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Abstract: Let G be a graph. An r-dynamic k-coloring of G is a proper k-coloring
of G such that every vertex v in V(G) has neighbors in at least min{r, dg(v)} different
color classes. The r-dynamic chromatic number of G, denoted by xr(G), is the least
k such that G has an r-dynamic k-coloring. We determine the r-dynamic chromatic
number of the corona product G ® H of graphs G and H, in terms of the dynamic
chromatic numbers of G and H.
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1. Introduction

We refer the book [7] for graph theoretical notation and terminology. Let G be a finite,
simple, connected, undirected graph with vertex set V(G) and edge set F(G). For v €
V(G), dg(v) and Ng(v) denote, respectively, the degree of v, and the neighborhood
of v. The minimum degree and the maximum degree of G are denoted by §(G) and
A(G), respectively.

A E-coloring of G is a map ¢ : V(G) — S, where |S| = k; it is proper if adjacent
vertices receive different colors. An r-dynamic k-coloring is a proper k-coloring c of
G such that on each vertex neighborhood Ng(v) at least min{r,dg(v)} colors are
used, i.e., |¢(Ng(v))| > min{r,dg(v)}. The r-dynamic chromatic number, introduced
by Montgomery [23] and written as x,(G), is the minimum & such that G has an
r~dynamic k-coloring.
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2 The r-dynamic chromatic number of the corona product of graphs

The 1-dynamic chromatic number of G is its chromatic number x(G), i,e., x1(G) =
X(G). The 2-dynamic chromatic number was introduced as dynamic chromatic number
by Montgomery [23]. Given a graph G, form G? by adding edges joining nonadjacent
vertices having a common neighbor in G. From the definition, we have the following
(see [13)):

Xr(G) = xa(e)(G), when r = A(G);

Xa@6)(G) = X(G?);

X1(G) < x2(G) < x3(G) < -+ < xa(e) (G); and

Xr(G) > min{r, A(G)} + 1.

Hence, x,(G) = xa@)(G) > A(G) + 1, when r» > A(G); and x,(G) > r + 1, when
r < A(G).

The rdynamic chromatic number has been studied by several authors (see [2-6, 8-
10, 12-15, 2023, 25]). In particular, for the corona product, it has been studied in
[1, 16-19, 24].

Given two simple graphs G and H with V(G) = {v1, va,...,v,} and n disjoint copies
H,y,Hs,...,H, of H, the corona product of G and H, denoted by G® H, is the simple
graph obtained from the disjoint union G U (H; U Hy U --- U H,,) by making the
vertex v; of G adjacent to every vertex of H;, i € {1,2,...,n} (defined by Frucht and
Harary [11]). In considering the corona product G ® H, assume throughout that G is
a connected graph with at least two vertices.

Observe that, for i € {1,2,...,n}, deeu(v;) = dg(v;) + |V(H)| and for u € V(H;),
dgon(u) =dg(u)+1. Hence, (GO H) =§(H)+1 and A(GO H) = A(G) + |V (H)|.
For disjoint graphs GG; and G2, the graph G, V G is the simple graph obtained from
the disjoint union G; U G2 by joining each vertex of GG; to each vertex of Gs.

In Section 2, for 1 < r < A(G)+|V (H)|, we compute the r~dynamic chromatic number
of the corona product G ® H.

2. Result

Theorem 1.
1. x1(GO H) = x(G® H) = max{x(G),1+ x(H)}.
3 if x(G)=2 and E(H) =10,
X1(G© H) otherwise.
3. For3<r<A(H)+1,

xr(G O H) = max{x(G), 1+ xr—1(H)}.
4. For A(H) +2 < r < xaumn (H),

xr(G © H) = max{x(G), 1 + xam (H)}.
5. For xamy(H)+1<r <|V(H)|,

xr(G©® H) = max{x(G),r + 1}.
6. For [V(H)|+1<r <|V(H)|+ A(G),

Xxr(G © H) = max{x,—jvm)(G),r + 1}.

2. x2(GOH) =

Proof.  Proof of 1. Let k = max{x(G),1+ x(H)}.
As G and K3 V H are subgraphs of G® H, we have, x(G® H) > x(G) and x(G©® H)
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> x(K1VH) =1+ x(H). Hence, x(G® H) > k.

