraph and MJ the joint matching of ULH
2 (D).

Suppose that there exists a partition of the arcs of D into closed H-trails, say P =

{P1, . . . , Pk}.
It follows from Theorem 8 that C = {C1, . . . , Ck} is a set of cycles in LH

2 (D), where

T (Pi) = Ci. Since P = {P1, . . . , Pk} is a partition of the arcs of D, we have that

V (Ci) ∩ V (Cj) = ∅ (because A(Pi) ∩ A(Pj) = ∅) and V (LH
2 (D)) =

⋃k
i=1 V (Ci)

(because A(D) =
⋃k

i=1 A(Pi)). Therefore, C is a partition of the vertices of LH
2 (D)

into cycles. Moreover, C ′ = {C ′1, . . . , C ′k} is a partition of the vertices of ULH
2 (D)

into cycles, where C ′i is the underlying cycle of Ci, for each Ci ∈ C .

By construction of C ′i, we have that C ′i alternate edges between MJ and E(ULH
2 (D))\

MJ . Hence, M =
⋃k

i=1 E(Ci)\MJ is a perfect matching of ULH
2 (D)\MJ . Therefore,

for every x ∈ V (D), Mx = M ∩ E(UDx) is a perfect matching of UDx.
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Conversely, suppose that M is a perfect matching of ULH
2 (D) \ MJ . Then, by

Lemma 1, we have that there exists a partition of ULH
2 (D) into even cycles, say

C ′ = {C ′1, . . . , C ′k}, such that every cycle alternate edges between M and MJ .

Since C ′i alternate edges between MJ and M , C ′i must be of the form C ′i =

(f(e1, x1), f(e1, x2), f(e2, x2), f(e2, x3), . . . , f(en, xn), f(en, x1), f(e1, x1)).

It follows from Observation 2 that if (f(e1, x1), f(e1, x2)) ∈ A(LH
2 (D)), then C ′i is

a directed cycle in LH
2 (D). Otherwise, (f(e1, x2), f(e1, x1)) ∈ A(LH

2 (D)) and C
′−1
i

is a directed cycle in LH
2 (D). And then Ci will the directed cycle, i.e., Ci = C ′i or

Ci = C
′−1
i , for every i ∈ {1, . . . , k}.

Let C = {C1, . . . , Ck}. Since C ′ is a partition of the vertices of ULH
2 (D) into cycles,

it follows that C is a partition of the vertices of LH
2 (D) into directed cycles.

It follows from Theorem 8 that P = {P1, . . . , Pk} is a set of closed H-trails, where

Pi = T−1(Ci). Since C is a partition of the vertices of LH
2 (D), it follows that P is a

partition of the arcs of D into closed H-trails.

Definition 3. Let D be an H-colored multidigraph. The H-line digraph, denoted by
LH

1 (D), is the digraph such that V (LH
1 (D)) = A(D), and two different vertices e = (x, y)

and g = (u, v) are joining by only one arc from e to g in LH
1 (D) if and only if y = u and

(c(e), c(g)) ∈ A(H).

Notice that LH
1 (D) can be obtained from LH

2 (D) by contracting the arc

(f(e, u), f(e, v)) (and deleting the corresponding loop), for each e = (u, v) ∈ A(D), in

LH
2 (D).

In view of the Theorem 9, we can conclude the following version of Theorem 1 for

H-colored multidigraphs.

Theorem 10. Let D be an H-colored multidigraph. Then,

a. If LH
n (D) is hamiltonian, for some n ≥ 1, then D has a closed Euler H-trail.

b. D has a closed Euler H-trail if and only if LH
n (D) is hamiltonian, for every n ≥ 1.

Definition 4. Let D be an H-colored multidigraph with q arcs. We will say that D is an
H-pancircular multidigraph if and only if it contains a closed H-trail of length L, for every
2 ≤ L ≤ q.

Corollary 2. Let D be an H-colored multidigraph with q arcs. Then, D is an H-
pancircular multidigraph if and only if LH

1 (D) is pancyclic.

An H-colored multidigraph D is H-trail-connected, if and only if there is an H-trail

starting with arc f1 and ending with arc f2, for any pair of arcs f1 and f2 in D.

