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Abstract: Consider a simple connected graph G with the vertex set V (G) and edge
set E(G). The Mostar index M◦(G) of G is defined as M◦(G) =

∑
e=xy∈E(G) |nx−ny |,

where nx and ny represent the number of vertices that lie closer to x than to y and the

number of vertices that lie closer to y than to x, respectively. In this paper, we prove
that if G is a tree, then M◦(LG) < M◦(G), where LG is the line graph. In order to

provide an example supporting this result, we develop three algorithms (and implement
them using Python) to calculate the Mostar index of trees of order at most 8 and their

line graphs.

Keywords: Mostar Index, line graph, trees, graph transformation, algorithmic graph

analysis.

AMS Subject classification: 05C12, 05C35, 05C81

1. Introduction

Consider a simple connected graph G with a vertex set V (G) and an edge set E(G).

The degree of a vertex x, denoted as dx, is the number of edges incident to x. The

distance d(a, b) between two vertices a and b in the graph G is defined as the minimum

number of edges that must be traversed to travel from vertex a to vertex b. Vari-

ous numerical quantities, commonly referred to as structural invariants, molecular
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descriptors, topological descriptors, and topological indices, have been developed and

studied to elucidate and summarize the information embedded in graph connectivity

patterns [26, 28]. An essential aspect of mathematical chemistry is the use of molecu-

lar descriptors, particularly for investigating quantitative structure-property relation-

ships (QSPR). One of the earliest molecular descriptors introduced by Wiener is the

Wiener index [31]. This concept is particularly significant in mathematical chemistry,

especially in chemical graph theory. The Wiener index is defined as:

W (G) =
∑
u<v

d(u, v).

When applied to trees, the Wiener index can be stated as:

W (G) =
∑

e=ab∈E(G)

nanb,

where na and nb represent, respectively, the number of vertices that lie closer to a

than to b and the number of vertices that lie closer to b than to a. This formulation

also defines the Szeged index, which was introduced and defined by Gutman [16]:

S(G) =
∑

e=ab∈E(G)

nanb.

The two indices do not coincide for general graphs. However, when applied to trees,

both the Wiener index and the Szeged index yield identical results. For graphs con-

taining cycles, the inequality W (G) ≤ S(G) holds, with equality if every block of

the graph is complete. The Szeged index belongs to the category of bond-additive

indices. Numerous bond-additive indices exist, among which the first and second

Zagreb indices are precisely specified in [19]:

M1(G) =
∑

e=ab∈E(G)

(da + db) and M2(G) =
∑

e=ab∈E(G)

dadb.

Another metric, the irregularity of G, is defined based on the edges’ contributions as

follows:

Irr(G) =
∑

e=ab∈E(G)

|da − db|.

Došlić et al. [14] introduced a novel bond-additive structural invariant known as the

Mostar index M◦(G), which is defined as:

M◦(G) =
∑

e=ab∈E(G)

|na − nb|. (1.1)
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In the case of a vertex-transitive graph, M◦(G) = 0 [14]. The Mostar index is an en-

hanced method for determining the extent to which specific bonds (edges) are located

on the periphery of a graph. A global measure of a graph’s peripherality is obtained

by summing the contributions of each edge in the graph. An edge is identified as

being on the periphery when a significant number of vertices are closer to one of its

endpoints than to the other. For further information, we now discuss several recent

publications on the Mostar index.

Hayat and Zhou [23] employed graph transformations to manipulate the Mostar in-

dex, either decreasing or increasing it. They identified groups of trees of order n that

satisfy specific criteria, such as maximum degree, diameter, or number of pendant

vertices. These families included both the trees with the lowest and highest Mostar

indices. This was achieved by applying graph transformations that make the Mostar

index either decrease or increase. Dehgardi and Azari [11] determined an exact lower

bound for the Mostar indices of trees, taking order and maximal degree into account.

Furthermore, the researchers identified the precise trees that meet these reduced con-

straints. Huang, Li, and Zhang [24] effectively distinguished the extremal hexagonal

chains and established precise upper and lower limits on the Mostar indices for hexag-

onal chains with n hexagons. Hayat and Zhou [22] investigated cacti with the highest

Mostar index. They successfully identified all such cacti and provided a precise upper

limit for the Mostar index in these cases, focusing on cacti of order n with k cycles. In

their investigation, Deng and Li [12] observed that tree-type hexagonal systems with

the smallest and second smallest Mostar indices exhibited correspondingly low values.