Let ¢’ be a proper x(G)-coloring of G with colors {1,2,...,x(G)} and let ¢” be a
proper x(H)-coloring of H with colors {1,2,...,x(H)}. Define ¢} : V(G ® H) —
{1,2,...,k} as follows: for i € {1,2,...,n}, ¢j(v;) = ¢'(v;) and ¢ restricted to
V(H;) is ¢”. We now recolor G ® H as follows. For i € {1,2,...,n}, if ¢/(v;) €
{1,2,...,x(H)}, recolor the vertices u € V(H;) satisfying ¢”(u) = ¢’(v;) with the
color 1+ x(H). This yields a proper k-coloring ¢; : V(GOH) — {1,2,...,k} of GOH.
Hence, x(G® H) < k.

Thus, x1 (GO H) = x(Go® H) = k.

Proof of 2. Let k = max{x(G),1+ x(H)}. Since x1(G ® H) < x2(G ® H), we have
k < x2(G ® H). We consider two cases.

Case 1. E(H) # 0.

Then, consider the k-coloring c¢; defined in the proof of 1. Take c; = ¢;. Let
i € {1,2,...,n}. Since E(H) # 0, we have |ca(Ngou(v:))| > |c2a(V(H;))| > 2.
As min{2,dgen(v;)} = min{2,dg(v;) + |V(H)|} = 2, we have |ca(Ngom(vi))| >
min{2, dgem(vi)}. Also, let uw € V(H;). For dg(u) > 1, as ca(v;) ¢ c2(Ng, (u)), we
have [ca(Nao ()] > [{ea(u)}] + lea(Nir, ()] = 14+ 1= 2 = min{2,1 + dpr(u)} =
min{2, dgem(u)}; and for dy(u) = 0, we have |c2(Ngom(u))| = 1 = min{2,1} =
min{2,1 +dg(u)} = min{2, dgom (u)}. Hence, ¢z is a 2dynamic k-coloring of G ® H,
and so x2(G ® H) < k. Thus, x2(G©® H) = k.

Case 2. E(H) = 0.

Then, H = K¢,, the complement of K,,, and k = max{x(G),1+ x(H)} = x(G). We
consider two subcases.

Subcase 2.1. x(G) > 3.

Let ¢’ be a proper x(G)-coloring of G with colors {1,2,...,x(G)}.

For m > 2, extend ¢’ to obtain ¢ : V(G ® H) — {1,2,...,x(G)} so that, for
each i € {1,2,...,n}, ¢/(v;) ¢ c2(V(H;)) and |c2(V(H;))| > 2. Such an exten-
sion is possible. Let i € {1,2,...,n}. Then |ca(Ngowr(vi))| > |c2(V(H;))| > 2.
Since min{2,dger(vi)} = min{2,dg(v;) + |V(H)|} = 2, we have |ca(Ngem (v;:))| >
min{2, dgem(v;)}. Also, let u € V(H;). Then dy(u) = 0, and so |ca(Ngom(u))| =
1 =min{2,1} = min{2,1 4+ dg(u)} = min{27dG@H(u)g.
Now consider m = 1. Let i € {1,2,...,n}, and let sz) be an arbitrary vertex of G
which is adjacent to v; in G. Extend ¢’ to obtain ¢3 : V(G ©® H) — {1,2,...,x(G)}
so that, for each ¢ € {1,2,...,n}, c2(V(H;)) € {1,2,...,x(G)} \ {c’(vi),c'(v](-i))}.
Such an extension is possible. Then |co(Ngem(vi))| > |{c’(v](.i)),02(V(Hi))}| > 2.
Since min{2,dgey(vi)} = min{2,dg(v;) + |V(H)|} = 2, we have |ca(Ngom (vi))| >
min{2, dgem(v;)}. Also, let V(H;) = {u}. Then dy(u) = 0, and so |ca(Ngon(v))| =
1 =min{2,1} = min{2,1 4+ dy(v)} = min{2, dgou (u)}.