Theorem 11. Let D be an H-colored multidigraph such that UDu =
⋃ku

i=1Knu
i ,mu

i
, for

every u in V (D) and some ku ≥ 1. Then D has a closed Euler H-trail if and only if D is
H-trail-connected and, for every u ∈ V (D), nu

i = mu
i for each i ∈ {1, . . . , ku}.
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Proof. Let D be an H-colored multidigraph and Du =
⋃ku

i=1 Knu
i ,m

u
i
, for every u in

V (D) and some ku ≥ 1.

Suppose that D has a closed Euler H-trail. Then, D is H-trail-connected and by

Theorem 9, UDu has a perfect matching, for every u ∈ V (D), say Mu. Since UDu =⋃ku

i=1 Knu
i ,m

u
i

and Mu is a perfect matching, we have that nu
i = mu

i , for every i ∈
{1, . . . , ku}.
Conversely, suppose that D is H-trail-connected and, for every u ∈ V (D), nu

i = mu
i

for every i ∈ {1, . . . , ku}. Hence, UDu =
⋃ku

i=1 Knu
i ,n

u
i
.

It follows from Theorem 6 that UDu has a perfect matching, for every u ∈ V (D).

Then, by Theorem 9, D has a a partition of the arcs of D into closed H-trails, say

P = {P1, . . . , Pk}.
If k = 1, then D has a closed Euler H-trail. Otherwise, since D is H-trail-connected,

there is an H-trail in D starting with arc e1 ∈ A(P1) and ending with arc e2 ∈
A(D) \A(P1), say Q1.

Let g1 = (x1, x2) ∈ A(Q1) be the first arc in A(Q1) \A(P1) and g0 = (x0, x1) the arc

prior to g1 in Q1. Hence, g0 ∈ A(P1) and (c(g0), c(g1)) ∈ A(H). Suppose, without

loss of generality, that g1 ∈ A(P2).

Let P1 = (x1, f1, . . . , x0, g0, x1) and P2 = (x1, g1, x2, . . . , f0, x1). By the definition

of closed H-trail, we have that {(c(g0), c(f1)), (c(f0), c(g1))} ⊆ A(H). By the defi-

nition of Dx1
, we have that the arcs (f(g0, x1), f(f1, x1)), (f(f0, x1), f(g1, x1)) and

(f(g0, x1), f(g1, x1)) are in A(Dx1
). So, it follows from the Observation 1 and the

fact that UDx1
=

⋃kx1
i=1 Kn

x1
i ,n

x1
i

that (f(f0, x1), f(f1, x1)) ∈ A(Dx1
). Therefore,

(c(f0), c(f1)) ∈ A(H) and T1 = P1 ∪ P2 = (x1, f1, . . . , x0, g0, x1, g1, x2, . . . , f0, x1) is a

closed H-trail.

If A(T1) = A(D), then T1 is a closed Euler H-trail. Otherwise, there is an H-trail in

D starting with arc e3 ∈ A(T1) and ending with arc e4 ∈ A(D) \A(T1), say Q2.

Let g3 = (v1, v2) ∈ A(Q2) be the first arc in A(Q2) \ A(T1) and g2 = (v0, v1) the arc

prior to g3 in Q2. Hence, g2 ∈ A(T1) and (c(g2), c(g3)) ∈ A(H). Suppose, without

loss of generality, that g3 ∈ A(P3).

Let T1 = (v1, f3, . . . , g2, v1) and P2 = (v1, g3, v2, . . . , f2, v1). By the definition of

closed H-trail, it follows that {(c(g2), c(f3)), (c(f2), c(g3))} ⊆ A(H). By the defi-

nition of Dv1 , we have that the arcs (f(g2, v1), f(f3, v1)), (f(f2, v1), f(g3, v1)) and

(f(g2, v1), f(g3, v1)) are in A(Dv1). It follows from the Observation 1 and the fact

that UDv1 =
⋃kv1

i=1 Kn
v1
i ,n

v1
i

that the arc (f(f2, v1), f(f3, v1)) is in A(Dv1). Therefore,

(c(f2), c(f3)) ∈ A(H) and T2 = T1 ∪ P3 = (v1, f3, . . . , g2, v1, g3, v2, . . . , f2, v1) is a

closed H-trail.