They also demonstrated how several common properties can characterize tree-type

hexagonal structures with the highest Mostar index. Additionally, they identified the

tree-type hexagonal system with exactly one full hexagon and determined which graph

had the highest Mostar index among those systems. These findings generalize some

previously obtained information on extremal hexagonal chains. Xiao et al. [32] char-

acterized the related extremal graphs through certain transformations on hexagonal

chains and identified the three lowest values of the Mostar index across all hexagonal

chains containing h hexagons. Deng and Li [13] succeeded in identifying chemical trees

of order n with the highest Mostar index. For recent research on the Mostar index,

readers are encouraged to consult the following articles: [1, 2, 4, 5, 15, 25, 29, 30].

The graph denoted by the notation LG for a given graph G is a line graph whose

vertices are the edges of G. Adjacent vertices in LG are those whose incident edges

in G share a common vertex [20, 27]. The subsequent Lemma is advantageous in

determining the degree of the vertices of LG.

Lemma 1. [21] Let G be a graph with a, b ∈ V (G) and f ∈ E(G). Then

df = da + db − 2.

Research on the properties of M◦(G) and M◦(LG) is motivated by theoretical chem-

istry. The Mostar index M◦(G) has gained attention in both complex network analysis

and classical chemical graph theory due to its utility in determining the surface area of
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octane isomers and exploring the topological characteristics of fullerene morphologies

[3]. Bertz [6] was the first to propose that line graphs can be used to depict relevant

features of molecular structures (also see [7, 8]). Line graphs have also been employed

in other chemical research [18].

A tree T is a connected, acyclic graph. In 1996, Gutman studied the relationship

between the Wiener index of a tree T and the Wiener index of its line graph LT

[17], as initially stated by Buckley [10]. Buckley’s formula, which is used in various

academic disciplines, is:

W (T ) = W (LT ) +

(
n

2

)
valid for trees, and it immediately implies W (T ) > W (LT ). In [17], the following

extension of Buckley’s formula to all connected graphs G was deduced:

W (G) ≤W (LG) +
1

2
m(m+ 1)− n(n− 1)

from which we see that the expression W (G) > W (LG) holds, provided the graph G

has a sufficient number of edges.

This work aims to determine that if G is a tree, then M◦(LG) < M◦(G). We establish

relations between M◦(G) and M◦(LG) for certain classes of tree graphs. Furthermore,

we verify the theorem for all trees with fewer than 9 vertices. For undefined notations

and terminologies, please refer to the book by Bollobás [9].

2. Main Results

This section aims to present the proof of our main results. A tree that exhibits

the characteristic of having only one vertex with a degree exceeding 2 is commonly

referred to as a star-like tree. Suppose T is a star-like tree. We indicate its maximum

degree by r (r ≥ 3), and the length (number of edges) of its branches is indicated by

b1, b2, . . . , bm. By convention, b1 ≥ b2 ≥ · · · ≥ bm. Since b1 +b2 + · · ·+bm = n−1, the

structure of star-like tree T is fully determined by the partition T = (b1, b2, . . . , bm)

of n − 1. In view of this, a star-like tree will be denoted by T (b1, b2, . . . , bm). If

b1 = b2 = · · · = bm = 1, then the respective tree is a simple star. Some examples of

star-like trees are given in Figure 1 and the third is a simple star.

Theorem 1. Let T (b1, b2, . . . , bm) (or simply Tn) be a star-like tree on n vertices and
the length of its branches is l. Then

M◦(LTn) < M◦(Tn).

Proof. Suppose Tn is a star-like tree with exactly one vertex, a degree greater than 2,

m branches, and l length for each branch. We denote these branches by b1, b2, . . . , bm
and one vertex with a degree greater than 2 by v0. The cardinality of the sets of
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T(4,4,2,2,2)

T(6,2,1,1,1)

T(1,1,1,1,1)

Figure 1. Star-like tree examples.

vertices and edges is |V (Tn)| = n = lm + 1 and |E(Tn)| = n − 1 = lm, respectively.

