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Abstract: For a lattice L, the strongly annihilator ideal graph of L is denoted

by SAnnIG(L). It is a graph with the vertex set, which consists of all ideals in
L that have nontrivial annihilators such that any two distinct vertices I and J are

adjacent in SAnnIG(L) if and only if the annihilator of I contains a nonzero element

of J and the annihilator of J contains a nonzero element of I. In this paper, we
determine the radius, circumference, and domination number of SAnnIG(L). We

obtain necessary and sufficient conditions for SAnnIG(L) to be in the class of paths,

cycles, unicyclic, triangle-free, trees, complete multipartite, split or claw-free graphs.
Among other results, we study the affinity between the strongly annihilator ideal and

the annihilator ideal graph of a lattice.
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1. Introduction

The concept of zero divisor graphs from algebraic structures is initiated by Beck in [7].

For a commutative ring R, he let all the elements of R as the vertex set such that any

two distinct vertices x and y are adjacent if and only if xy = 0. In the said work, his

complete focus was on coloring of the graph. Later, Anderson and Livingston studied

the zero divisor graph of a commutative ring R in [5]. They considered the set of

all non-zero zero-divisors in R as the vertex set and studied various graph-theoretic

properties. For a lattice L with bottom element 0, the zero divisor graph of L is

introduced by Estaji et al. in [9], denoted by ZG(L). The ZG(L) is an undirected
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2 Some results on the strongly annihilator ideal graph of a lattice

graph with vertex set as Z∗(L) = {a ∈ L | a 6= 0, ∃ b 6= 0 such that a ∧ b = 0} and

for any u, v ∈ Z∗(L), u− v is an edge in ZG(L) if and only if u∧ v = 0. In [14], Kulal

et al. studied the annihilator ideal graph of a lattice L, denoted by AnnIG(L). It is a

graph with the vertex set N(L) = {I is a non trivial ideal in L | Ann(I) 6= {0}} and

two distinct vertices I and J are adjacent if and only if I ∩ Ann(J) 6= {0} or J ∩
Ann(I) 6= {0}. To get more work related to the zero divisor graphs from algebraic

structures, see [1–4, 6, 8, 11, 13, 15].

In [16], Tohidi et al. studied the strongly annihilating-ideal graph of a commutative

ring R with the vertex set A(R)∗ = A(R) \ {0}, where A(R) is the set consists of all

ideals with nonzero annihilator and any two distinct vertices I and J are adjacent

if and only if I ∩ Ann(J) 6= 0 and J ∩ Ann(I) 6= 0. Motivated by this work, in

[12], we have defined the strongly annihilator ideal graph of a lattice L, denoted by

SAnnIG(L). The vertex set of SAnnIG(L) is a set consists of all ideals in L whose

annihilator is nontrivial and any two distinct vertices I and J are adjacent if and only

if I ∩Ann(J) 6= 0 and J ∩Ann(I) 6= 0.

Throughout this paper, L = 〈L,∧,∨〉 is an atomic lattice with the least element 0

and greatest element 1. A sublattice I of L is said to be an ideal of L if u ∧ i ∈ I
for all u ∈ L and i ∈ I. For two elements u, v ∈ L we have v < u, if v ∧ u = v and

v ∨ u = u. An element u ∈ L is said to be least element if u < v for every element

v ∈ L \ {u}. An element a ∈ L is said to be an atom if 0 < a and there is no u

such that 0 < u < a, where 0 is the least element in L. Dually, we have the concept

of coatom. For any u ∈ L, the set (u] = {v ∈ L | v ≤ u} is the principal ideal in L

generated by u and Ann(u)={v ∈ L | u ∧ v = 0} is the annihilator of u. Denote the

set [u)z = {v ∈ L | v ≥ u and v ∈ Z∗(L)}. We denote the set of all atoms in L

by A(L). Any two elements u and v in L are said to be incomparable if u � v and

v � u, we denote the same by u||v. A lattice L is called atomic if, for each element

v ∈ L \ {0}, there exists an atom av ∈ A(L) such that av ≤ v. If p ∈ L, then

B(p) = {ap ∈ A(L)|ap ≤ p} is defined as the base of p in L. For more concepts in

lattice theory, we refer [10].

If V is a nonempty set (known as vertices) and E is a set of two-subsets of V (known

as edges), then G = (V,E) is known as a graph on the vertex set V and the edge

set E. The two-subset e = {u, v} ∈ E is called an edge between u and v, and in

this case, we say that u and v are adjacent in G and this edge is denoted by u − v.
If there is a path joining any two distinct vertices of G, then the graph G is said

to be connected; otherwise, we say that G is disconnected. For two vertices, a and

b ∈ V (G), the length of a shortest path from a to b is denoted by d(a, b), called

the distance between a and b, and diam(G)=sup{d(a, b) | a, b ∈ V (G)} is called the

diameter of G. The length of a shortest cycle in G is called the girth gr(G) of G. If

there are no cycles in G, we use gr(G) =∞. If the set of vertices in a graph is empty,

it is said to be empty. A connected acyclic graph is called a tree. A graph is planar if

it can be drawn in a plane so that edges intersect at only vertices. For any vertex u,

nbd(u) = {v ∈ V (G) | u and v are adjacent in G} is called the neighbourhood of u.

The degree of a vertex u in a graph, denoted by deg(u), is the number of edges that

are incident to vertex u. In other words, it is the count of vertices that are adjacent
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to u. If the degree of all vertices in a graph G are the same, then G is called a regular

graph. The circumference of a graph G, denoted by C(G), is defined as the length

of longest cycle in G. The eccentricity e(v) of a vertex v in a connected graph G

is defined as the maximum distance from vertex v to any other vertex u in G. The

radius of a graph G, denoted by rad(G), is defined as the minimum eccentricity of

G; that is, rad(G) = min{e(v) | v ∈ V (G)}. If every pair of distinct vertices in G

is connected by an edge, then G is called a complete graph, and the complete graph

with n vertices is denoted by Kn. If a graph G is the union of two disjoint sets of

vertices, one of size m and the other of size n such that every vertex in the first set

is connected to every vertex in the other set, and there are no edges within each set,

then G is called a complete bipartite graph, denoted by Km,n. The star graph is a

complete bipartite graph K1,n. For more concepts in graph theory, refer [17].

We recall the following results from [12].