Hence, for m > 1, ¢ is a 2-dynamic x(G)-coloring of G ® H, and so x2(G ® H) <
X(G). Thus x2(G ®© H) = x(G) = k.

Subcase 2.2. x(G) = 2.

We have, x2(G® H) > min{2, A(G® H)} + 1 =min{2, A(G) + |[V(H)|} + 1 =3.
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Let ¢’ be a proper 2-coloring of G with colors {1,2}. Extend ¢’ to obtain ¢z : V(G ©®
H) — {1,2,3} so that, for each i € {1,2,...,n}, co(V(H;)) =3. Let i € {1,2,...,n}.
Then |c2(Ngem(v:))| = 2 and min{2,dgen(v;)} = min{2,dg(v;) + |V(H)|} = 2.
Also, let V(H;) = {u}. Then |ca(Ngemr(u))] =1 and min{2,dgem(u)} = min{2,1 +
dg(u)} = min{2,1} = 1. It follows that, ¢y is a 2-dynamic 3-coloring of G ® H, and
50 x2(G ® H) < 3. Thus x2(G ® H) = 3. This completes the proof of 2.

Proof of 8. Any r-dynamic x, (G ® H)-coloring ¢ of G ® H yields a proper x,.(G ®
H)-coloring for G and an (r — 1)-dynamic (x,(G ® H) — 1)-coloring for H; (since
c(v;) ¢ ¢(V(H;))), where ¢ € {1,2,...,n}. Hence, x(G) < x-(GO® H) and x,_1(H) <
Xr(G©® H) — 1. Thus, x,(G©® H) > max{x(G),1 + x,—1(H)}.

Let k£ = max{x(G),1 + x»—1(H)}. Let ¢’ be a proper x(G)-coloring of G with col-
ors {1,2,...,x(G)} and let ¢” be an (r — 1}dynamic x,_1(H)-coloring of H with
colors {1,2,...,xr—1(H).} Define ¢, : V(G ® H) — {1,2,...,k} as follows: for
i€ {1,2,...,n}, c.(v;) = c¢'(v;) and ¢, restricted to V(H;) is ¢”. We now recolor
G © H as follows. For i € {1,2,...,n}, if ¢/(v;) € {1,2,...,xr—1(H)}, recolor the
vertices u € V(H;) satisfying ¢”(u) = ¢’(v;) with the color 1 + x,—1(H). This yields
a proper k-coloring ¢, : V(G ® H) — {1,2,...,k} of G ® H.

Let ¢ € {1,2,...,n}. Then |¢;(Ngou(w:))| > |e(V(H))| = xr—1(H) >
r = min{r,dg(v;) + |V(H)|} = min{r,dgom(vi;)}. Also, let v € V(H;). Then
er(Naom ()] = Hen(w)} + len(Nar, ()] 2 1+ minfr — 1, dyr(u)} = min{r,1 +
dp(u)} = min{r,dgemr(u)}. Hence, ¢, is an r-dynamic k-coloring of G ® H, and so
Xr(GO H) < k. Thus x,(G® H) = k.

Proof of 4. Any r-dynamic x,.(G © H)-coloring ¢ of G ® H yields a proper
Xr(G® H)-coloring for G and a A(H)-dynamic (x,(G® H) —1)-coloring for H; (since
c(v;) ¢ ¢(V(H;))), where i € {1,2,...,n}. This implies that, x(G) < x»(G ® H) and
Xan (H) < x(G© H) — 1. Thus, x-(G © H) > max{x(G), 1+ xam)(H)}.
Consider the coloring ca(p)41 obtained in the proof of 3. Take ¢, = ca()41- Let
i € {1,2,...,n}. Then, by hypothesis, we have |c.(Ngon(v:))| > |e(V(H;))| >
Xa) (H) > 7. Since r < xamy(H) < |V(H)|, we have min{r, dgom(v;)} = min{r,
da(v;) + |V(H)|} = r. Hence, |¢p(Ngon(v:))| > min{r,deom(v;)}. Also, let u €
V(Hy). Then ley(Naom(w)] = Her(v)H + lon(Na, ()] = 1+ dir(u) = min{r, 1 +
dp(v)} = min{r,deen(u)}, since 1 +dg(u) <1+ A(H) < A(H) + 2 < r. Hence, ¢,
is an r~dynamic k-coloring of G ® H, where k = max{x(G),1 + xau)(H)}, and so
Xr(GO® H) < k. Thus x.(G® H) = k.

