Research Article

The *r*-dynamic chromatic number of the corona product of graphs

R. Sampathkumar[†], S. Anantharaman^{*}

Department of Mathematics, Annamalai University, Annamalainagar - 608 002, India [†]sampathmath@gmail.com ^{*}ksskcomputer@gmail.com

> Received: 20 December 2023; Accepted: 30 January 2025 Published Online: 3 February 2025

Abstract: Let G be a graph. An r-dynamic k-coloring of G is a proper k-coloring of G such that every vertex v in V(G) has neighbors in at least $\min\{r, d_G(v)\}$ different color classes. The r-dynamic chromatic number of G, denoted by $\chi_r(G)$, is the least k such that G has an r-dynamic k-coloring. We determine the r-dynamic chromatic number of the corona product $G \odot H$ of graphs G and H, in terms of the dynamic chromatic numbers of G and H.

Keywords: dynamic coloring, corona product.

AMS Subject classification: 05C15, 05C76

1. Introduction

We refer the book [7] for graph theoretical notation and terminology. Let G be a finite, simple, connected, undirected graph with vertex set V(G) and edge set E(G). For $v \in V(G)$, $d_G(v)$ and $N_G(v)$ denote, respectively, the degree of v, and the neighborhood of v. The minimum degree and the maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively.

A k-coloring of G is a map $c: V(G) \to S$, where |S| = k; it is proper if adjacent vertices receive different colors. An r-dynamic k-coloring is a proper k-coloring c of G such that on each vertex neighborhood $N_G(v)$ at least $\min\{r, d_G(v)\}$ colors are used, i.e., $|c(N_G(v))| \ge \min\{r, d_G(v)\}$. The r-dynamic chromatic number, introduced by Montgomery [23] and written as $\chi_r(G)$, is the minimum k such that G has an r-dynamic k-coloring.

^{*} Corresponding Author

^{© 2025} Azarbaijan Shahid Madani University

The 1-dynamic chromatic number of G is its chromatic number $\chi(G)$, i.e., $\chi_1(G) = \chi(G)$. The 2-dynamic chromatic number was introduced as *dynamic chromatic number* by Montgomery [23]. Given a graph G, form G^2 by adding edges joining nonadjacent vertices having a common neighbor in G. From the definition, we have the following (see [13]):

$$\begin{split} \chi_r(G) &= \chi_{\Delta(G)}(G), \text{ when } r \geq \Delta(G); \\ \chi_{\Delta(G)}(G) &= \chi(G^2); \\ \chi_1(G) \leq \chi_2(G) \leq \chi_3(G) \leq \cdots \leq \chi_{\Delta(G)}(G); \text{ and} \\ \chi_r(G) \geq \min\{r, \Delta(G)\} + 1. \\ \text{Hence, } \chi_r(G) &= \chi_{\Delta(G)}(G) \geq \Delta(G) + 1, \text{ when } r \geq \Delta(G); \text{ and } \chi_r(G) \geq r + 1, \text{ when} \\ r \leq \Delta(G). \end{split}$$

The *r*-dynamic chromatic number has been studied by several authors (see [2-6, 8-10, 12-15, 20-23, 25]). In particular, for the corona product, it has been studied in [1, 16-19, 24].

Given two simple graphs G and H with $V(G) = \{v_1, v_2, \ldots, v_n\}$ and n disjoint copies H_1, H_2, \ldots, H_n of H, the corona product of G and H, denoted by $G \odot H$, is the simple graph obtained from the disjoint union $G \cup (H_1 \cup H_2 \cup \cdots \cup H_n)$ by making the vertex v_i of G adjacent to every vertex of $H_i, i \in \{1, 2, \ldots, n\}$ (defined by Frucht and Harary [11]). In considering the corona product $G \odot H$, assume throughout that G is a connected graph with at least two vertices.

Observe that, for $i \in \{1, 2, ..., n\}$, $d_{G \odot H}(v_i) = d_G(v_i) + |V(H)|$ and for $u \in V(H_i)$, $d_{G \odot H}(u) = d_H(u) + 1$. Hence, $\delta(G \odot H) = \delta(H) + 1$ and $\Delta(G \odot H) = \Delta(G) + |V(H)|$. For disjoint graphs G_1 and G_2 , the graph $G_1 \vee G_2$ is the simple graph obtained from the disjoint union $G_1 \cup G_2$ by joining each vertex of G_1 to each vertex of G_2 .

In Section 2, for $1 \le r \le \Delta(G) + |V(H)|$, we compute the *r*-dynamic chromatic number of the corona product $G \odot H$.