Lemma 1 ([12], Lemma 2.1). Let L be a lattice and I, J ∈ N(L). Then I and J are
adjacent in SAnnIG(L) if and only if Ann(I) * Ann(J) and Ann(J) * Ann(I).

Lemma 2 ([12], Lemma 2.3). Let L be a lattice and I, J ∈ N(L). Then I and J are
adjacent in SAnnIG(L) if and only if A(I) * A(J) and A(J) * A(I).

Theorem 1 ([12], Theorem 3.2). Let L be a lattice. Then SAnnIG(L) is a complete
bipartite or a star graph if and only if |A(L)| = 2.

Theorem 2 ([12], Theorem 3.1 (iii)). Let L be a lattice. If S = {(a] | a ∈ A(L)},
then S forms an induced complete subgraph in SAnnIG(L).

Corollary 1 ([12], Corollary 3.3). Let L be a lattice. Then SAnnIG(L) is connected
and diam(SAnnIG(L)) ≤ 2.

Theorem 3 ([12], Theorem 4.1(i)). Let L be a lattice. Then SAnnIG(L) is complete
if and only if N(L) = {(a] | a ∈ A(L)}.

In the section 2 of this paper, we determine the radius, circumference, and domination

number of SAnnIG(L). We obtain necessary and sufficient conditions for SAnnIG(L)

to be in the class of paths, cycles, unicyclic, triangle-free, trees, complete multipartite,

split or claw-free graphs. In the section 3, we study the relationship between strongly

annihilator ideal and the annihilator ideal graph of a lattice.

2. Characterizations of SAnnIG(L)

In the following theorem, we determine a necessary and sufficient condition such that

rad(SAnnIG(L)) = 1.
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Theorem 4. Let L be a lattice. Then rad(SAnnIG(L)) = 1 if and only if |[a)z| = 1 for
some atom a ∈ A(L).

Proof. Let rad(SAnnIG(L)) = 1. On the contrary, suppose that |[a)z| > 1 for all

atoms a ∈ A(L). If (x] ∈ N(L) with x /∈ A(L), then there exists a ∈ A(L) such that

a < x. Therefore, A((a]) ⊆ A((x]) and hence by Lemma 2, vertex (a] is not adjacent

to (x]. By Corollary 1, we have d((x], (a]) = 2. Similarly, for every (a] ∈ N(L) with

a ∈ A(L), there exists (y] ∈ N(L) with y > a such that d((a], (y]) = 2. Therefore,

eccentricity of every vertex in SAnnIG(L) is two and hence rad(SAnnIG(L)) = 2,

a contradiction. Conversely, suppose |[a)z| = 1 for some atom a ∈ A(L). Then, for

every (x] ∈ N(L) \ {(a]}, we have, A((a]) * A((x]) and A((x]) * A((a]). Hence, by

Lemma 2, vertices (a] and (x] are adjacent. That is, d((a], (x]) = 1. Therefore, for

every (x] ∈ N(L) \ {(a]}, we have, e((x]) = 1. Hence, min{e(I) | I ∈ N(L)} = 1.

Thus, rad(SAnnIG(L)) = 1.

By Corollary 1 and Theorem 4, we have the following immediate consequence.

Corollary 2. Let L be a lattice. Then rad(SAnnIG(L)) = 2 if and only if |[a)z| > 1 for
all atoms a ∈ A(L).

Example 1. Let L be a lattice depicted in Figure 1. Observe that, A(L) = {a1, a2, a3}
and |[ai)z| > 1 for every i = 1, 2, 3. Therefore, by Corollary 2, rad(SAnnIG(L)) = 2.

0

a1 a2 a3

yx

(a1] (a2]

(a3]

(x]

(y]1

L SAnnIG(L)

Figure 1. Some lattice L for which rad(SAnnIG(L)) = 2.

In the following result, we show that the circumference of SAnnIG(L) does not exceed

four.

Theorem 5. Let L be a lattice. Then C(SAnnIG(L)) ≤ 4.

Proof. Assume that there is an induced cycle I1 − I2 − · · · − In − I1 in SAnnIG(L)

with length n ≥ 5. Since there is no edge between I1 and I3, by Lemma 2, suppose that

A(I1) ⊆ A(I3). If A(I4) ⊆ A(I1), then A(I4) ⊆ A(I3) and hence I3 is not adjacent to
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I4, which is not true. Therefore, A(I1) ⊆ A(I4). Now, we show that A(I2) ⊆ A(In).

As I2 is not adjacent to I4, by Lemma 2, we have A(I2) ⊆ A(I4) or A(I4) ⊆ A(I2).

If A(I4) ⊆ A(I2), then as A(I1) ⊆ A(I4), we have A(I1) ⊆ A(I2) and hence I1 is not

adjacent to I2, which is incorrect. Therefore A(I2) ⊆ A(I4). This process is therefore

carried out for I5, . . . , In. Then, we obtain A(I2) ⊆ A(I5), . . . , A(I2) ⊆ A(In).

Since A(I2) ⊆ A(I5), hence from I3, we do the same argument on I5, . . . , In, I1. Then,

we get A(I3) ⊆ A(I5), . . . , A(I3) ⊆ A(In), A(I3) ⊆ A(I1). Therefore A(I1) ⊆ A(I3)

and A(I3) ⊆ A(I1) implies that A(I1) = A(I3). But, since A(I3) * A(I4) and

A(I4) * A(I3), we have A(I1) * A(I4) and A(I4) * A(I1), and hence I1 is adjacent

to I4, a contradiction. Similarly, if A(I3) ⊆ A(I1), we have a contradiction. Thus

n ≤ 4. That is C(SAnnIG(L)) ≤ 4.

A subset D of the vertex set V of a graph G is called a dominating set if every vertex

in the graph that is not in D is adjacent to at least one vertex in D. The domination

number of a graphG, denoted by γ(G), is defined as the size of the smallest dominating

set of G. In the following result, we study the domination number of SAnnIG(L).

Theorem 6. Let L be a lattice. Then, the following statements hold.

(1) γ(SAnnIG(L)) = 1 if and only if |[a)z| = 1 for some atom a ∈ A(L).

(2) γ(SAnnIG(L)) ≤ 2.

Proof. (1) For a graph G = (V,E) with |V | ≥ 2, it is well known that γ(G) = 1 if

and only if rad(G) = 1. Therefore, by Theorem 4, γ(SAnnIG(L)) = 1 if and only if

|[a)z| = 1 for some atom a ∈ A(L).