Proof of 5. x,(GOH) > x(G) and x,,(GOH) > min{r, A(GOH)}+1 = min{r, A(G)+
|[V(H)|} +1=r+1 implies that x,(G ® H) > max{x(G),r + 1}.

Consider the coloring ca ()41 obtained in the proof of 3. Note that, from the proof
of 4, X oy (H) = CAH)+1- For each r satisfying xam)(H) +1 < r < |V(H)|, let k
= max{x(G),r + 1}. We define a k-coloring ¢, from c,_; recursively, which satisfies
that |c.(V(H;))| = |er—1(V(H;))| + 1, for every i € {1,2,...,n}, as follows.

Observe that, for each i € {1,2,...,n}, |CXA(H)(H)(V(Hi))| = Xam) (H). Hence,
e (V(Hi))| = |er—2(V(H)) [+ 1 = [er3(V(H))| +2 = ... = [ey, , an(V(Hi))| +
7= Xam(H) =1 =71 —1< |V(H)|. Therefore, for each i € {1,2,...,n}, in H,,



R. Sampathkumar, S. Anantharaman 5

there exist vertices x; and y; such that ¢,—1(z;) = ¢,—1(y;). Modify the onto mapping
¢r—1: V(GO H) — S as follows:

o If S\ ¢,_1(V(H;)) # 0, then take any o € S\ ¢,—1(V(H;)) and assign « to y;.

o If S\ ¢,_1(V(H;)) = 0, then assign a new color 8 to y;.

Call this modified coloring as c;..

Let ¢ € {1,2,...,n}. Then |c,(Ngomg (v:))| = |ler(V(H;))| = |er1(V(H))| +1 = 7.
Since r < |V(H)|, we have min{r, dgom (v;)} = min{r, dg(v;) + |V (H)|} = r. Hence,
ler(Naom(vi))| > min{r,dgeom(vi)}. Also, let u € V(H;). Then |¢.(Ngon(u))| >
Her(vi)H + ler(Na, (w)| = 1+ di(u) = min{r,1 + dg(u)} = min{r, dgeom(u)}, since
1+dy(u) <1+A(H)<AH)+2<T.

Hence, ¢, is an r-dynamic k-coloring, where k = max{x(G),r + 1}.

Proof of 6. Let ¢ be an arbitrary r-dynamic x,(G ® H)-coloring of G ® H. Then
e(Ne )|+ V()| 2 e(Nawm (@))] = min{r, daom (v:)} = min{r, da(u,) +V(H)[}
= |V(H)| + min{r — |V(H)|,dg(v;)} implies |¢(Ng(v;))| > min{r — |V (H)|,dg(v;)}.
So, ¢ yields an (r — |V (H)|)-dynamic x,(G ® H)-coloring for G. Hence, x,(G ® H)
> Xr—v(m)|(G). This together with x,.(G ® H) > r 4 1 imply that x,.(G © H) >
max{X,—|vm)(G),r +1}.

Let r = |[V(H)|+s, 1 < s < A(G). Let ¢/ : V(G) = {1,2,...,xs(G)} be
an s-dynamic ys(G)-coloring of G. For i € {1,2,...,n}, let 4; = ¢'(Ng(v;)) =
{a,a2,. . g5yt if min{s,dg(vi)} = dg(vi) and A; = {ag,9,...,as} C
¢'(Ng(v;)) if min{s,dg(v;)} = s, and let B; = A;U{c’(v;)}. Let k = max{xs(G),r+

1}. Define ¢, : V(G ® H) — {1,2,...,k} as follows: For i € {1,2,...,n}, ¢ (v;)
¢’(v;) and assign colors to the vertices of H; so that ¢, restricted to V(H;) is a
one-to-one function from V(H;) to {1,2,...,k} \ B;.