2. Result

 $\begin{aligned} \text{Theorem 1.} \\ 1. \ \chi_1(G \odot H) &= \chi(G \odot H) = \max\{\chi(G), 1 + \chi(H)\}. \\ 2. \ \chi_2(G \odot H) &= \begin{cases} 3 & \text{if } \chi(G) = 2 & \text{and } E(H) = \emptyset, \\ \chi_1(G \odot H) & \text{otherwise.} \end{cases} \\ 3. \ For \ 3 \leq r \leq \Delta(H) + 1, \\ &\chi_r(G \odot H) = \max\{\chi(G), 1 + \chi_{r-1}(H)\}. \end{cases} \\ 4. \ For \ \Delta(H) + 2 \leq r \leq \chi_{\Delta(H)}(H), \\ &\chi_r(G \odot H) = \max\{\chi(G), 1 + \chi_{\Delta(H)}(H)\}. \end{cases} \\ 5. \ For \ \chi_{\Delta(H)}(H) + 1 \leq r \leq |V(H)|, \\ &\chi_r(G \odot H) = \max\{\chi(G), r + 1\}. \end{cases} \\ 6. \ For \ |V(H)| + 1 \leq r \leq |V(H)| + \Delta(G), \\ &\chi_r(G \odot H) = \max\{\chi_{r-|V(H)|}(G), r + 1\}. \end{aligned}$

Proof. Proof of 1. Let $k = \max\{\chi(G), 1 + \chi(H)\}$. As G and $K_1 \vee H$ are subgraphs of $G \odot H$, we have, $\chi(G \odot H) \ge \chi(G)$ and $\chi(G \odot H)$ $\geq \chi(K_1 \lor H) = 1 + \chi(H)$. Hence, $\chi(G \odot H) \geq k$.

Let c' be a proper $\chi(G)$ -coloring of G with colors $\{1, 2, \ldots, \chi(G)\}$ and let c'' be a proper $\chi(H)$ -coloring of H with colors $\{1, 2, \ldots, \chi(H)\}$. Define $c'_1 : V(G \odot H) \rightarrow \{1, 2, \ldots, k\}$ as follows: for $i \in \{1, 2, \ldots, n\}$, $c'_1(v_i) = c'(v_i)$ and c'_1 restricted to $V(H_i)$ is c''. We now recolor $G \odot H$ as follows. For $i \in \{1, 2, \ldots, n\}$, if $c'(v_i) \in \{1, 2, \ldots, \chi(H)\}$, recolor the vertices $u \in V(H_i)$ satisfying $c''(u) = c'(v_i)$ with the color $1 + \chi(H)$. This yields a proper k-coloring $c_1 : V(G \odot H) \rightarrow \{1, 2, \ldots, k\}$ of $G \odot H$. Hence, $\chi(G \odot H) \leq k$.

Thus, $\chi_1(G \odot H) = \chi(G \odot H) = k$.

Proof of 2. Let $k = \max\{\chi(G), 1 + \chi(H)\}$. Since $\chi_1(G \odot H) \leq \chi_2(G \odot H)$, we have $k \leq \chi_2(G \odot H)$. We consider two cases.

Case 1. $E(H) \neq \emptyset$.

Then, consider the k-coloring c_1 defined in the proof of 1. Take $c_2 = c_1$. Let $i \in \{1, 2, ..., n\}$. Since $E(H) \neq \emptyset$, we have $|c_2(N_{G \odot H}(v_i))| \geq |c_2(V(H_i))| \geq 2$. As $\min\{2, d_{G \odot H}(v_i)\} = \min\{2, d_G(v_i) + |V(H)|\} = 2$, we have $|c_2(N_{G \odot H}(v_i))| \geq \min\{2, d_{G \odot H}(v_i)\}$. Also, let $u \in V(H_i)$. For $d_H(u) \geq 1$, as $c_2(v_i) \notin c_2(N_{H_i}(u))$, we have $|c_2(N_{G \odot H}(u))| \geq |\{c_2(v_i)\}| + |c_2(N_{H_i}(u))| \geq 1 + 1 = 2 = \min\{2, 1 + d_H(u)\} = \min\{2, d_{G \odot H}(u)\}$; and for $d_H(u) = 0$, we have $|c_2(N_{G \odot H}(u))| = 1 = \min\{2, 1\} = \min\{2, 1 + d_H(u)\} = \min\{2, d_{G \odot H}(u)\}$. Hence, c_2 is a 2-dynamic k-coloring of $G \odot H$, and so $\chi_2(G \odot H) \leq k$. Thus, $\chi_2(G \odot H) = k$.

Case 2. $E(H) = \emptyset$.

Then, $H = K_m^c$, the complement of K_m , and $k = \max{\{\chi(G), 1 + \chi(H)\}} = \chi(G)$. We consider two subcases.

Subcase 2.1. $\chi(G) \ge 3$.

Let c' be a proper $\chi(G)$ -coloring of G with colors $\{1, 2, \dots, \chi(G)\}$.