(2) Let b ∈ Z∗(L) be the element such that |B(a)| ≤ |B(b)|, for all a ∈ Z∗(L) and

B(b) = S. Consider B = {I ∈ N(L) | A(I) ⊆ S}. Then Bc = {J ∈ N(L) | A(J) * S}.
HenceN(L) = B∪Bc. Then there exists an ideal (ai] with ai ∈ A(L)\S. We show that

D = {(b], (ai]} is a dominating set. Note that, A((ai]) * A(I) and A(I) * A((ai])

for every I ∈ B. Therefore, (ai] − I is an edge for every I ∈ B. Also, observe

that A(J) * A((b]) and A((b]) * A(J) for every J ∈ Bc. Therefore, (b] − J is

an edge for every J ∈ Bc. Therefore, D is a dominating set. Hence, we have,

γ(SAnnIG(L)) ≤ 2.

Example 2. Let L be a lattice depicted in Figure 2. Observe that, A(L) = {a1, a2, a3}
and |[a3)z| = 1. Therefore, by Theorem 6, γ(SAnnIG(L)) = 1. Note that, D = {(a3]} is a
dominating set.

Corollary 3. Let L be a Boolean lattice such that |L| = 2n, n ∈ N with n ≥ 3. Then
γ(SAnnIG(L)) = 2.

Proof. Since |[a)z| > 1 for every atom a ∈ A(L), by Theorem 6(1), γ(SAnnIG(L)) 6=
1. By Theorem 6(2), we have, γ(SAnnIG(L)) = 2.
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0

a1 a2 a3

x

(a1] (a2]

(a3]

(x]

1

L SAnnIG(L)

Figure 2. Some lattice L for which γ(SAnnIG(L)) = 1.

In the following result, we give the necessary and sufficient condition for SAnnIG(L)

to be a path or cycle.

Theorem 7. Let L be a lattice. Then, the following statements hold.

(1) SAnnIG(L) is a path if and only if A(L) = {a, b} with |[a)z| ≤ 2 and |[b)z| = 1.

(2) SAnnIG(L) is a cycle if and only if any of the following statement holds.

(a) A(L) = {a, b} with |[a)z| = 2 and |[b)z| = 2.

(b) A(L) = Z∗(L) with |A(L)| = 3.

Proof. (1) Suppose SAnnIG(L) is a path. If |A(L)| ≥ 3, then the ideals generated

by three distinct atoms form a cycle of length three, a contradiction. Therefore

|A(L)| ≤ 2. If |A(L)| = 1, then SAnnIG(L) is empty. Thus |A(L)| = 2. By Theorem

1, we have, SAnnIG(L) = K|[a)z|,|[b)z|, where A(L) = {a, b}. Thus |[a)z| ≤ 2 and

|[b)z| = 1.

Conversely, suppose A(L) = {a, b} such that |[a)z| ≤ 2 and |[b)z| = 1. Then by

Theorem 1, we have SAnnIG(L) = K1,1 or K2,1. Thus SAnnIG(L) is a path.

(2) Suppose SAnnIG(L) is a cycle. If |A(L)| ≥ 4, then by Theorem 3, we have

SAnnIG(L) has a subgraph isomorphic to K4, which is not true. Therefore |A(L)| ≤
3. If |A(L)| = 1, then SAnnIG(L) is empty, a contradiction. Thus |A(L)| = 2 or 3.

Suppose A(L) = {a, b}. Then by Theorem 1, we have, SAnnIG(L) = K|[a)z|,|[b)z|.

Thus |[a)z| = 2 and |[b)z| = 2. Now, suppose A(L) = {a1, a2, a3}. By Theorem 2,

for every distinct i, j and k, we have (aj ], (ak] ∈ nbd((ai]) and hence deg((ai]) ≥ 2.

If there exists x ∈ Z∗(L) such that x > aj , then there exists ai ∈ A(L) such that

ai /∈ (x]. Then A((ai]) * A((x]) and A((x]) * A((ai]). Hence (ai] − (x] is an edge.

Therefore {(aj ], (ak], (x]} ⊆ nbd((ai]) and hence deg((ai]) ≥ 3, a contradiction. Thus

Z∗(L) = A(L) = {a1, a2, a3}.
Conversely, suppose statement (a) holds. Then by Theorem 1, we have,

SAnnIG(L) = K2,2 and hence the result follows. Now, suppose statement (b) holds.

Then by Theorem 2, we have, SAnnIG(L) = K3 and hence SAnnIG(L) is a cy-

cle.
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Figure 3. Some lattices L for which SAnnIG(L) is a path.
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Figure 4. Some lattice L for which SAnnIG(L) is a cycle.

A graph G is said to be unicyclic if there is only one cycle in G. Let Ak = {I ∈
N(L)||A(I)| = k}. In the following result, we give the necessary and sufficient condi-

tions for SAnnIG(L) to be unicyclic.

Theorem 8. Let L be a lattice. Then SAnnIG(L) is unicyclic if and only if any of the
following statement holds.

(1) A(L) = {a, b} with |[a)z| = 2 and |[b)z| = 2.

(2) A(L) = {a, b, c} with |A1| = 3 and no ideals I, J ∈ A2 exist such that A(I) 6= A(J).

Proof. Suppose SAnnIG(L) is unicyclic. By Theorem 2, we have, |A(L)| ≤ 3. If

|A(L)| = 1, then SAnnIG(L) is empty and hence it has no cycle, a contradiction.

Suppose A(L) = {a, b}. Then SAnnIG(L) = K|[a)z|,|[b)z| and hence |[a)z| = 2 and

|[b)z| = 2. Suppose A(L) = {a, b, c}. If |A1| ≥ 4, then there exists (d] ∈ A1 with

d > a. Since A((d]) = {a}, we have, A((d]) * A((b]) and A((b]) * A((d]). Also,

A((d]) * A((c]) and A((c]) * A((d]). Therefore (d] − (b] and (d] − (c] are the edges.

Hence (d]−(b]−(c]−(d] is a cycle different from (a]−(b]−(c]−(a]. This contradicts the

assumption that SAnnIG(L) is unicyclic. Thus |A1| = 3. Now, suppose there exist

ideals I and J such that A(I) = {a, b} and A(J) = {a, c}. Then (a]−(b]−(c]−(a] and

I − (c]− (b]−J − I are the two distinct cycles in SAnnIG(L) and hence SAnnIG(L)
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is not unicyclic, a contradiction. Thus, there does not exist I, J ∈ A2 such that

A(I) 6= A(J).