If A(T2) = A(D), then T2 is a closed Euler H-trail. Otherwise, we can repeat this

procedure and after a finite number of steps we obtain that D has a closed Euler

H-trail.

Let D be an c-arc-colored multidigraph and v ∈ V (D). We will say that Fv = {e ∈
A(D) | e is incident with v}, and c(Fv) = {i | there exists e ∈ Fv such that c(e) = i}.

Corollary 3. Let D be a c-arc-colored multidigraph such that c(Fv) = {cv1 , cv2}, for
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every v ∈ V (D). Then, D is PC Euler if and only if D is PC trail-connected and for every
v ∈ V (D), d+cvi

(v) = d−cv3−i
(v), for i ∈ {1, 2}.

Proof. Suppose that D is a c-arc-colored multidigraph. Then, D is an H-

colored multidigraph, where H is the complete digraph without loops and V (H) =

{1, 2, . . . , c}. Notice that if P is a (closed) trail in D, then P is a PC (closed) trail if

and only if P is a (closed) H-trail.

Suppose that c(Fv) = {cv1, cv2}, for every v ∈ V (D). Let u be a vertex in V (D).

Claim 1. UDu = Kn1,m1
∪Kn2,m2

, where ni = d−cui
(u) and mi = d+cu3−i

(u).

Let E+
u = {f = (u, x) ∈ A(D) | for some x ∈ V (D)} and E−u = {f = (x, u) ∈

A(D) | for some x ∈ V (D)}. Hence, F+
cui

= {f ∈ E+
u | c(f) = cui } and F−cui

= {f ∈
E−u | c(f) = cui } are independent sets in UDu, for every i ∈ {1, 2}. Moreover, for

every i ∈ {1, 2}, fg ∈ E(UDu) if and only if f ∈ F−cui
and g ∈ F+

cu3−i
.

Notice that |F+
cui
| = d+cui

(u) and |F−cui | = d−cui
(u). Therefore, UDu = Kn1,m1

∪Kn2,m2
,

where ni = d−cui
(u) and mi = d+cu3−i

(u).

Suppose that D is PC Euler. Then, D is PC trail-connected and D has a closed Euler

H-trail. It follows from Theorem 11 and Claim 1 that d−cui
(u) = d+cu3−i

(u), for every

i ∈ {1, 2}.
Conversely, supposed that D is PC trail-connected and for every v ∈ V (D), d+cvi

(v) =

d−cv3−i
(v), for i ∈ {1, 2}. Since D is PC trail-connected, we have that D is H-trail-

connected.

It follows from Claim 1 and d+cui
(u) = d−cu3−i

(u), for i ∈ {1, 2}, that UDu = Kn1,n1 ∪
Kn2,n2

. Hence, by Theorem 11, D has a closed Euler H-trail, i.e., D is PC Euler.

Corollary 4 ([20]). Let D be a 2-arc-colored multidigraph. Then D is PC Euler if and
only if D is PC trail-connected and for every v ∈ V (D), d+i (v) = d−3−i(v), for i ∈ {1, 2}.

Theorem 12. Let D be an H-colored multidigraph. Then D is H-trail-connected if and
only of LH

2 (D) is strongly connected.

Proof. Let D be an H-colored multidigraph.

Suppose that D is H-trail-connected. Let f(e, u) and f(g, x) in V (LH
2 (D)).

Since D is an H-trail-connected graph, there exists an H-trail such that e = (u1, u2)

is the first arc and g = (x1, x2) is the last arc, say P = (u1, e, u2, e1, . . . , x1, g, x2).

Notice that T ′(P ) = (f(e, u1), f(e, u2), f(e1, u2), . . . , f(g, x1), f(g, x2)) is a path.

Since f(e, u) and f(g, x) are in V (LH
2 (D)), it follows that (u = u1 or u = u2) and

(x = x1 or x = x2). Therefore, there exits a path from f(e, u) to f(g, x) and LH
2 (D)

is strongly connected.

Conversely, suppose that LH
2 (D) is strongly connected. Let e = (x, y) and g = (u, v)

in A(D).