The vertices of these m branches can be listed in order b1 = {v0, v11, v12, . . . , v1l},
b2 = {v0, v21, v22, . . . , v2l}, . . . , bm = {v0, vm1, vm2, . . . , vml} such that the edges

are b1 = {v0v11, v1(i−1)v1i}, b2 = {v0v21, v2(i−1)v2i},. . . , bm = {v0vm1, vm(i−1)vmi},
where 2 ≤ i ≤ l. Let u, v ∈ Tn, then

M◦(Tn) =
∑

e=uv∈E(b1)

|nu−nv|+
∑

e=uv∈E(b2)

|nu−nv|+
∑

e=uv∈E(b3)

|nu−nv|+· · ·+
∑

e=uv∈E(bm)

|nu−nv|.

(2.1)
Consider

∑
e=uv∈E(b1)

|nu − nv| =
∑

e=v0v11∈E(b1)

|nv0 − nv11 |+
∑

e=v11v12∈E(b1)

|nv11 − nv12 |+ · · ·

+
∑

e=v1l−1v1l∈E(b1)

|nv1l−1
− nv1ln |

= |(m− 1)l − (l − 1)|+ |((m− 1)l + 1)− (l − 2)|
+|((m− 1)l + 2)− (l − 3)|
+ · · ·+ |((m− 1)l + (l − 1))− (l − l)|

=

l−1∑
i=0

|((m− 1)l + i)− (l − (i+ 1))|

=

l−1∑
i=0

|lm+ 2i− 2l + 1|.

Similarly, ∑
e=uv∈E(b2)

|nu − nv| =
l−1∑
i=0

|lm+ 2i− 2l + 1|. (2.2)
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∑
e=uv∈E(b3)

|nu − nv| =
l−1∑
i=0

|lm+ 2i− 2l + 1|. (2.3)

...∑
e=uv∈E(bm)

|nu − nv| =
l−1∑
i=0

|lm+ 2i− 2l + 1|. (2.4)

Now by adding the above Equations in Equation (2.1), we get

M◦(Tn) =
l−1∑
i=0

|lm+ 2i− 2l + 1|+
l−1∑
i=0

|lm+ 2i− 2l + 1|+ · · ·+
l−1∑
i=0

|lm+ 2i− 2l + 1|

= m×
l−1∑
i=0

|lm+ 2i− 2l + 1|

= m(l2(m− 1)). (2.5)

Since in Tn, we have vertices of degrees m, 2, 1, and edges of types (m, 2), (1, 2),

(2, 2). Hence, in terms of Lemma 1, in LTn , we have vertices of degrees m, 2 and

1. Since |E(Tn)| = |V (LTn
)|. The line graph L(Tn) of Tn is formed by a complete

graph Km with m vertices, to which m pendent paths of length l − 1 are attached.

The vertices of these m paths can be listed in order P1 = {v11, v12, . . . , v1(l−1)},
P2 = {v21, v22, . . . , v2(l−1)}, . . . , Pm = {vm1, vm2, . . . , vm(l−1)} and the edges are P1 =

{v1(i−1)v1(i)}, P2 = {v2(i−1)v2i},. . . , bm = {vm(i−1)vmi}, where 1 ≤ i ≤ l − 1. The

complete graph Km consists of a collection of vertices indicated as {v11, v21, . . . , vm1}.
In a complete graph, every vertex is next to every other vertex, and the total number

of edges may be calculated using the formula m(m−1)
2 . If u, v ∈ LTn

, then

M◦(LTn
) =

∑
e=uv∈E(Km)

|nu − nv|+
∑

e=uv∈E(P1)

|nu − nv|

+
∑

e=uv∈E(P2)

|nu − nv|+ · · ·+
∑

e=uv∈E(Pm)

|nu − nv|. (2.6)

If u, v ∈ Km, then ∑
e=uv∈E(Km)

|nu − nv| = 0, (2.7)
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because the graph is a vertex-transitive. Now let u, v ∈ P1, then∑
e=uv∈E(P1)

|nu − nv| =
∑

e=v11v12∈E(P1)

|nv11 − nv12 |+
∑

e=v12v13∈E(P1)

|nv12 − nv13 |+ · · ·

+
∑

e=v1l−2v1l−1∈E(b1)

|nv1l−2
− nv1l−1

|

= |(m− 1)l − (l − 2)|+ |((m− 1)l + 1)− (l − 3)|
+|((m− 1)l + 2)− (l − 4)|+ · · ·
+|((m− 1)l + (l − 2))− (l − l)|

=

l−2∑
i=0

|((m− 1)l + i)− (l − (i+ 2))|

=

l−2∑
i=0

|ml − 2l + 2i+ 2|.