Conversely, suppose the statement (1) holds. Then SAnnIG(L) = K2,2 and hence

SAnnIG(L) is unicyclic. Now, suppose the statement (2) holds. Then (a]−(b]−(c]−
(a] is the only cycle formed by elements in A1. If I ∈ A3 then I /∈ N(L) and hence

N(L) = A1 ∪ A2. Since no any two elements in A2 are adjacent to each other, they

never form a cycle of length 3 or 4. Also, since any element of A1 is adjacent to at

most one element of A2 and vice versa, and no two elements of A2 are adjacent, we

have elements in A1 and A2 do not form a cycle of length 3 or 4. Thus, by Theorem

5, we have SAnnIG(L) is unicyclic.

Example 3. Consider a lattice L depicted in Figure 5. We have, A(L) = {a, b, c},
|A1| = |{(a], (b], (c]}| = 3 and A2 = {(x], (y], (z]}. Observe that, A(I) = {a, b} for every
I ∈ A2. Thus, by Theorem 8(2), SAnnIG(L) is unicyclic.

0

a b c

x

yz

(a] (b]

(c]

(x]
(y]

(z]

1

L SAnnIG(L)

Figure 5. Some lattice L for which SAnnIG(L) is unicyclic.

The following corollary is an immediate consequence of Theorem 7(2) and 8.

Corollary 4. Let L be a lattice such that |A(L)| = 2. Then SAnnIG(L) is a cycle if
and only if SAnnIG(L) is unicyclic.

An undirected graph is a triangle-free graph if none of its three vertices combine to

form a triangle with edges. An undirected graph is a tree if there is only one path

connecting any two vertices. In the following result, we give the characterization for

SAnnIG(L) to be in the class of triangle-free or tree.

Proposition 1. Let L be a lattice such that SAnnIG(L) is nonempty. Then, the
following statements hold.

(1) SAnnIG(L) is a triangle-free graph if and only if |A(L)| = 2.

(2) SAnnIG(L) is a tree if and only if A(L) = {a, b} with |[a)z| = 1 or |[b)z| = 1.
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Proof. Follows by Theorem 1 and 2

In general, the triangle-free graph is not necessarily a bipartite graph. For example,

a cycle Cn with n is odd, n ≥ 5. But, in the following corollary, we show that it holds

in SAnnIG(L),

Corollary 5. Let L be a lattice such that SAnnIG(L) is nonempty. Then SAnnIG(L)
is a triangle-free graph if and only if it is a bipartite graph.

Proof. By Theorem 1 and Proposition 1(1), it is trivial.

In the following result, we give a characterization for SAnnIG(L) to be a complete

multipartite graph.

Theorem 9. Let L be a lattice. Then the following statements are equivalent:

1. SAnnIG(L) is a complete multipartite graph.

2. |A(I)| = 1 for each I ∈ N(L).

3. AnnIG(L) = SAnnIG(L) is a complete multipartite graph.

Proof. (1)⇒ (2) Assume that SAnnIG(L) is a complete multipartite graph. Hence,

there exists a partition N(L) =
⋃
λ∈Λ Vλ such that no two vertices of Vλ are adjacent

in SAnnIG(L) for each λ ∈ Λ and for any distinct λ, λ′ ∈ Λ, any I ∈ Vλ, J ∈ Vλ′ ,

I and J are adjacent in SAnnIG(L). Let I ∈ N(L). Suppose that |A(I)| > 1. Let

a, b ∈ A(I) with a 6= b. Observe that A((a]) ⊂ A(I). Therefore, (a] and I are not

adjacent in SAnnIG(L) by Lemma 2. Therefore, both (a] and I must belong to Vλ
for some λ ∈ Λ. Similarly, as A((b]) ⊂ A(I), it follows that (b] and I are not adjacent

in SAnnIG(L). Hence, (b] must be in Vλ. This is impossible, since (a] and (b] are

adjacent in SAnnIG(L). Therefore, |A(I)| = 1 for each I ∈ N(L).

(2)⇒ (3) Assume that |A(I)| = 1 for each I ∈ N(L). Let A(L) = {aλ | λ ∈ Λ}. The

relation ∼ defined on N(L) by for any I, J ∈ N(L), I ∼ J if and only if A(I) = A(J) is

an equivalence relation. For any λ ∈ Λ, let us denote the equivalence class containing

(aλ] determined by ∼ by [(aλ]]. Since |A(I)| = 1 for each I ∈ N(L), it follows that

{[(aλ]] | λ ∈ Λ} is the collection of all equivalence classes determined by ∼. Let

λ ∈ Λ. If I, J ∈ [(aλ]], then A(I) = A(J) and so, I and J are not adjacent in

SAnnIG(L). Let λ′ ∈ Λ be such that λ 6= λ′. Let I ∈ [(aλ]] and J ∈ [(aλ′ ]]. Then

A(I) = {aλ} * A(J) = {aλ′} and similarly A(J) * A(I). Therefore, I and J are

adjacent in SAnnIG(L). This shows that SAnnIG(L) is a complete multipartite

graph whose parts are {[(aλ]] | λ ∈ Λ}. Observe that V (AnnIG(L)) = N(L) =

V (SAnnIG(L)). By assumption, |A(I)| = 1 for each I ∈ N(L). Let I, J ∈ N(L) be

distinct. Notice that I and J are adjacent in SAnnIG(L) if and only if A(I) * A(J)

and A(J) * A(I) by Lemma 2, if and only if A(I) 6= A(J), if and only if I and J are

adjacent in AnnIG(L) by [[14], Lemma 2.2]. Therefore, AnnIG(L) = SAnnIG(L) is

a complete multipartite graph.
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(3)⇒ (1) This is clear.