Let ¢ € {1,2,...,n}. Then |¢;(Ngem(v;))| > min{s,dg(v;)} + |V(H)| = min{s +
\V(H)|,dg(v;) + |[V(H)|} = min{r,dgon(vi)}. Also, let u € V(H;). Then
ler(Nagom(u))| = 1+ dy(v) = min{r,1 + dg(u)} = min{r,deeom(u)}. Hence, ¢,
is an r-dynamic k-coloring of G ® H, and so x,.(G ® H) < k.

This completes the proof of 6 and also the proof of the theorem. ]

In Section 3, we deduce the r-dynamic chromatic number of the corona products
(G1 \ Kl) O H and G© (H1 V Kl)

3. Corollaries

It is easy to observe that, for any graph F, if E(F) # (), then

X(F)+1 for s € {1, 2},

Xs—1(F)+1 for3<s<A(F)+1,

Xa) (F)+1 for A(F) +2 < s < xawr)(F),
s+1 for xa(r)(F) +1< s < [V(F)];

XS(F V Kl) =
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if E(F) =), then
Xs(FVEK;) = s+1forl<s<|V(F).
Hence, from Theorem 1, we have the following corollaries 1, 2, 3 and 4.

Corollary 1. Let G=G1V K1 and E(G1) # 0.
1. x2(GOH) = x1(G© H) = 1+ max{x(G1),x(H)}.
2. For3<r<A(H)+1,
Xr(G© H) =1+ max{x(G1), xr-1(H)}.
3. For A(H)+2 <r < xawm(H),
Xr(G O H) =1+ max{x(G1), xawm)(H)}.
4. For xaumy(H) +1 <r < |V(H)|+2,
xr(G© H) =1+ max{x(G1),7}.
5. For [V(H)|+3<r < |V(H)|+A(G1) +1,
xr(G O H) =1+ max{x,— v -1(G1), 7}
6. For |V(H)|+ A(G1) +2 <r < |V(H)| + xa(c) (G1),
xr(G O H) =1+ max{xa,(G1),7}-
7. For [V(H)[ 4+ xa(c)(Gr) + 1 <r < [V(H)| +[V(G1)l,
xr(G©®H) =max{r — |V(H)|+1,r+1} =r+1.

Corollary 2. Let H= H:V Ky and E(H;) # 0.
. Forre{1,2,3}, x»(GO H) = max{x(G), x(H1) + 2}.
. For4 <r < A(Hy)+2,

xr(G © H) = max{x(G), xr—2(H1) + 2}.
3. For A(H1)+ 3 <7 < xa)(Hi) +1,

xr(G © H) = max{x(G), xam,)(H1) +2}.

4. For xacmy)(H1) +2 <r <|V(Hy)| +2,

xr(G© H) = max{x(G),r + 1}.
. For [V(H1)|+3<r <|V(Hi)|+A(G) +1,

xr(G © H) = max{Xr—v(m)-1(G),r + 1}.

O~

)

Let G = Gy V K7 and E(G1) = (). Then, G is the star S, = K7 , with ¢ + 1 vertices,
where ¢ = |[V(G1)]. For ¢ = 1, S1 = Ks. For ¢ > 2, A(S,) = ¢ and, for 1 < s < g,
Xs(Sq) = s+ 1.

Corollary 3. Letn >1.

1. x1(Sn © H) = 1+ y(H).

3 if E(H) =0,

x1(Sn ® H) otherwise.

. For3<r<AH)+1, xr(Sn ©H) =1+ xr—1(H).

. For A(H) +2 <1 < xawm)(H), xr(Sn © H) =1+ xa(m (H).
. For Xaqmn (H) +1< 1 < [V(H)| +n, xr(Sn © H) = 7+ 1.

. XQ(STL@H) =

G o IS

Corollary 4. Letm > 1.

1. x1(G ® Sm) = max{x(G), 3}.

2. For2<r<m+2, xr(GO Spn) = max{x(G),r + 1}.

3. Form+3<r<m+1+A(G), xr(G© Sn) =max{xr—m-1(G),r + 1}.
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4. Associativity

In this section, we obtain the r-dynamic chromatic number of the corona product of
three graphs.

