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Abstract: Let G = (V,E) be a connected graph and dG(u, v) be the shortest dis-

tance between the vertices u and v in G. A set S = {s1, s2, . . . , sn} ⊂ V (G) is said

to be a resolving set if for all distinct vertices u, v of G, there exists an element s ∈ S
such that dG(s, u) 6= dG(s, v). The minimum cardinality of a resolving set for a graph

G is called the metric dimension of G, and it is denoted by β(G). A resolving set

having β(G) number of vertices is named as metric basis of G. The metric dimension
problem is to find a metric basis in a graph G, and it has several real-life applications in

network theory, telecommunication, image processing, pattern recognition, and many

other fields. In this article, we consider cube of trees T 3 = (V,E), where any two
vertices u, v are adjacent if and only if the distance between them is less than or equal

to three in T . We establish the necessary and sufficient conditions for a vertex subset
of V to become a resolving set for T 3. This helps to determine the tight bounds (upper

and lower) on the metric dimension of T 3. Then, for certain well-known cube of trees,
such as caterpillars, lobsters, spiders, and d-regular trees, we establish the boundaries
for the metric dimension. Also, for every positive integer, we provide a construction

showing the existence of a cube of a tree satisfying its metric dimension as the given
integer. Further, we characterize some restricted families of cube of trees satisfying
β(T 3) = β(T ).
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1. Introduction

For a simple undirected connected graph G = (V,E), the length of the shortest

distance between the vertices u and v in G is denoted by dG(u, v). The metric

representation (or code) of a vertex w with respect to a vertex set S = {s1, . . . , sn} ⊆ V
(denoted by c(w|S)) is an n−tuple (dG(w, s1), . . . , dG(w, sn)). A vertex s resolves or

distinguishes two distinct vertices, u and v, of V when c(u|s) 6= c(v|s), i.e., dG(u, s) 6=
dG(v, s), considering S = {s}. In the same sense, S is said to be a resolving set (also

known as a locating set or metric generator) for G if for every two distinct vertices u, v

of V , we have c(u|S) 6= c(v|S), i.e., for any such u 6= v, there exists a vertex s ∈ S that

resolves u, v. If no s 6= u, v is found to satisfy the above criteria, then we include one

among u or v in S (cf. for an n-vertex complete graph Kn, S contains n− 1 vertices

in it). This means that for every pair of distinct vertices of G, their codes differ in

at least one position. Every simple undirected connected graph G has a resolving set

since the vertex set V itself forms a resolving set. The smallest possible resolving

set is said to be a metric basis, and its cardinality is called the metric dimension (or

locating number) of the graph G (in short, dim(G)). For convenience, we use β(G)

to denote the metric dimension of a graph G for the whole exposition. Though there

are graphs with unique metric bases, it is interesting to note that metric bases do not

need to be unique for every graph [7].

The notion of the metric basis of connected graphs was introduced independently by

Slater [21], and by Harary and Melter [12] in 1975 and 1976, respectively, for uniquely

identifying every vertex in a graph. Calculating the exact metric dimension in gen-

eral for graphs is challenging. To construct a resolving set one needs to provide an

algorithm looking at the adjacency of every node, and therefore, for general graphs

since every edge is not necessarily to be present in a shortest path with an element

of a resolving set as an endpoint, the problem becomes complicated. Determining

metric dimension is NP-hard [10] for many restricted classes of graphs, such as pla-

nar graphs, split graphs, bipartite and co-bipartite graphs, line graphs of bipartite

graphs, subcubic graphs, interval and permutation graphs of diameter two, and for

directed graphs. However, there are efficient algorithms to compute the metric di-

mension for trees [14, 21] in linear time. Sometimes the elements of a metric basis

(also known as landmarks) are treated as sensors in a real-world network to preserve

system security by transferring information or messages within a fixed group only.