Example 4. Let L = {φ} ∪ {{2}, {4}, {6}, . . . } ∪ {{1, 2}, {3, 4}, {5, 6}, . . . } ∪ N, where
N = set of all natural numbers. Define a partial order relation on L such that for any two sets
A,B ∈ L, we have, A ≤ B if and only if A ⊆ B. Then, (L,≤) is a lattice as shown in Figure
6 in which φ is a least element and N is a greatest element, and A(L) = {{2}, {4}, {6}, . . . }
and C(L) = {{1, 2}, {3, 4}, {5, 6}, . . . }, where C(L) be the set containing all coatoms in L.
Observe that, L = φ ∪ A(L) ∪ C(L) ∪ N and |A(I)| = 1 for every I ∈ N(L). Therefore, by
Theorem 9, SAnnIG(L) is a complete multipartite graph.

{2} {4} {6}

{3, 4} {5, 6}

φ

{1, 2}

N

L

Figure 6. Atomic lattice L with infinite number of atoms satisfying the condition (2) of the statement in
Theorem 9.

Example 5. Let L be a lattice as shown in Figure 7. Observe that the vertex (b] is
not adjacent to (e] as well as to (d]. Hence, vertices (b], (e] and (d] are the members of
same partition. Since, vertex (e] is adjacent to (d], we have, SAnnIG(L) is not a complete
multipartite graph. Since, A(I) 6= A(J) for every I, J ∈ N(L), we have, AnnIG(L) is a
complete multipartite graph. Note that, there exists ideal (d] ∈ N(L) such that |A((d])| > 1.

0

a b c

d e

1

(c](a]

(b]

(e] (d]

(c](a]

(b]

(e] (d]

L SAnnIG(L) AnnIG(L)

Figure 7. Some lattice L for which SAnnIG(L) is not complete multipartite, while AnnIG(L) is complete
multipartite.
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Corollary 6. Let L be a lattice such that |A(L)| = n. Then SAnnIG(L) is a complete
multipartite graph if and only if SAnnIG(L) is a complete n-partite graph.

Example 6. Let L be a lattice as shown in Figure 8. Observe that, |A(L)| = 3, |A(I)| = 1
for every I ∈ N(L) and SAnnIG(L) = AnnIG(L) is a complete 3-partite graph.

0

d

a b

f

c

e g h

1

(d]

(a]

(e]

(g]

(c]

(h]

(b] (f ]

L SAnnIG(L) = K3,2,3 = AnnIG(L)

Figure 8. Some lattice L for which SAnnIG(L) = AnnIG(L) is a complete multipartite graph.

A graph with its vertices divided into an independent set and a clique is called a split

graph. If L is a lattice such that A(L) = {a, b}, then SAnnIG(L) = K|[a)z|,|[b)z|.

Hence, if A(L) = {a, b}, then SAnnIG(L) is a split graph if and only if |[a)z| = 1 or

|[b)z| = 1.

Let L be a lattice with A(L) = {a1, a2, . . . , an}. Also, let Si = {I ∈ N(L) | A(I) =

{ai}}. For distinct i and j, let Si,j = {I ∈ N(L) | A(I) = {ai, aj}}. For distinct

i, j and k, let Si,j,k = {I ∈ N(L) | A(I) = {ai, aj , ak}} and so on. In the following

result, we give the necessary and sufficient condition for SAnnIG(L) to be a split

graph when L is a lattice with |A(L)| ≥ 3.

Theorem 10. Let L be a lattice such that A(L) = {a1, a2, . . . , an}, n ≥ 3. Then
SAnnIG(L) is a split graph if and only if N(L) = S1 ∪ S1,2 ∪ S1,2,3 ∪ · · · ∪ S1,2,3,...,n−1 ∪( ⋃
ai∈A(L)\{a1}

(ai]
)
.

Proof. Let SAnnIG(L) be a split graph with Q as a clique and U as an independent

set. Let Bk = {I ∈ N(L) \ V (Q) | |A(I)| = k}. Observe that, N(L) = V (Q) ∪

V (U), where V (U) =

n−1⋃
i=1

Bi. If there exist ideals (ai], (aj ] ∈ V (U) with i 6= j, then

A((ai]) * A((aj ]) and A((aj ]) * A((ai]) and hence (ai] and (aj ] are adjacent vertices,

a contradiction. Thus, we have the following two cases.

Case (i) (ai] /∈ V (U) for all ai ∈ A(L).

Then, by Theorem 2, we have (ai] ∈ V (Q) for all ai ∈ A(L). Now, for every (x] ∈
N(L) with x /∈ A(L), if (x] ∈ V (Q) then for aj < x, we have A((aj ]) ⊆ A((x])

and hence (aj ] and (x] are non adjacent vertices, a contradiction. Thus, V (Q) =
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{(a1], (a2], . . . , (an]}. If V (U) = φ, then S1,2 = φ = S1,2,3 =, . . . ,= S1,2,...,n−1. Hence,

N(L) = S1 ∪ S1,2 ∪ S1,2,3 ∪ · · · ∪ S1,2,3,...,n−1 ∪
( ⋃
ai∈A(L)\{a1}

(ai]
)
, where S1 = {(a1]}.

Suppose I1 ∈ V (U). Then, I1 ∈ Bk for some k. If there exists I2 ∈ Bk such that

A(I1) 6= A(I2), then by Lemma 2, vertices I1 and I2 are adjacent, which is impossible

as I2 ∈ V (U). Therefore, for every I ∈ Bk, we have A(I) = {a1, a2, . . . , ak}. That is,

for every I ∈ Bk, we have I ∈ S1,2,...,k. If there exists I3 ∈ Bk−1, then since I3 ∈ V (U),

by Lemma 2, A(I3) ⊂ A(I) for every I ∈ Bk, and for any I4 ∈ Bk−1 if A(I3) 6= A(I4),

then by Lemma 2, vertices I3 and I4 are adjacent, which is impossible as I4 ∈ V (U).

Thus, for every J ∈ Bk−1, we have A(J) = {a1, a2, . . . , ak−1}. That is, for every

J ∈ Bk−1, we have J ∈ S1,2,...,k−1. Continuing in this way, we have, if K ∈ B1,

then K ∈ S1. Now, if there exists I5 ∈ Bk+1, then since I5 ∈ V (U), by Lemma 2,

A(I) ⊂ A(I5) for every I ∈ Bk, and for any I6 ∈ Bk+1 if A(I5) 6= A(I6), then by

Lemma 2, vertices I5 and I6 are adjacent, which is impossible as I6 ∈ V (U). Thus,

for every M ∈ Bk+1, we have A(M) = {a1, a2, . . . , ak, ak+1}. That is, for every M ∈
Bk+1, we have M ∈ S1,2,...,k+1. Continuing in this way, we have, if N ∈ Bn−1, then

N ∈ S1,2,...,n−1. This shows that V (U) = S1 \{(a1]}∪S1,2∪S1,2,3∪ · · ·∪S1,2,3,...,n−1.