For $m \geq 2$, extend c' to obtain $c_2 : V(G \odot H) \to \{1, 2, ..., \chi(G)\}$ so that, for each $i \in \{1, 2, ..., n\}$, $c'(v_i) \notin c_2(V(H_i))$ and $|c_2(V(H_i))| \geq 2$. Such an extension is possible. Let $i \in \{1, 2, ..., n\}$. Then $|c_2(N_{G \odot H}(v_i))| \geq |c_2(V(H_i))| \geq 2$. Since $\min\{2, d_{G \odot H}(v_i)\} = \min\{2, d_G(v_i) + |V(H)|\} = 2$, we have $|c_2(N_{G \odot H}(v_i))| \geq$ $\min\{2, d_{G \odot H}(v_i)\}$. Also, let $u \in V(H_i)$. Then $d_H(u) = 0$, and so $|c_2(N_{G \odot H}(u))| =$ $1 = \min\{2, 1\} = \min\{2, 1 + d_H(u)\} = \min\{2, d_{G \odot H}(u)\}$.

Now consider m = 1. Let $i \in \{1, 2, \ldots, n\}$, and let $v_j^{(i)}$ be an arbitrary vertex of G which is adjacent to v_i in G. Extend c' to obtain $c_2 : V(G \odot H) \to \{1, 2, \ldots, \chi(G)\}$ so that, for each $i \in \{1, 2, \ldots, n\}$, $c_2(V(H_i)) \in \{1, 2, \ldots, \chi(G)\} \setminus \{c'(v_i), c'(v_j^{(i)})\}$. Such an extension is possible. Then $|c_2(N_{G \odot H}(v_i))| \ge |\{c'(v_j^{(i)}), c_2(V(H_i))\}| \ge 2$. Since $\min\{2, d_{G \odot H}(v_i)\} = \min\{2, d_G(v_i) + |V(H)|\} = 2$, we have $|c_2(N_{G \odot H}(v_i))| \ge \min\{2, d_{G \odot H}(v_i)\}$. Also, let $V(H_i) = \{u\}$. Then $d_H(u) = 0$, and so $|c_2(N_{G \odot H}(u))| = 1 = \min\{2, 1\} = \min\{2, 1 + d_H(u)\} = \min\{2, d_{G \odot H}(u)\}$.

Hence, for $m \ge 1$, c_2 is a 2-dynamic $\chi(G)$ -coloring of $G \odot H$, and so $\chi_2(G \odot H) \le \chi(G)$. Thus $\chi_2(G \odot H) = \chi(G) = k$.

Subcase 2.2. $\chi(G) = 2$.

We have, $\chi_2(G \odot H) \ge \min\{2, \Delta(G \odot H)\} + 1 = \min\{2, \Delta(G) + |V(H)|\} + 1 = 3.$

Let c' be a proper 2-coloring of G with colors $\{1, 2\}$. Extend c' to obtain $c_2 : V(G \odot H) \to \{1, 2, 3\}$ so that, for each $i \in \{1, 2, \ldots, n\}$, $c_2(V(H_i)) = 3$. Let $i \in \{1, 2, \ldots, n\}$. Then $|c_2(N_{G \odot H}(v_i))| = 2$ and $\min\{2, d_{G \odot H}(v_i)\} = \min\{2, d_G(v_i) + |V(H)|\} = 2$. Also, let $V(H_i) = \{u\}$. Then $|c_2(N_{G \odot H}(u))| = 1$ and $\min\{2, d_{G \odot H}(u)\} = \min\{2, 1 + d_H(u)\} = \min\{2, 1\} = 1$. It follows that, c_2 is a 2-dynamic 3-coloring of $G \odot H$, and so $\chi_2(G \odot H) \leq 3$. Thus $\chi_2(G \odot H) = 3$. This completes the proof of 2.

Proof of 3. Any r-dynamic $\chi_r(G \odot H)$ -coloring c of $G \odot H$ yields a proper $\chi_r(G \odot H)$ -coloring for G and an (r-1)-dynamic $(\chi_r(G \odot H) - 1)$ -coloring for H_i (since $c(v_i) \notin c(V(H_i))$), where $i \in \{1, 2, ..., n\}$. Hence, $\chi(G) \leq \chi_r(G \odot H)$ and $\chi_{r-1}(H) \leq \chi_r(G \odot H) - 1$. Thus, $\chi_r(G \odot H) \geq \max\{\chi(G), 1 + \chi_{r-1}(H)\}$.