Similarly, we infer

∑
e=uv∈E(P2)

|nu − nv| =
l−2∑
i=0

|ml − 2l + 2i+ 2|. (2.8)

∑
e=uv∈E(P3)

|nu − nv| =
l−2∑
i=0

|ml − 2l + 2i+ 2|. (2.9)

...∑
e=uv∈E(Pm)

|nu − nv| =
l−2∑
i=0

|ml − 2l + 2i+ 2|. (2.10)

Now by putting the above equations in Equation (2.6), we get

M◦(LTn) = 0 +

l−2∑
i=0

|ml − 2l + 2i+ 2|+
l−2∑
i=0

|ml − 2l + 2i+ 2|+ · · ·+
l−2∑
i=0

|ml − 2l + 2i+ 2|

= m(
l−2∑
i=0

|ml − 2l + 2i+ 2|)

= m(l(m− 1)(l − 1)). (2.11)

In light of (2.5) and (2.11), we deduce

M◦(LTn
) < M◦(Tn).
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Remark 1. Let T (b1, b2, . . . , bm) (or simply Tn) be a star-like tree on n = lm+1 vertices
and b1 = b2 = · · · = bm = l. Then

M◦(Tn) = M◦(LTn) +ml(m− 1).

A tree that possesses precisely two non-pendant vertices is referred to as a double star.

The notation Sk1,n,k1,n
is used to represent a double-star tree with a degree sequence

of (n+1, n+1, 1, . . . , 1). For example, the double star tree Sk1,5,k1,5 and its line graph

are depicted in Figure 2. The double star tree Sk1,n,k1,n
has a total of 2n+ 2 vertices

and 2n+ 1 edges. In the following, we denote the double star tree simply by Tn.

Theorem 2. Let Tn be a double star tree on 2n+ 2 vertices and 2n+ 1 edges. Then

M◦(LTn) < M◦(Tn).

Proof. Let Tn be a tree with 2n + 2 vertices and 2n + 1 edges. The set of vertices

and edges is V (Tn) = {v1, u1, v11, v12, . . . , v1n︸ ︷︷ ︸
n

, u11, u12, . . . , u1n︸ ︷︷ ︸
n

} and E(Tn) = v1u1 ∪

v1v1i ∪ u1u1i (1 ≤ i ≤ n), respectively. If u, v ∈ Tn, then

M◦(Tn) =
∑

e=u1v1∈E(Tn)

|nu1
− nv1 |+

∑
e=v1v1i∈E(Tn)

|nv1 − nv1i|+
∑

e=u1u1i∈E(Tn)

|nu1 − nu1i|

= |n− n|+ (|2n− 0|+ |2n− 0|+ · · ·+ |2n− 0|) + (|2n− 0|+ |2n− 0|+ · · ·+ |2n− 0|)
= n|2n|+ n|2n| = 4n2. (2.12)

Since in Tn, we have vertices of degree n + 1, 1, and edges of types (n + 1, n + 1),

(1, n+ 1). By virtue of Lemma 1, in L(Tn) we have 2n+ 1 vertices in which |dn| = 2n

and |d2n| = 1. Since | V (LTn) |=| E(Tn) |, the line graph LTn is equal to the

two complete graphs with one common vertex between them (see Figure 2). We

denote the common vertex with x and the vertices of two complete graphs except

the common vertex are denoted by v1, v2, . . . , vn and u1, u2, . . . , un, respectively. Let

u, v ∈ V (LTn), then

M◦(LTn
) =

∑
e=uiui∈E(Tn)

|nui − nui |+
∑

e=v1vi∈E(Tn)

|nvi − nvi|+
∑

e=uix∈E(Tn)

|nui − nx|

+
∑

e=vix∈E(Tn)

|nvi − nx| (2.13)

= 0 + 0 + (|(n− 1)− (n− 1) + n|+ |(n− 1)− (n− 1) + n|+ · · ·
+|(n− 1)− (n− 1) + n|) + (|(n− 1)− (n− 1) + n|
+|(n− 1)− (n− 1) + n|+ · · ·+ |(n− 1)− (n− 1) + n|)

= n|n|+ n|n| = 2n2. (2.14)

By means

of (2.12) and (2.13), we get M◦(LTn) < M◦(Tn).
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Figure 2. A double star tree Sk1,5,k1,5
and its line graph.