Therefore, N(L) = V (Q)∪V (U) = {(a1], (a2], . . . , (an]}∪
{
S1 \{(a1]}∪S1,2∪S1,2,3∪

· · · ∪ S1,2,3,...,n−1} = S1 ∪ S1,2 ∪ S1,2,3 ∪ · · · ∪ S1,2,3,...,n−1 ∪
( ⋃
ai∈A(L)\{a1}

(ai]
)
.

Case (ii) (ai] ∈ V (U) for some ai ∈ A(L).

Suppose (a1] ∈ V (U). By Theorem 2, for every 2 ≤ i ≤ n, we have (ai] /∈ V (U)

and hence (ai] ∈ V (Q). Also, if there exists J ∈ V (Q) such that J 6= (ai], ∀ i
and ai ∈ A(J) with ai 6= a1, then A((ai]) ⊆ A(J) and hence (ai] − J is not an

edge, which is not true. Thus, V (Q) = {I, (a2], . . . , (an]} with A(I) = {a1} or

V (Q) = {(a2], . . . , (an]}. Observe that, (a1] ∈ S1 ∩ B1. By Lemma 2, for every

J ∈ B1, we have A(J) = {a1}. That is, for every J ∈ B1, we have J ∈ S1. From

B2 onward, we give the similar proof as in the Case (i) and conclude that N(L) =

S1 ∪ S1,2 ∪ S1,2,3 ∪ · · · ∪ S1,2,3,...,n−1 ∪
( ⋃
ai∈A(L)\{a1}

(ai]
)
.

Conversely, let N(L) = S1∪S1,2∪S1,2,3∪· · ·∪S1,2,3,...,n−1∪
( ⋃
ai∈A(L)\{a1}

(ai]
)
. Then,

for any I, J ∈
⋃

ai∈A(L)\{a1}

(ai], we have, A(I) * A(J) and A(J) * A(I) and hence

I − J is an edge. Therefore, elements in
⋃

ai∈A(L)\{a1}

(ai] forms a clique. Now, for

any I, J ∈ N(L) \
( ⋃
ai∈A(L)\{a1}

(ai]
)
, we have, A(I) ⊆ A(J) or A(J) ⊆ A(I) and

hence I and J are non adjacent vertices. Therefore, N(L) \
( ⋃
ai∈A(L)\{a1}

(ai]
)

forms

an independent set. Thus, SAnnIG(L) is split.

Example 7. Let L be a lattice as shown in Figure 9. We have, A(L) = {a1, a2, a3, a4},
S1 = {(a1], (a1′ ], (a1′′ ]}, S1,2 = {(a12], (a12′ ]}, S1,2,3 = {(a123], (a123′ ]} and N(L) = S1 ∪
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S1,2 ∪ S1,2,3 ∪
( ⋃
ai∈A(L)\{a1}

(ai]
)
. Observe that, SAnnIG(L) is a split graph.

a1 a2 a3 a4

a1′′ a1′

a12

a12′

a123

a123′

1
(a123′ ]

(a123]

(a12′ ]

(a12]

(a1′′ ]

(a1′ ]

(a2]

(a3]

(a1]
(a4]

0

SAnnIG(L)L

Figure 9. Some lattice L for which SAnnIG(L) is a split graph.

Example 8. Let L be a lattice as shown in Figure 10. We have, A(L) = {a1, a2, a3, a4},
S1 = {(a1], (a1′ ], (a1′′ ], (a1′′′ ]}, S1,2 = φ, S1,2,3 = {(a123], (a123′ ], (a123′′ ]} and N(L) = S1 ∪
S1,2 ∪ S1,2,3 ∪

( ⋃
ai∈A(L)\{a1}

(ai]
)
. Observe that, SAnnIG(L) is a split graph.

a1 a2 a3 a4

a1′′ a1′

a1′′′

a123

a123′

a123′′

1
(a123′′ ]

(a123′ ]

(a123]

(a1′′′ ]

(a1′′ ]

(a1′ ]

(a2]
(a3]

(a1]
(a4]

0

SAnnIG(L)L

Figure 10. Some lattice L for which SAnnIG(L) is a split graph.

The complete bipartite graph K1,3 is a tree called claw. A claw-free graph is a graph

that does not have a claw as an induced subgraph. In the following result, we give

the characterization for SAnnIG(L) to be a claw-free graph.
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Theorem 11. Let L be a lattice such that |A(L)| ≥ 2. Then SAnnIG(L) is a claw-free
graph if and only if for every a ∈ A(L) there does not exist distinct bi, bj ∈ [a)z \ {a} such
that A((bi]) ⊆ A((bj ]).

Proof. Suppose SAnnIG(L) is a claw-free graph. For some ai ∈ A(L), if there exists

distinct bi, bj ∈ [ai)z \ {ai} such that A((bi]) ⊆ A((bj ]), then {(ai], (bi], (bj ]} forms an

independent set. Since (x] ∈ N(L) for every x ∈ [ai)z, there exists aj ∈ A(L) \ {ai}
such that A((aj ]) * A((x]) and A((x]) * A((aj ]). Therefore ideal (aj ] is adjacent to

(x] for every x ∈ [ai)z. Thus, the set {(ai], (bi], (bj ], (aj ]} forms a claw, a contradiction.

Conversely, suppose for every a ∈ A(L) there does not exist distinct bi, bj ∈ [a)z \ {a}
such that A((bi]) ⊆ A((bj ]). On the contrary, assume that SAnnIG(L) is not a

claw-free graph. Therefore, there exist an independent set, say S = {I1, I2, I3}. By

Lemma 2, suppose that A(I1) ⊆ A(I2), A(I1) ⊆ A(I3) and A(I2) ⊆ A(I3). Assume

that a ∈ A(L) ∩A(I1), I2 = (bi] and I3 = (bj ], with bi 6= bj . Clearly, there does exist

distinct bi, bj ∈ [a)z \ {a} such that A((bi]) ⊆ A((bj ]), a contradiction. Similarly, in

all the other possibilities, we get a contradiction. Thus SAnnIG(L) is a claw-free

graph.