Since LH
2 (D) is strongly connected, there exists a path from f(e, x) to f(g, v),

say P . It follows from Observation 1 that P must be of the form P =

(f(e, x), f(e, y), f(e1, y), . . . , f(g, u), f(g, v)). So, T
′−1(P ) = (x, e, y, e1, . . . , u, g, v)
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is an H-trail such that its first arc is e and its last arc is g. Therefore, D is H-trail-

connected.

The next assertion follows directly from the previous results.

Corollary 5. Given a 2-arc-colored multidigraph, we can check in polynomial time
whether D has a close PC Euler trail.

4. H-coloring

After reading Theorem 11 arises naturally the following question: when does a mul-

tidigraph satisfy the hypothesis that UDu =
⋃ku

i=1 Knu
i ,m

u
i
, for every u in V (D)? In

this section we give an infinite family of digraphs H such that for every multidigraph

D without isolated vertices, and every H-coloring of D, UDu =
⋃ku

i=1 Knu
i ,m

u
i
, for

every u ∈ V (D).

Recall that V (Du) is the set of arcs in D incident with u, so in this section we will

use a simplified notation for the vertices of Du, the vertex f(e, u) will denote by e.

In the remainder of this section we will denote the empty graph with n vertices by

Kn,0.

Theorem 13. Let H be a digraph, possibly with loops, such that for every pair of vertices
u and v of H, N+

H (u) = N+
H (v) or N+

H (u) ∩ N+
H (v) = ∅. Then, for every multidigraph

D without isolated vertices, and every H-coloring of D, UDu =
⋃ku

i=1Knu
i ,mu

i
, for every

u ∈ V (D) and for some ku ≥ 1.

Proof. Suppose that H is a digraph, possibly with loops, such that for every pair of

vertices u and v of H, N+
H (u) = N+

H (v) or N+
H (u) ∩N+

H (v) = ∅.
Let D be an H-colored multidigraph without isolated vertices and u ∈ V (D).

We define V0 = {e ∈ V (UDu) : dUDu
(e) = 0}. Notice that UDu[V0] = Km,0, for

a non-negative integer m. Thus, we only need to prove that each component in

UDu − V0 is a complete bipartite graph.

Let B be a component of UDu with at least two vertices. It follows from Observation

1 that B is a bipartite graph with partite sets XB = X ∩ V (B) and YB = Y ∩ V (B),

where X and Y are the partite sets of Du defined in Observation 1.

Now we will prove that every vertex in XB is adjacent to every vertex in YB . So,

let x ∈ XB and y ∈ YB . Since B is a component of UDu, there is an xy-path in B,

namely T = (x = e1, e2, . . . , e2p = y).

Notice that for every i ∈ {1, . . . , p}, e2i−1 ∈ XB and e2i ∈ YB . It fol-

lows from the definition of Du that (c(e2i−1), c(e2i)) and (c(e2(i+1)−1), c(e2i))

are arcs of H, i.e., N+
H (c(e2i−1)) ∩ N+

H (c(e2(i+1)−1)) 6= ∅. So, by hypothesis,

N+
H (c(e2i−1)) = N+

H (c(e2(i+1)−1)). Thus, N+
H (c(e1)) = N+

H (c(e2p−1)). Moreover,

c(e2p) ∈ N+
H (c(e2p−1)) = N+

H (c(e1)). Hence, x = e1 and y = e2p are adjacent in B

and B is a complete bipartite graph.
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Therefore, every component in UDu − V0 is a complete bipartite graph and UDu =⋃ku

i=1 Knu
i ,m

u
i
, for every u ∈ V (D) and for some ku ≥ 1.

Proposition 1. Let H be a complete digraph with a loop in each vertex. Then, for every
multidigraph D without isolated vertices, and every H-coloring of D, UDu is a complete
bipartite graph or an empty graph, for every u ∈ V (D).

Proof. Suppose that H is a complete digraph with a loop in each vertex. Let D be

an H-colored multidigraph without isolated vertices, and u a vertex of D.

Case 1. d−(u) = 0 or d+(u) = 0.

It follows from Observation 1 that UDu is an empty graph.

Case 2. d−(u) 6= 0 and d+(u) 6= 0.