Finding such a minimal group of landmarks (satellites) is crucial in robot navigation

problems [14] where the robot can uniquely determine its position by the presence

of distinctly labeled landmarks. Similar applications of metric basis and its variants

have been found in tracking the spread of disease between cities, to find patient zero

and other items in a complex network during pandemics like COVID-19. In a deter-

ministic epidemic model, the times of infection of the sensor nodes are converted to

graph distances between sensors and the source of infection (patient zero), consider-

ing the time of infection of patient zero is known. The minimum number of sensors

required to always detect the source of the disease is same as the metric dimension of
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that particular network [25]. Resolving sets are also used for distinguishing different

chemical structures, determining a source of misinformation circulating in a social

network in addition to recognizing intruders, finding “connected joins” in graphs,

developing strategies for the Mastermind game, incorporating symbolic data in low-

dimensional Euclidean spaces and many others. According to the available databases

of many science repositories, interest in the topic of metric dimension and its vari-

ants has exploded over the last two decades due to its vast applications in several

disciplines, including group theory and topology [4], information theory and extremal

combinatorics [5, 23]. Two recent surveys [16, 22] discuss a complete compendium

containing mostly the important findings on the metric dimension of graphs. Some

other significant recent works on this literature are worth mentioning, for instance,

[6, 9, 11, 17, 24].

The power graph has been extensively explored in the past due to its intriguing fea-

tures and wide range of applications in parallel computing, signal processing, VLSI

designing, and coding theory because of its increased connectivity in an existing net-

work. The metric dimension of paths as well as the middle and total graphs of paths

were studied by Ali et al. [3] in 2012; they also computed the constant metric di-

mension for square and cube of path graphs. Later on, Alholi et al. [2] determined

some exact values and upper bound on the metric dimension of the power of paths by

proving β(P kn ) ≤ k, β(P 3
n) = 3, β(P 4

n) = 4. Chartrand et al. [8] formulated the metric

dimension of trees that are not paths as well as bounds for the dimension of unicyclic

graphs. Their findings characterize all graphs of order n having metric dimension 1

(paths), n − 1 (complete graphs), and n − 2. In 2021, Nawaz et al. [18] proved that

the metric dimension of the total graph of path power three and four is unbounded;

they also proved some results on the edges of the power of path and total graph of

power of path. Saha et al. [20] presented a lower bound on the metric dimension

of P rn , and then built up a resolving set with cardinality that is the same as that of

the lower bound. Javid et al. [13] initiated the study of metric dimension for square

of cycles. The metric dimension of cycles with n(≥ 3) vertices is 2. In due course

of study, other advancements are made by determining the exact metric dimension

for the power of cycles; values of β(Ctn), 2 ≤ t ≤ 5 are available in [15]. In 2022,

metric dimension of square of grid graphs was determined by providing an optimal

resolving set with cardinality 3 [19]. Also, they carried out an investigation over the

bounds on metric dimension for the square of trees recently. Due to the widespread

applications of power graphs, and motivated by the above results, in this article, we

study cube of trees T 3 = (V,E) where any two vertices u, v ∈ V are adjacent if and

only if dT (u, v) ≤ 3.

The rest of the paper is organized as follows: Firstly, Section 2 represents a detailed

explanation of all the terms and expressions that will be used later on to establish

the corresponding results for the metric dimension of T 3. In Section 3, we have

proved some essential lemmas on the properties of resolvability in T 3 that facilitate

determining the resolving set of the cube of a tree. In Section 4, first, we provide

the necessary and sufficient conditions of a vertex subset of V to become a resolving
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set for T 3. Next in Section 5 and in Section 6, we build the tight bounds (lower and

upper) on β(T 3) depending upon the number of short legs, long legs, major stems, and

their positional appearances in the tree T . Constructing a resolving set to prove the

upper bound on β(T 3) is a worthy task. Furthermore, we prove that for every positive

integer, there exists a family of cube of trees with the same metric dimension as those

integer values. In Section 7, we analyze the metric dimension or the bounds on it

for some well-known cube of trees, including caterpillars, lobsters, spiders, d-regular

trees. Lastly, in Section 8, we restrict our findings to those cube of trees that have

pendants as their legs and all of their stems lie on a central path and characterize

such graph classes that satisfy β(T 3) = β(T ). In conclusion, we keep the challenge

open to determine the bounds on metric dimension for any power of trees T r (say)

where r ≥ 4.