Example 9. Consider a lattice as shown in Figure 8. Since, there exists a ∈ A(L) and
d, e ∈ [a)z \ {a} such that A((d]) = {a} = A((e]), we have, SAnnIG(L) is not a claw-free
graph. Note that, the elements in the set {(a], (d], (e], (b]} forms a claw in SAnnIG(L).

In the following result, we study SAnnIG(L) when L is a lattice of positive divisors.

Theorem 12. Let n be a natural number, and L = D(n) be the lattice of all divisors of
n, and n = pm1

1 pm2
2 . . . p

mk
k , 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk be the prime factorization of n, where

n > 1, k ≥ 2,

(1) Then C(SAnnIG(L)) = 4 provided SAnnIG(L) admits a cycle.

(2) γ(SAnnIG(L)) = 1 if and only if n = p1p
m2
2 .

(3) γ(SAnnIG(L)) = 2 if and only if n 6= p1p
m2
2 .

(4) SAnnIG(L) is a path if and only if k = 2 with m1 = 1,m2 ≤ 2.

(5) SAnnIG(L) is a cycle if and only if k = 2 withm1 = 2 = m2 if and only if SAnnIG(L)
is unicyclic.

(6) SAnnIG(L) is a tree if and only if k = 2 with m1 = 1.

(7) SAnnIG(L) is a triangle-free graph if and only if k = 2 if and only if SAnnIG(L) is
a complete multipartite graph.

(8) SAnnIG(L) is a split graph if and only if k = 2 with m1 = 1.

(9) SAnnIG(L) is a split graph if and only if SAnnIG(L) is a tree.

(10) SAnnIG(L) is a claw-free graph if and only if k = 2 with m2 ≤ 2 or k = 3 with
m1 = m2 = m3 = 1.
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Proof. (1) If k = 2, then SAnnIG(L) = Km1,m2
and hence no cycle of length 3

exists. If k ≥ 3, then SAnnIG(L) contains a cycle (p1]− (p2]− (p1p3]− (p2p3]− (p1]

of length 4. Thus by Theorem 5, we have C(SAnnIG(L)) = 4.

(2) Here A(D(n)) = {p1, . . . , pn}. Now, |[pi)z| = 1 for some i if and only if n = p1p
m2
2 .

Thus by Theorem 6, we have γ(SAnnIG(L)) = 1.

(3) By (2) and Theorem 6, it is obvious.

(4) Suppose SAnnIG(L) is a path. By Theorem 2, k = 2 and hence SAnnIG(L) =

Km1,m2
. Thus m1 = 1,m2 ≤ 2. The converse of the statement is trivial.

(5) Suppose SAnnIG(L) is a cycle. If k ≥ 3, then |Z∗(L)| ≥ 6 and by Theorem 7,

we have, k = 2. Therefore A(L) = {p1, p2}. Hence by Theorem 7, we have |[p1)z| =

m1 = 2 = m2 = |[p2)z| and then by Theorem 8, SAnnIG(L) is unicyclic. Conversely,

suppose SAnnIG(L) is unicyclic. By Theorem 8, we have k ≤ 3. Suppose k = 3.

Then |A1| = 3 if and only if mi = 1,∀ i. But, then there exists ideals I = (pipj ] and

J = (pjpk] such that A(I) 6= A(J) and hence by Theorem 8, we have, SAnnIG(L)

is not unicyclic, a contradiction. Thus k = 2. Therefore by Theorem 8, we have

|[p1)z| = m1 = 2 = m2 = |[p2)z|. Thus by Theorem 7(2), we have, SAnnIG(L) is a

cycle.

(6) Suppose SAnnIG(L) is a tree. Then SAnnIG(L) = K|[p1)z|,|[p2)z| = Km1,m2 if

and only if k = 2. Thus by Proposition 1(2), we have m1 = 1. The converse of the

statement is trivial.

(7) Suppose SAnnIG(L) is a triangle-free graph. By Theorem 2 and Corollary 5,

we have k = 2. Therefore SAnnIG(L) = Km1,m2 . Conversely, suppose SAnnIG(L)

is a complete multipartite graph. If k ≥ 3, then there exists ideal I = (pipj ] such

that |A(I)| = 2 > 1 and a contradiction to Theorem 9. Therefore k = 2 and hence

|A(L)| = 2. Thus, by Proposition 1(1), we have, SAnnIG(L) is a triangle-free graph.

(8) Suppose SAnnIG(L) is a split graph. If k ≥ 3, then S1 = {I ∈ N(L) | A(I) =

{p1}} 6= φ and S2 = {I ∈ N(L) | A(I) = {p2}} 6= φ. Therefore, by Theorem 10, we

have, SAnnIG(L) is not split, a contradiction. Thus k = 2. Hence SAnnIG(L) =

Km1,m2 . Thus m1 = 1. The converse of the statement is trivial.

(9) Result follows by statements (6) and (8).

(10) Suppose SAnnIG(L) is a claw-free graph. If k ≥ 4, then there exists

p1p2, p1p2p3 ∈ [p1)z such that A((p1p2]) ⊂ A((p1p2p3]) and hence by Theorem 11,

we have, SAnnIG(L) is not claw-free, a contradiction. Thus k ≤ 3. Suppose k = 2.

Then SAnnIG(L) = Km1,m2 . Thus m2 ≤ 2. Now, suppose k = 3. If m3 > 1, then

there exists p1p3, p1p
2
3 ∈ [p3)z such that A((p1p3]) = A((p1p

2
3]) and hence by Theorem

11, we have, SAnnIG(L) is not claw-free, a contradiction. Therefore m3 = 1. Thus

m1 = m2 = m3 = 1. The converse of the statement is trivial.

3. Comparison between SAnnIG(L) and AnnIG(L)

In this section, we determine the condition on lattice L so that SAnnIG(L) is identical

to AnnIG(L). Also, we study the relationship between the diameters of SAnnIG(L)

and AnnIG(L) and the relationship between their girths.
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Recall the following result from [12].

Theorem 13 ([12], Theorem 2.1). Let L be a lattice. Then SAnnIG(L) is a
subgraph of AnnIG(L).

Recall the following result from [14].

Theorem 14 ([14], Theorem 2.3). Let L be a lattice. Then AnnIG(L) is a complete
multipartite graph.

The following result gives the characterization for SAnnIG(L) and AnnIG(L) to be

identical.