Let G1, G2 and G3 be graphs with nq, no and ng3 vertices, respectively. Then the
graphs G ©® G2, G2 ® G3, (G1 ® G2) ® G3 and G1 ® (G2 ® Gj3), respectively, have
n1(1 4+ n2), na(1+n3), n1(1+n2)(1+ ng) and nq(1+ na(1 + n3)) vertices. It follows
that, we consider at-least two different graphs, then (G1©G2)©G3 and G1©(G2©G3)
are non-isomorphic and so the operation ® is not associative. Suppose that G =
G5 = (3, then the operation ® is associative.

From Theorem 1, we have the following corollaries.

Corollary 5. Let G' = (Gl ® Gz) ® Gs.
1. x1(G") = max{x(G1), x(G2) + 1, x(Gs) + 1}.
2. XQ(G,) _ ) Zf X(Gl) S 2, E(GQ) :w and E(Gs) = @,
x1(G") otherwise.
3. For3<r <A(Gs)+1,
XT(G’) = max{x(G1), x(G2) + 1, xr-1(G3) + 1}.
4. For A(Gs)+2<r< XA<G3)(G3),
Xr(G') = max{x(G1), x(G2) + 1, xa(G4)(Gs) + 1}.
5. For xa(cs)(Gs)+1 <r < |V(G3)| +1,
Xr(G") = max{x(G1), x(G2) + L,r + 1}.
6. X|v (Gs)+2(G')
_ JIV(Gs)| +3 if x(G1)=2 and E(G2) =10,
| max{x(G1), x(G2) + 1,|V(G3)| + 3}  otherwise.
7. For |[V(Gs)|+3 <r < |V(Gs)| + A(G2) + 1,
XT(G/) = max{x(Gl), Xr—\V(Gg)\fl(GQ) +1,r+ 1}.
8. For ‘V(Gs)‘ + A(Gg) +2<r< |V(G3)| + XA(GZ)(GQ),
xr(G') = max{x(G1), xa(ay)(G2) + 1,7+ 1}.
9. For |V(G3)| + xa(62)(G2) +1 <r < [V(Gs)| + [V(G2)],
xr(G") = max{x(G1),r + 1}.
10. For [V(Gs)| + [V(G2)| + 1 < r < [V(Gs)| + [V(G2)| + A(Gh),
X (@) = max{Xxr—v(ag)|- V(2 (G),r + 1}

Corollary 6. Let H = G1 ® (G2 ® G3).
1. x2(H') = xa(H') = max{x(G1), x(G2) + 1, x(G3) + 2}.

2. X3(H’)
_ {max{x(Gl),él} if x(G2) =2 and E(Gs) =0,
max{x(G1), x(Gz2) + 1,x(Gs) + 2} otherwise.

3. For 4 <r < A(Gs)+2,
xr(H') = max{x(G1), x(Gz2) + 1, xr—2(G3) + 2}.
4. For A(Gs)+3<r< XA(Gg)(GS) +1,
xr(H') = max{x(G1), x(Gz2) + 1, xa(c3)(G3) + 2}
5. For XA(G3)(G3) +2<r< ‘V(G3)| +1,
xr(H') = max{x(G1),x(Gz2) + 1,7 +1}.
6. For |[V(G3)|+2 <r <|V(G3)| + A(G2) + 1,
xr(H') = max{x(G1), Xr—1-|v(cs)|(G2) + 1,7 + 1}.
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7. For ‘V(Gg)‘ =4 A(Gg) +2<r< max{xA(GQ)(Gg), |V(G3)| 4+ A(Gg) =+ 1},
xr(H') = max{x(G1), xa(G,)(G2) + 1, |V(G3)| + A(Gz2) + 2}.

8. For max{Xa(G,)(G2),|[V(G3)| + A(G2) + 1} +1 < r < (14 |V(G3)|)|[V(Ga)],
xr-(H') = max{x(G1),r + 1}.

9. For (1+|V(Gs))|V(G2)| + 1 <7 < (1+ [V(G3))[V(G2)| + A(G),
Xr(H') = max{X,—(14v(Ga)))|V(G2)| (G1), 7 + 1}.
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