Remark 2. Let Tn be a double star tree on 2n+ 2 vertices. Then

M◦(Tn) = 2M◦(LTn).

In the field of graph theory, a tree referred to as a caterpillar tree is characterized by

the property that all of its vertices are situated at a maximum distance of 1 from

a central path. For the sake of simplicity in the exposition, we adopt the notation

Cb2,b3,...,bt for a caterpillar tree with a central path of t vertices and such that the

ith-vertex of the path has a degree equal to d(bi) + 2, for i ∈ {2, 3, . . . , t − 1}, while

the first and last vertices of the path have degrees equal to 1 each. See Figure 3 for

an illustration of a caterpillar tree.

C0,3,1,4,3,2,1

Figure 3. Example of caterpillar tree.

Theorem 3. Let Cb := Cb2,b3,...,bt−1 (or simply Tn) be a caterpillar tree and b2 = b3 =
· · · = bt−1 = l. Then

M◦(LTn) < M◦(Tn).

Proof. Given Tn is a caterpillar tree and b2 = b3 = · · · = bt−1 = l or bi = l, where

2 ≤ l ≤ t − 1. The set of vertices of the central path of a caterpillar tree is denoted

by Pt = u1, u2, . . . , ut. The cardinality of vertices in caterpillar tree Tn is t+ (t− 2)l.

If u, v ∈ Tn, then

M◦(Tn) =
∑

e=uv∈E(Pt)

|nu − nv|+
∑

u∈V (Pt),v∈V (bi)

|nu − nv|. (2.15)
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Suppose t is even and consider

∑
e=uv∈E(Pt)

|nu − nv|

= |0− (t− 2)l + (t− 2)|+ |(t− (t− 1))l + (t− (t− 1))− (t− 3)l + (t− 3)|
+|(t− (t− 2))l + (t− (t− 2))− (t− 4)l + (t− 4)|+ · · ·+ |(t− 2)l + (t− 2)− 0|

=

t
2−2∑
i=o

(((t− (t− i))l + (t− (t− i)))− (t− (i+ 2))l + (t− (i+ 2)))

+

t
2−2∑
i=o

((t− (i+ 2))l + (t− (i+ 2))− ((t− (t− i))l + (t− (t− i))))

= 2

t
2−2∑
i=o

((t− (i+ 2))l + (t− (i+ 2))− ((t− (t− i))l + (t− (t− i))))

=
1

2
lt2 − lt+

1

2
t2 − t. (2.16)

Similarly, if t is odd, then

∑
e=uv∈E(Pt)

|nu − nv| = 2

t−3
2∑

i=o

((t− (i+ 2))l + (t− (i+ 2))− ((t− (t− i))l + (t− (t− i))))

=
1

2
lt2 − lt+

1

2
l +

1

2
t2 − t+

1

2
. (2.17)

Now consider

∑
u∈V (Pt),v∈V (bi)

|nu − nv| = |(((t− 3)l + (t− 1) + (l − 1))l)(t− 2)|

= l2t2 − 4l2t+ lt2 + 4l2 − 4lt+ 4l. (2.18)

For odd t, putting Equations (2.17) and (2.18) in (2.15), we get

M◦(Tn) = (t2 − 4t+ 4)l2 + (
3

2
t2 − 5t+

9

2
)l + (

1

2
t2 − t+

1

2
).

For even t, putting Equations (2.16) and (2.18) in (2.15), we yield

M◦(Tn) = (t2 − 4t+ 4)l2 + (
3

2
t2 − 5t+ 4)l + (

1

2
t− 1)t.

The line graph LTn is a maximal sequence of complete graphs Kl+2, i.e.,

K1,K2, . . . ,Kt−2 in which each Ki has a vertex next to a vertex of Ki+1 (1 ≤ i ≤ t−3)
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(see Figure 4 ). If u, v ∈ V (Ki) (1 ≤ i ≤ t − 2) and u, v /∈ V (Ki) ∩ V (Ki+1)