Let $k = \max\{\chi(G), 1 + \chi_{r-1}(H)\}$. Let c' be a proper $\chi(G)$ -coloring of G with colors $\{1, 2, \ldots, \chi(G)\}$ and let c'' be an (r-1)-dynamic $\chi_{r-1}(H)$ -coloring of H with colors $\{1, 2, \ldots, \chi_{r-1}(H)\}$ Define $c'_r : V(G \odot H) \to \{1, 2, \ldots, k\}$ as follows: for $i \in \{1, 2, \ldots, n\}, c'_r(v_i) = c'(v_i)$ and c'_r restricted to $V(H_i)$ is c''. We now recolor $G \odot H$ as follows. For $i \in \{1, 2, \ldots, n\}$, if $c'(v_i) \in \{1, 2, \ldots, \chi_{r-1}(H)\}$, recolor the vertices $u \in V(H_i)$ satisfying $c''(u) = c'(v_i)$ with the color $1 + \chi_{r-1}(H)$. This yields a proper k-coloring $c_r : V(G \odot H) \to \{1, 2, \ldots, k\}$ of $G \odot H$.

Let $i \in \{1, 2, ..., n\}$. Then $|c_r(N_{G \odot H}(v_i))| \ge |c_r(V(H_i))| = \chi_{r-1}(H) \ge r = \min\{r, d_G(v_i) + |V(H)|\} = \min\{r, d_{G \odot H}(v_i)\}$. Also, let $u \in V(H_i)$. Then $|c_r(N_{G \odot H}(u))| \ge |\{c_r(v_i)\}| + |c_r(N_{H_i}(u))| \ge 1 + \min\{r-1, d_H(u)\} = \min\{r, 1 + d_H(u)\} = \min\{r, d_{G \odot H}(u)\}$. Hence, c_r is an r-dynamic k-coloring of $G \odot H$, and so $\chi_r(G \odot H) \le k$. Thus $\chi_r(G \odot H) = k$.

Proof of 4. Any r-dynamic $\chi_r(G \odot H)$ -coloring c of $G \odot H$ yields a proper $\chi_r(G \odot H)$ -coloring for G and a $\Delta(H)$ -dynamic $(\chi_r(G \odot H) - 1)$ -coloring for H_i (since $c(v_i) \notin c(V(H_i))$), where $i \in \{1, 2, ..., n\}$. This implies that, $\chi(G) \leq \chi_r(G \odot H)$ and $\chi_{\Delta(H)}(H) \leq \chi_r(G \odot H) - 1$. Thus, $\chi_r(G \odot H) \geq \max\{\chi(G), 1 + \chi_{\Delta(H)}(H)\}$.

Consider the coloring $c_{\Delta(H)+1}$ obtained in the proof of 3. Take $c_r = c_{\Delta(H)+1}$. Let $i \in \{1, 2, ..., n\}$. Then, by hypothesis, we have $|c_r(N_{G \odot H}(v_i))| \ge |c_r(V(H_i))| \ge \chi_{\Delta(H)}(H) \ge r$. Since $r \le \chi_{\Delta(H)}(H) \le |V(H)|$, we have $\min\{r, d_{G \odot H}(v_i)\} = \min\{r, d_G(v_i) + |V(H)|\} = r$. Hence, $|c_r(N_{G \odot H}(v_i))| \ge \min\{r, d_{G \odot H}(v_i)\}$. Also, let $u \in V(H_i)$. Then $|c_r(N_{G \odot H}(u))| \ge |\{c_r(v_i)\}| + |c_r(N_{H_i}(u))| = 1 + d_H(u) = \min\{r, 1 + d_H(u)\} = \min\{r, d_{G \odot H}(u)\}$, since $1 + d_H(u) \le 1 + \Delta(H) < \Delta(H) + 2 \le r$. Hence, c_r is an *r*-dynamic *k*-coloring of $G \odot H$, where $k = \max\{\chi(G), 1 + \chi_{\Delta(H)}(H)\}$, and so $\chi_r(G \odot H) \le k$. Thus $\chi_r(G \odot H) = k$.

Proof of 5. $\chi_r(G \odot H) \ge \chi(G)$ and $\chi_r(G \odot H) \ge \min\{r, \Delta(G \odot H)\} + 1 = \min\{r, \Delta(G) + |V(H)|\} + 1 = r + 1$ implies that $\chi_r(G \odot H) \ge \max\{\chi(G), r + 1\}.$

Consider the coloring $c_{\Delta(H)+1}$ obtained in the proof of 3. Note that, from the proof of 4, $c_{\chi_{\Delta(H)}(H)} = c_{\Delta(H)+1}$. For each r satisfying $\chi_{\Delta(H)}(H) + 1 \leq r \leq |V(H)|$, let $k = \max\{\chi(G), r+1\}$. We define a k-coloring c_r from c_{r-1} recursively, which satisfies that $|c_r(V(H_i))| = |c_{r-1}(V(H_i))| + 1$, for every $i \in \{1, 2, ..., n\}$, as follows.