Let X = {e ∈ A(D) : e = (x, u) for some x ∈ V (D)} and Y = {f ∈ A(D) : f =

(u, x) for some x ∈ V (D)}. Since d−(u) 6= 0 and d+(u) 6= 0, we have that X 6= ∅ and

Y 6= ∅.
Consider e ∈ X and f ∈ Y . Since H is a complete graph with a loop at each vertex,

it follows that (c(e), c(f)) is an arc in H. Therefore, (e, f) is an arc in Du.

It follows by Observation 1 that V (UDu) = X ∪ Y . Therefore, UDu is a complete

bipartite graph.

Corollary 6. Let H be a digraph such that d+(x) = 1, for every vertex x in V (H).
Then, for every multidigraph D without isolated vertices, and every H-coloring of D, UDu =⋃ku

i=1Knu
i ,mu

i
, for every u ∈ V (D) and for some ku ≥ 1.

Proof. Let H be a digraph such that d+(x) = 1, for every vertex x in V (H). Hence,

for every pair of vertices, u and v, in H, we have that N+
H (u) = N+

H (v) or N+
H (u) ∩

N+
H (v) = ∅.

Therefore, by Theorem 13, every multidigraph D without isolated vertices, and every

H-coloring of D, UDu =
⋃ku

i=1 Knu
i ,m

u
i
, for every u ∈ V (D) and for some ku ≥ 1.

Corollary 7. Let H be a digraph such that d−(x) = 1, for every vertex x in V (H).
Then, for every multidigraph D without isolated vertices, and every H-coloring of D, UDu =⋃ku

i=1Knu
i ,mu

i
, for every u ∈ V (D) and for some ku ≥ 1.

Corollary 8. If H is a digraph with only loops, then for every multidigraph D without
isolated vertices, and every H-coloring of D, UDu =

⋃ku
i=1Knu

i ,mu
i
, for every u ∈ V (D) and

for some ku ≥ 1.

Corollary 9. If H is a cycle, then for every multidigraph D without isolated vertices,
and every H-coloring of D, UDu =

⋃ku
i=1Knu

i ,mu
i
, for every u ∈ V (D) and for some ku ≥ 1.

Corollary 10. If H is a path with a loop only in the end vertices, then for every
multidigraph D without isolated vertices, and every H-coloring of D, UDu =

⋃ku
i=1Knu

i ,mu
i
,

for every u ∈ V (D) and for some ku ≥ 1.



14 Characterizing arc-colored digraphs with an Eulerian trail

Acknowledgements: The authors wish to thank the anonymous referees for many

comments which substantially improved the rewriting of this paper.

This work was supported by CONACYT FORDECYT-PRONACES/39570/2020;

UNAM DGAPA-PAPIIT IN102320; and CONACYT scholarship for postgraduate

studies 782239.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no data sets

were generated or analyzed during the current study.

References

[1] S.K. Ahuja, Algorithms for Routing and Channel Assignment in Wireless Infras-

tructure Networks, The University of Arizona, 2010.

[2] J. Bang-Jensen, T. Bellitto, and A. Yeo, On supereulerian 2-edge-coloured graphs,

Graphs Combin. 37 (2021), no. 6, 2601–2620.

https://doi.org/10.1007/s00373-021-02377-8.

[3] J. Bang-Jensen and G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,

Springer Science & Business Media, 2008.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Lon-

don, 1976.

[5] J.M. Carraher and S.G. Hartke, Eulerian circuits with no monochromatic tran-

sitions in edge-colored digraphs, SIAM J. Discrete Math. 27 (2013), no. 4, 1924–

1939.

https://doi.org/10.1137/120878732.

[6] , Eulerian circuits with no monochromatic transitions in edge-colored di-

graphs with all vertices of outdegree three, SIAM J. Discrete Math. 31 (2017),

no. 1, 190–209.

https://doi.org/10.1137/140992850.

[7] D. Dorninger, Hamiltonian circuits determining the order of chromosomes, Dis-

crete Appl. Math. 50 (1994), no. 2, 159–168.

https://doi.org/10.1016/0166-218X(92)00171-H.

[8] D. Dorninger and W. Timischl, Geometrical constraints on bennett’s predictions

of chromosome order, Heredity 59 (1987), no. 3, 321–325.

https://doi.org/10.1038/hdy.1987.138.

[9] H. Galeana-Sánchez, R. Rojas-Monroy, R. Sánchez-López, and J.I. Villarreal-
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