(1 ≤ i ≤ t− 3), then ∑
e=uv∈E(Ki),uv/∈V (Ki∩ki+1)

|nu − nv| = 0 (2.19)

because it is a vertex-transitive. Now let u ∈ V (Ki) ∩ V (Ki+1) (1 ≤ i ≤ t − 3),

v ∈ V (Ki) (1 ≤ i ≤ t− 2) and t is odd then∑
e=u∈V (Ki)∩V (Ki+1)v∈Ki

|nu − nv|

= (l|(l + 1)(t− 3)|+ l|(l + 1)|+ |(l + 1)− (l + 1)(t− 4)|) + (l|(l + 1)(t− 4)|
+l|2(l + 1)|+ |2(l + 1)− (l + 1)(t− 5)|) + · · ·

= 2(l + 1)|(l + 1)(t− 3)|+ 2l

t+1
2∑

i=4

|(l + 1)(t− i)|+

(t−3)
2∑

i=1

l|i(l + 1)|

+2

t−5
2∑

i=1

|(l + 1)(t− (i+ 3))− i(l + 1)|

= (t2 − 5t+ 6)l2 + (
3

2
t2 − 7t+

15

2
)l + (

1

2
t2 − 2t+

3

2
). (2.20)

Now adding Equations (2.19) and (2.20), we get

M◦(LTn) = (t2 − 5t+ 6)l2 + (
3

2
t2 − 7t+

15

2
)l + (

1

2
t2 − 2t+

3

2
).

Similarly, let u, v ∈ L(Tn) and t is even, then

M◦(LTn
) = 2(l + 1)|(l + 1)(t− 3)|+ 2l

t
2+1∑
i=4

|(l + 1)(t− i)|

+

t
2−2∑
i=1

l|i(l + 1)|+ 2

t
2−2∑
i=1

|(l + 1)(t− (i+ 3))− i(l + 1)|

= (t2 − 5t+ 6)l2 + (
3

2
t2 − 7t+ 8)l + (

1

2
t2 − 2t+ 2). 2

Figure 4. A caterpillar tree and its line graph.
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Remark 3. Let Cb := Cb2,b3,...,bn−1 (or simply Tn) be a caterpillar tree and b2 = b3 =
· · · = bn−1 = l. Then

M◦(Tn) = M◦(LTn) + l2(t− 2) + (2t− 3)l + (t− 1); if t is odd.

M◦(Tn) = M◦(LTn) + l2(t− 2) + (2t− 4)l + (
1

2
t3 − 1

2
t2 + t− 2); if t is even.

Let Pn, Kn denote the path and complete graph with order n, respectively. It is clear

that LPn = Pn − 1.

Theorem 4. Suppose T is a tree with n vertices and n > 2. Then M◦(LT ) < M◦(T ).

Proof. Let T be a tree with n vertices. The line graph LT of T is defined such that

each vertex of LT represents an edge of T , and two vertices of LT are adjacent if and

only if their corresponding edges in T share a common vertex.

Since E(T ) = V (LT ), each vertex v of T with degree dv gives rise to a complete graph

Kdv
in LT . Specifically, every edge of LT is counted exactly once because two edges

of T intersect at most once.

The line graphs of trees are block graphs where each block corresponds to the star

subgraph induced by the edges incident to each vertex of T . Each block in LT is a

complete subgraph Kdv
for some vertex v in T (see Figure 5).

Consider the structure of LT . Each block Kdv
in LT has a Mostar index of zero

because M◦(Kn) = 0 for any complete graph Kn. The only contributions to the

Mostar index of LT come from the cut vertices that connect different blocks.

In contrast, the Mostar index of the tree T depends on the differences in path lengths

between pairs of vertices across all edges. Since T is acyclic and more sparse compared

to its line graph, there are more significant variations in path lengths, resulting in a

higher Mostar index.

Therefore, for any tree T with n > 2, the Mostar index of its line graph LT is less

than the Mostar index of T , formally, M◦(LT ) < M◦(T ).

This conclusion is supported by the fact that the structure of LT minimizes the

differences in path lengths due to its block graph nature, reducing the overall Mostar

index compared to the original tree T .

1

1

1 1

2

1

3 15

(a) (b)

K 5

K 2

K 3

Figure 5. Illustration of a tree and its corresponding line graph. (a) A tree structure. (b) The line graph
derived from the tree.
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3. Computational Verification of the Theorem

To further substantiate the theoretical proof, we calculated the Mostar index for all

trees with fewer than 9 vertices and their corresponding line graphs using a computer

program. The results are presented below (see Figure 6 and Table 1), demonstrating

that for each tree, the Mostar index of its line graph is consistently less than the

Mostar index of the tree itself.