Observe that, for each $i \in \{1, 2, ..., n\}$, $|c_{\chi_{\Delta(H)}(H)}(V(H_i))| = \chi_{\Delta(H)}(H)$. Hence, $|c_{r-1}(V(H_i))| = |c_{r-2}(V(H_i))| + 1 = |c_{r-3}(V(H_i))| + 2 = ... = |c_{\chi_{\Delta(H)}(H)}(V(H_i))| + r - \chi_{\Delta(H)}(H) - 1 = r - 1 < |V(H)|$. Therefore, for each $i \in \{1, 2, ..., n\}$, in H_i , there exist vertices x_i and y_i such that $c_{r-1}(x_i) = c_{r-1}(y_i)$. Modify the onto mapping $c_{r-1}: V(G \odot H) \to S$ as follows:

• If $S \setminus c_{r-1}(V(H_i)) \neq \emptyset$, then take any $\alpha \in S \setminus c_{r-1}(V(H_i))$ and assign α to y_i .

• If $S \setminus c_{r-1}(V(H_i)) = \emptyset$, then assign a new color β to y_i .

Call this modified coloring as c_r .

Let $i \in \{1, 2, ..., n\}$. Then $|c_r(N_{G \odot H}(v_i))| \ge |c_r(V(H_i))| = |c_{r-1}(V(H_i))| + 1 = r$. Since $r \le |V(H)|$, we have $\min\{r, d_{G \odot H}(v_i)\} = \min\{r, d_G(v_i) + |V(H)|\} = r$. Hence, $|c_r(N_{G \odot H}(v_i))| \ge \min\{r, d_{G \odot H}(v_i)\}$. Also, let $u \in V(H_i)$. Then $|c_r(N_{G \odot H}(u))| \ge |\{c_r(v_i)\}| + |c_r(N_{H_i}(u))| = 1 + d_H(u) = \min\{r, 1 + d_H(u)\} = \min\{r, d_{G \odot H}(u)\}$, since $1 + d_H(u) \le 1 + \Delta(H) < \Delta(H) + 2 \le r$.

Hence, c_r is an r-dynamic k-coloring, where $k = \max\{\chi(G), r+1\}$. Proof of 6. Let c be an arbitrary r-dynamic $\chi_r(G \odot H)$ -coloring of $G \odot H$. Then $|c(N_G(v_i))|+|V(H)| \ge |c(N_{G \odot H}(v_i))| \ge \min\{r, d_{G \odot H}(v_i)\} = \min\{r, d_G(v_i)+|V(H)|\}$ $= |V(H)| + \min\{r - |V(H)|, d_G(v_i)\}$ implies $|c(N_G(v_i))| \ge \min\{r - |V(H)|, d_G(v_i)\}$. So, c yields an (r - |V(H)|)-dynamic $\chi_r(G \odot H)$ -coloring for G. Hence, $\chi_r(G \odot H)$ $\ge \chi_{r-|V(H)|}(G)$. This together with $\chi_r(G \odot H) \ge r+1$ imply that $\chi_r(G \odot H) \ge \max\{\chi_{r-|V(H)|}(G), r+1\}$.

Let r = |V(H)| + s, $1 \leq s \leq \Delta(G)$. Let $c' : V(G) \rightarrow \{1, 2, ..., \chi_s(G)\}$ be an s-dynamic $\chi_s(G)$ -coloring of G. For $i \in \{1, 2, ..., n\}$, let $A_i = c'(N_G(v_i)) =$ $\{\alpha_1, \alpha_2, ..., \alpha_{d_G(v_i)}\}$ if $\min\{s, d_G(v_i)\} = d_G(v_i)$ and $A_i = \{\alpha_1, \alpha_2, ..., \alpha_s\} \subseteq$ $c'(N_G(v_i))$ if $\min\{s, d_G(v_i)\} = s$, and let $B_i = A_i \cup \{c'(v_i)\}$. Let $k = \max\{\chi_s(G), r + 1\}$. Define $c_r : V(G \odot H) \rightarrow \{1, 2, ..., k\}$ as follows: For $i \in \{1, 2, ..., n\}, c_r(v_i) =$ $c'(v_i)$ and assign colors to the vertices of H_i so that c_r restricted to $V(H_i)$ is a one-to-one function from $V(H_i)$ to $\{1, 2, ..., k\} \setminus B_i$.

Let $i \in \{1, 2, ..., n\}$. Then $|c_r(N_{G \odot H}(v_i))| \ge \min\{s, d_G(v_i)\} + |V(H)| = \min\{s + |V(H)|, d_G(v_i) + |V(H)|\} = \min\{r, d_{G \odot H}(v_i)\}$. Also, let $u \in V(H_i)$. Then $|c_r(N_{G \odot H}(u))| = 1 + d_H(u) = \min\{r, 1 + d_H(u)\} = \min\{r, d_{G \odot H}(u)\}$. Hence, c_r is an r-dynamic k-coloring of $G \odot H$, and so $\chi_r(G \odot H) \le k$.

This completes the proof of 6 and also the proof of the theorem.

In Section 3, we deduce the *r*-dynamic chromatic number of the corona products $(G_1 \vee K_1) \odot H$ and $G \odot (H_1 \vee K_1)$.