Theorem 15. Let L be a lattice. Then SAnnIG(L) and AnnIG(L) are identical if and
only if |A(I)| = 1, for all I ∈ N(L).

Proof. Let SAnnIG(L) and AnnIG(L) be the identical graphs. Hence, by Theorem

14, SAnnIG(L) is a complete multipartite graph. Therefore, according to Theorem

9, we have |A(I)| = 1, for all I ∈ N(L). The converse of the statement follows from

Theorem 9.

The following corollary is an immediate consequence of Theorem 15.

Corollary 7. Let L be a lattice with |A(L)| ≤ 2. Then SAnnIG(L) and AnnIG(L) are
identical.

Theorem 16. Let L be a lattice such that SAnnIG(L) is nonempty. Then the following
statements are equivalent:

(1) gr(SAnnIG(L)) = 4

(2) SAnnIG(L) = AnnIG(L) and gr(AnnIG(L)) = 4.

(3) gr(AnnIG(L)) = 4.

(4) |A(L)| = 2 and there exist elements xa and xb such that a ≺ xa, b||xa and b ≺
xb, a||xb, where A(L) = {a, b}.

(5) AnnIG(L) = Km,n, m, n ≥ 2;

(6) SAnnIG(L) = Km,n, m, n ≥ 2;

Proof. (1)⇒ (2) By [[12], Corollary 3.2(2)], we have, |A(L)| = 2. Then by Corollary

7, we have, SAnnIG(L) = AnnIG(L). Thus, the statement is clear.

(2)⇒ (3) It is trivial.

(3)⇒ (4) Let gr(AnnIG(L)) = 4. By [[14], Corollary 2.5(ii)], the statement is clear.
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(4) ⇒ (5) Let |A(L)| = 2. By Corollary 7, AnnIG(L) = K|[a)z|,|[b)z|. Then by [[14],

Corollary 2.5(ii)], AnnIG(L) = Km,n, m, n ≥ 2;.

(5)⇒ (6) This is clear by Corollary 7.

(6)⇒ (1) The graph SAnnIG(L) is complete bipartite that is not a star. Thus, the

statement is clear.

Theorem 17. Let L be a lattice such that SAnnIG(L) is nonempty. Then the following
statements are equivalent:

(1) gr(SAnnIG(L)) =∞

(2) SAnnIG(L) = AnnIG(L), and gr(AnnIG(L)) =∞.

(3) gr(AnnIG(L)) =∞.

(4) |A(L)| = 2 and there doesn’t exist elements xa and xb such that a ≺ xa, b||xa and
b ≺ xb, a||xb, where A(L) = {a, b}.

(5) AnnIG(L) = K1,n, n ≥ 1;

(6) SAnnIG(L) = K1,n, n ≥ 1;

Proof. (1)⇒ (2) By [[12], Corollary 3.2(2)], we have |A(L)| = 2. Then by Corollary

7, we have SAnnIG(L) = AnnIG(L). Thus, the statement is obvious.

(2)⇒ (3) It is trivial.

(3) ⇒ (4) Let gr(AnnIG(L)) = ∞. By [[14], Corollary 2.5(iii)], the statement is

clear.

(4) ⇒ (5) Let |A(L)| = 2. By Corollary 7, AnnIG(L) = K|[a)z|,|[b)z|. Then by [[14],

Corollary 2.5(iii)], AnnIG(L) = K1,n, n ≥ 1;.

(5)⇒ (6) and (6)⇒ (1). Similar to the proof of (5)⇒ (6) and (6)⇒ (1) of Theorem

16.

In the following result, for the graphs SAnnIG(L) and AnnIG(L), we give the rela-

tionship between their diameters.

Theorem 18. Let L be a lattice such that |A(L)| ≥ 2. Then the following statements
hold:

(1) If diam(SAnnIG(L)) = 1, then diam(AnnIG(L)) = 1.

(2) If diam(SAnnIG(L)) = 2, then diam(AnnIG(L)) = 1 or 2.

(3) If diam(AnnIG(L)) = 1, then diam(SAnnIG(L)) = 1 or 2.

(4) If diam(AnnIG(L)) = 2, then diam(SAnnIG(L)) = 2.

Proof. (1) By Theorem 3, we have, N(L) = {(a] | a ∈ A(L)}. Thus, A(I) 6= A(J)

for every distinct I, J ∈ N(L). By [[14], Lemma 2.2], we have, diam(AnnIG(L)) = 1.
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(2) Let diam(SAnnIG(L)) = 2. If A(I) 6= A(J) for every distinct I, J ∈ N(L), then

by [[14], Lemma 2.2], we have diam(AnnIG(L)) = 1, otherwise diam(AnnIG(L)) =

2.

(3) Suppose diam(AnnIG(L)) = 1. If N(L) = {(a] | a ∈ A(L)}, then we have,

diam(SAnnIG(L)) = 1; otherwise diam(SAnnIG(L)) = 2 by Corollary 1.

(4) It is obvious by Theorem 13.

By [[12], Corollary 3.2] and [[14], Corollary 2.5], we have the following immediate

result.

Corollary 8. Let L be a lattice. Then gr(SAnnIG(L)) = gr(AnnIG(L)).

Corollary 9. Let L be a lattice. If SAnnIG(L) 6= AnnIG(L), then gr(SAnnIG(L)) =
gr(AnnIG(L)) = 3.

The converse of Corollary 9 is not true. To observe this, refer to the following example.

Example 10. For a diamond lattice L = D3, we have, AnnIG(L) = K3 = SAnnIG(L).
Therefore, we have diam(SAnnIG(L)) = 1 = diam(AnnIG(L)) and gr(SAnnIG(L)) = 3 =
gr(AnnIG(L)).

Example 11. Let L = (D(30), |). Then AnnIG(L) = K6 and SAnnIG(L) is a 3-regular
graph. Therefore diam(AnnIG(L)) = 1 and diam(SAnnIG(L)) = 2.

Example 12. Let L be a lattice as shown in Figure 11. Observe that,
diam(SAnnIG(L)) = 2 = diam(AnnIG(L)).

0

a b

x

1

(a]

(x]

(b]

(a]

(x]

(b]

L SAnnIG(L) AnnIG(L)

Figure 11. Some lattice L for which diam(SAnnIG(L)) = 2 = diam(AnnIG(L)).
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