Figure 6. Mostar index of trees and their line graphs.

Table 1: Mostar index of trees and their line graphs with fewer than 9 vertices.

Vertices M◦(T ) M◦(LT ) Vertices M◦(T ) M◦(LT )

1 0 0 7 30 0
2 0 0 7 28 8
3 2 0 7 26 12
4 6 0 7 26 12

4 4 2 7 24 12
5 12 0 7 24 14

5 10 4 7 24 12
5 8 4 7 22 14
6 20 0 7 22 12
6 18 6 7 20 12

6 16 8 7 18 12
6 16 8 8 42 0

6 14 8 8 40 10
6 12 8 8 38 16

8 38 16 8 36 16
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8 36 18 8 36 20

8 34 20 8 32 18

8 30 18 8 34 20
8 34 20 8 32 22

8 32 20 8 30 20
8 30 20 8 28 20

8 28 20 8 28 18

8 26 18 8 24 18

The computational process involved three main algorithms. The Algorithm 1 calcu-

lates the Mostar Index of a given graph by iterating through each edge and summing

the absolute differences in the number of vertices that are closer to one endpoint of

the edge than the other. The Algorithm 2 generates all unique trees with a specified

number of vertices by constructing graphs from all possible combinations of edges and

retaining those that form trees and are not isomorphic to any previously generated

tree. The Algorithm 3 uses the previous two algorithms to collect and compute the

Mostar Index for all unique trees with up to 10 vertices and their corresponding line

graphs, storing the results in a DataFrame for analysis.

Algorithm 1 Calculate Mostar Index of a Graph
1: Input: Graph G

2: Output: Mostar Index of G

3: Initialize mostar to 0
4: for each edge (u, v) in G do

5: Compute nu =
∑

w∈G[shortest path length(G, u,w) < shortest path length(G, v, w)]

6: Compute nv =
∑

w∈G[shortest path length(G, v, w) < shortest path length(G, u,w)]

7: Update mostar by adding |nu − nv |
8: end for
9: return mostar

Algorithm 2 Generate All Unique Trees with n Vertices

1: Input: Number of vertices n

2: Output: List of unique trees with n vertices

3: if n == 1 then

4: return list containing a single graph with one self-loop edge

5: else

6: Initialize an empty list trees

7: for each set of n− 1 edges from the combination of
(
n
2

)
edges do

8: Create a graph graph from these edges

9: if graph is a tree and is not isomorphic to any tree in trees then

10: Add graph to trees

11: end if

12: end for

13: return trees

14: end if
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Algorithm 3 Collect and Compute Mostar Index for Trees and Their Line Graphs
1: Input: Range of number of vertices 1 to 8

2: Output: DataFrame containing Mostar indices for trees and their line graphs
3: Initialize an empty list results

4: for n in range 1 to 8 do

5: Generate all unique trees with n vertices
6: for each tree in generated trees do

7: Compute mostar tree = Calculate Mostar Index of tree

8: Compute line graph of tree

9: Compute mostar line graph = Calculate Mostar Index of line graph

10: Append (n, mostar tree, mostar line graph) to results

11: end for
12: end for

13: Convert results to DataFrame with columns [”Vertices”, ”Mostar Tree”, ”Mostar Line Graph”]

14: return DataFrame

4. Conclusion

This work presents an analysis of Mostar index of the line graph of trees. Specifically,

the mostar index of trees and their line graphs for special types of trees are computed,

and it proved that M◦(LT ) < M◦(T ). It seems to be true for all other classes of graphs

except the cycle graph and complete graph. The line graph of Cn is another cycle

graph Cn, so LCn
and Cn are isomorphic to each other. The line graph LKn

is

another regular graph on n(n−1)
2 vertices, where the degree of each vertex is 2n − 4.

So the Mostar index for these two particular classes of graphs and their line graphs

are equal. To further substantiate our theoretical findings, we execute computational

verification by Python, where the proposed algorithms are implemented to calculate

the Mostar index for all trees with fewer than 9 vertices and their corresponding line

graphs. The computational results consistently supported our theoretical proof.

Based on our study, we propose the following conjecture for further investigation.

Conjecture 5. Let G be a simple connected graph on n vertices. Then

M◦(LG) ≤M◦(G).
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