3. Corollaries

It is easy to observe that, for any graph F, if $E(F) \neq \emptyset$, then

$$\chi_s(F \lor K_1) = \begin{cases} \chi(F) + 1 & \text{for } s \in \{1, 2\}, \\ \chi_{s-1}(F) + 1 & \text{for } 3 \le s \le \Delta(F) + 1, \\ \chi_{\Delta(F)}(F) + 1 & \text{for } \Delta(F) + 2 \le s \le \chi_{\Delta(F)}(F), \\ s + 1 & \text{for } \chi_{\Delta(F)}(F) + 1 \le s \le |V(F)|; \end{cases}$$

if $E(F) = \emptyset$, then

$$\chi_s(F \lor K_1) = s + 1 \text{ for } 1 \le s \le |V(F)|.$$

Hence, from Theorem 1, we have the following corollaries 1, 2, 3 and 4.

Let $G = G_1 \vee K_1$ and $E(G_1) = \emptyset$. Then, G is the star $S_q = K_{1,q}$ with q + 1 vertices, where $q = |V(G_1)|$. For q = 1, $S_1 = K_2$. For $q \ge 2$, $\Delta(S_q) = q$ and, for $1 \le s \le q$, $\chi_s(S_q) = s + 1$.

 $\begin{array}{l} \text{Corollary 3.} \quad Let \ n \geq 1. \\ 1. \ \chi_1(S_n \odot H) = 1 + \chi(H). \\ 2. \ \chi_2(S_n \odot H) = \begin{cases} 3 & \text{if } E(H) = \emptyset, \\ \chi_1(S_n \odot H) & \text{otherwise.} \end{cases} \\ 3. \ For \ 3 \leq r \leq \Delta(H) + 1, \ \chi_r(S_n \odot H) = 1 + \chi_{r-1}(H). \\ 4. \ For \ \Delta(H) + 2 \leq r \leq \chi_{\Delta(H)}(H), \ \chi_r(S_n \odot H) = 1 + \chi_{\Delta(H)}(H). \\ 5. \ For \ \chi_{\Delta(H)}(H) + 1 \leq r \leq |V(H)| + n, \ \chi_r(S_n \odot H) = r + 1. \end{cases}$

Corollary 4. Let $m \ge 1$. 1. $\chi_1(G \odot S_m) = \max\{\chi(G), 3\}$. 2. For $2 \le r \le m+2$, $\chi_r(G \odot S_m) = \max\{\chi(G), r+1\}$. 3. For $m+3 \le r \le m+1+\Delta(G)$, $\chi_r(G \odot S_m) = \max\{\chi_{r-m-1}(G), r+1\}$.

4. Associativity

In this section, we obtain the r-dynamic chromatic number of the corona product of three graphs.

Let G_1 , G_2 and G_3 be graphs with n_1 , n_2 and n_3 vertices, respectively. Then the graphs $G_1 \odot G_2$, $G_2 \odot G_3$, $(G_1 \odot G_2) \odot G_3$ and $G_1 \odot (G_2 \odot G_3)$, respectively, have $n_1(1+n_2)$, $n_2(1+n_3)$, $n_1(1+n_2)(1+n_3)$ and $n_1(1+n_2(1+n_3))$ vertices. It follows that, we consider at-least two different graphs, then $(G_1 \odot G_2) \odot G_3$ and $G_1 \odot (G_2 \odot G_3)$ are non-isomorphic and so the operation \odot is not associative. Suppose that $G_1 \equiv$ $G_2 \equiv G_3$, then the operation \odot is associative.

From Theorem 1, we have the following corollaries.

Corollary 5. Let $G' = (G_1 \odot G_2) \odot G_3$. 1. $\chi_1(G') = \max\{\chi(G_1), \chi(G_2) + 1, \chi(G_3) + 1\}.$ 2. $\chi_2(G') = \begin{cases} 3 & \text{if } \chi(G_1) \le 2, \ E(G_2) = \emptyset \text{ and } E(G_3) = \emptyset, \\ \chi_1(G') & \text{otherwise.} \end{cases}$ 3. For $3 \le r \le \Delta(G_3) + 1$, $\chi_r(G') = \max\{\chi(G_1), \chi(G_2) + 1, \chi_{r-1}(G_3) + 1\}.$ 4. For $\Delta(G_3) + 2 \le r \le \chi_{\Delta(G_3)}(G_3)$, $\chi_r(G') = \max\{\chi(G_1), \chi(G_2) + 1, \chi_{\Delta(G_3)}(G_3) + 1\}.$ 5. For $\chi_{\Delta(G_3)}(G_3) + 1 \le r \le |V(G_3)| + 1$, $\chi_r(G') = \max\{\chi(G_1), \chi(G_2) + 1, r + 1\}.$ 6. $\chi_{|V(G_3)|+2}(G')$ $=\begin{cases} |V(G_3)|+3 & \text{if } \chi(G_1)=2 \text{ and } E(G_2)=\emptyset, \\ \max\{\chi(G_1),\chi(G_2)+1,|V(G_3)|+3\} & \text{otherwise.} \end{cases}$ 7. For $|V(G_3)| + 3 \le r \le |V(G_3)| + \Delta(G_2) + 1$, $\chi_r(G') = \max\{\chi(G_1), \chi_{r-|V(G_3)|-1}(G_2) + 1, r+1\}.$ 8. For $|V(G_3)| + \Delta(G_2) + 2 \le r \le |V(G_3)| + \chi_{\Delta(G_2)}(G_2)$, $\chi_r(G') = \max\{\chi(G_1), \chi_{\Delta(G_2)}(G_2) + 1, r+1\}.$ 9. For $|V(G_3)| + \chi_{\Delta(G_2)}(G_2) + 1 \le r \le |V(G_3)| + |V(G_2)|$, $\chi_r(G') = \max\{\chi(G_1), r+1\}.$ 10. For $|V(G_3)| + |V(G_2)| + 1 \le r \le |V(G_3)| + |V(G_2)| + \Delta(G_1)$, $\chi_r(G') = \max\{\chi_{r-|V(G_3)|-|V(G_2)|}(G_1), r+1\}.$

 $\begin{array}{l} \textbf{Corollary 6.} \quad Let \ H' = G_1 \odot (G_2 \odot G_3). \\ 1. \ \chi_2(H') = \chi_1(H') = \max\{\chi(G_1), \chi(G_2) + 1, \chi(G_3) + 2\}. \\ 2. \ \chi_3(H') \\ = \begin{cases} \max\{\chi(G_1), 4\} & \text{if } \chi(G_2) = 2 \ \text{ and } E(G_3) = \emptyset, \\ \max\{\chi(G_1), \chi(G_2) + 1, \chi(G_3) + 2\} & \text{otherwise.} \end{cases} \\ 3. \ For \ 4 \le r \le \Delta(G_3) + 2, \\ \chi_r(H') = \max\{\chi(G_1), \chi(G_2) + 1, \chi_{r-2}(G_3) + 2\}. \\ 4. \ For \ \Delta(G_3) + 3 \le r \le \chi_{\Delta(G_3)}(G_3) + 1, \\ \chi_r(H') = \max\{\chi(G_1), \chi(G_2) + 1, \chi_{\Delta(G_3)}(G_3) + 2\}. \\ 5. \ For \ \chi_{\Delta(G_3)}(G_3) + 2 \le r \le |V(G_3)| + 1, \\ \chi_r(H') = \max\{\chi(G_1), \chi(G_2) + 1, r + 1\}. \\ 6. \ For \ |V(G_3)| + 2 \le r \le |V(G_3)| + \Delta(G_2) + 1, \\ \chi_r(H') = \max\{\chi(G_1), \chi_{r-1-|V(G_3)|}(G_2) + 1, r + 1\}. \end{array}$

 $\begin{aligned} & 7. \ For \ |V(G_3)| + \Delta(G_2) + 2 \leq r \leq \max\{\chi_{\Delta(G_2)}(G_2), |V(G_3)| + \Delta(G_2) + 1\}, \\ & \chi_r(H') = \max\{\chi(G_1), \chi_{\Delta(G_2)}(G_2) + 1, |V(G_3)| + \Delta(G_2) + 2\}. \\ & 8. \ For \ \max\{\chi_{\Delta(G_2)}(G_2), |V(G_3)| + \Delta(G_2) + 1\} + 1 \leq r \leq (1 + |V(G_3)|) |V(G_2)|, \\ & \chi_r(H') = \max\{\chi(G_1), r + 1\}. \\ & 9. \ For \ (1 + |V(G_3)|) |V(G_2)| + 1 \leq r \leq (1 + |V(G_3)|) |V(G_2)| + \Delta(G_1), \\ & \chi_r(H') = \max\{\chi_{r-(1 + |V(G_3)|) |V(G_2)| (G_1), r + 1\}. \end{aligned}$

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- I.H. Agustin, D.A.R. Wardani, B.J. Septory, A.I. Kristiana, and E.Y. Kurniawati, The r-dynamic chromatic number of corona of order two of any graphs with complete graph, J. Phys. Conf. Ser. 1306 (2019), no. 1, Article ID: 012046.
- [2] A. Ahadi, S. Akbari, A. Dehghan, and M. Ghanbari, On the difference between chromatic number and dynamic chromatic number of graphs, Discrete Math. 312 (2012), no. 17, 2579–2583. https://doi.org/10.1016/j.disc.2011.09.006.
- [3] S. Akbari, M. Ghanbari, and S. Jahanbakam, On the dynamic chromatic number of graphs, Contemp. Math. 531 (2010), 11–18.
- [4] S. Akbari, M. Ghanbari, and S. Jahanbekam, On the dynamic coloring of cartesian product graphs., Ars Combin. 114 (2014), 161–168.
- [5] _____, On the dynamic coloring of strongly regular graphs, Ars Combin. 113 (2014), 205–210.
- [6] M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160 (2012), no. 15, 2098–2103. https://doi.org/10.1016/j.dam.2012.05.017.
- [7] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer Science & Business Media, 2012.
- [8] N. Bowler, J. Erde, F. Lehner, M. Merker, M. Pitz, and K. Stavropoulos, A counterexample to Montgomery's conjecture on dynamic colourings of regular graphs, Discrete Appl. Math. 229 (2017), 151–153. https://doi.org/10.1016/j.dam.2017.05.004.
- [9] Y. Chen, S. Fan, H.J. Lai, H. Song, and L. Sun, On dynamic coloring for planar graphs and graphs of higher genus, Discrete Appl. Math. 160 (2012), no. 7-8, 1064–1071.

https://doi.org/10.1016/j.dam.2012.01.012.

[10] A. Dehghan and A. Ahadi, Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number, Discrete Appl. Math. 160 (2012),

no. 15, 2142-2146.

https://doi.org/10.1016/j.dam.2012.05.003.

- [11] R. Frucht and F. Harary, On the corona of two graphs, Aeq. Math. 4 (1970), 322–325.
 - https://doi.org/10.1007/BF01844162.
- [12] H. Furmańczyk, J.V. Vivin, and N. Mohanapriya, r-dynamic chromatic number of some line graphs, Indian J. Pure Appl. Math. 49 (2018), no. 4, 591–600. https://doi.org/10.1007/s13226-018-0288-1.
- [13] S. Jahanbekam, J. Kim, О. Suil, and D.B. West, $On \ r$ -dynamic graphs, Discrete 206(2016),coloring ofAppl. Math. 65 - 72.https://doi.org/10.1016/j.dam.2016.01.016.
- [14] R. Kang, T. Müller, and D.B. West, On r-dynamic coloring of grids, Discrete Appl. Math. 186 (2015), 286–290. https://doi.org/10.1016/j.dam.2015.01.020.
- [15] S.J. Kim, S.J. Lee, and W.J. Park, Dynamic coloring and list dynamic coloring of planar graphs, Discrete Appl. Math. 161 (2013), no. 13-14, 2207–2212. https://doi.org/10.1016/j.dam.2013.03.005.
- [16] A.I. Kristiana, Dafik, M.I. Utoyo, and I.H. Agustin, On r-dynamic chromatic number of the corronation of path and several graphs, Int. J. Adv. Eng. Res. Sci. 4 (2017), no. 4, 96–101. https://dx.doi.org/10.22161/ijaers.4.4.13.
- [17] A.I. Kristiana and M.I. Utoyo, On the r-dynamic chromatic number of the cor-
- ronation by complete graph, J. Phys. Conf. Ser. **1008** (2018), no. 1, Article ID: 012033.
- [18] A.I. Kristiana, M.I. Utoyo, R. Alfarisi, and Dafik, *r-dynamic coloring of the corona product of graphs*, Discrete Math. Algorithms Appl. **12** (2020), no. 2, Article ID: 2050019. https://doi.org/10.1142/S1793830920500196.
- [19] A.I. Kristiana, M.I. Utoyo, and Dafik, The lower bound of the r-dynamic chromatic number of corona product by wheel graphs, AIP Conf. Proc. 2014 (2018), no. 1, Article ID: 020054.
- [20] H.J. Lai, B. Montgomery, and H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003), no. 3, 193–201.
- [21] X. Li, X. Yao, W. Zhou, and H. Broersma, Complexity of conditional colorability of graphs, Appl. Math. Lett. 22 (2009), no. 3, 320–324. https://doi.org/10.1016/j.aml.2008.04.003.
- [22] X. Li and W. Zhou, The 2nd-order conditional 3-coloring of claw-free graphs, Theoret. Comput. Sci. **396** (2008), no. 1-3, 151–157. https://doi.org/10.1016/j.tcs.2008.01.034.
- [23] B. Montgomery, Dynamic Coloring of Graphs, West Virginia University, 2001.
- [24] B.J. Septory, A.I. Kristiana, I.H. Agustin, and D.A.R. Wardani, On r-dynamic chromatic number of coronation of order two of any graphs with path graph, IOP Conf. Ser.: Earth Environ. Sci. 243 (2019), no. 1, Article ID: 012113. https://doi.org/10.1088/1755-1315/243/1/012113.

 [25] A. Taherkhani, On r-dynamic chromatic number of graphs, Discrete Appl. Math.
201 (2016), 222–227. https://doi.org/10.1016/j.dam.2015.07.019.