2. Preliminaries

For a tree T = (V,E), a vertex v ∈ V of degree at least three is called a core vertex or

core, a vertex of degree two and one is said to be a path vertex and leaf, respectively

[1]. If we remove a vertex v from T , then T \{v} induces a deg(v) number of subtrees

or components. A branch at a vertex v is the subgraph induced by v and one of the

components of T \ {v}. A branch B of T at v, which is a path, is called branch path

(also known as leg) [21]. The vertex v in a branch path satisfying deg(v) ≥ 3 is called

stem of the branch path [21]. It is easy to observe that not every core vertex is a

stem.

Definition 1. A vertex of a tree T = (V,E) is said to be a major stem if it is a stem
containing at least two legs. Other stems are called minor stems. A leg of length greater
than or equal to three is said to be a long leg, other legs that have a length less than three
are said to be short legs. We call a short leg of length two a mid leg, and a short leg of length
one a pendant.

Observation 1. Let T = (V,E) contain at least one stem. Then the following conditions
are true:
i) Two legs adjacent to the same stem vertex v ∈ V are disjoint except for the common stem v.
ii) Any two legs adjacent to two distinct stems must be disjoint.

Theorem 2. [21] Let T = (V,E) be a tree of order |V | ≥ 3. Then S ⊆ V forms a
resolving set if and only if for each vertex x there are vertices from S on at least deg(x)− 1
of the deg(x) components of T \ {x}.

Theorem 3. [14] Let T = (V,E) be a tree that is not a path. If lv is the number of legs
attached to the vertex v. Then

β(T ) =
∑

v∈V :lv>1

(lv − 1) (2.1)



S.Paul , et al. 5

Since the minor stems of a tree cannot have more than one leg as its branch, it is

important to note the following from Theorem 3.

Corollary 1. Let T be a tree that is not a path. Then β(T ) =
∑

v∈V ′
(lv − 1) where V ′

denotes the set of all major stems of T and lv is the number of legs attached to the major
stem v.

The problem of computing the metric dimension of trees is linear [14, 21], since from

the above corollary we get to know that the metric dimension of a tree is the difference

of the total number of leaves and the number of major stems of it, both of which can

be computed in linear time.

Notation. Let P = (u, u1, . . . , v1, v) be the path on a tree T between the vertices u

and v. Here u1, v1 are either the intermediate vertices of the above path P considering

dT (u, v) ≥ 2 (u1 can be equal to v1 also when dT (u, v) = 2) or end vertices when

dT (u, v) = 1 (i.e., u1 = v1 = v or u = u1 = v1 or u = u1, v = v1). We denote Tu(Tv)

to be the component of T containing the vertex u(v), obtained after deletion of the

edge uu1(v1v). A vertex x is said to be within the same component of u and v (say

Tu,v) only when x occurs within the intermediate path of u, v, or it lies in some branch

of T attached to some intermediate vertex of u, v.

Definition 2. Let T = (V,E) be a tree. A graph T 3 = (V, Ê) is said to be cube of tree of
T if the vertex set V remains same as in T and the edge set Ê = E ∪{uv |2 ≤ dT (u, v) ≤ 3}.

The distance between any two vertices u, v in T 3 is measured by dT 3(u, v) =
⌈
dT (u,v)

3

⌉
.

We will use the notations V (T 3) and E(T 3) to denote the vertex set and edge set of

T 3.

3. Properties regarding resolvability in T 3

In this section, we give some basic properties and results of the resolving set of T 3.

We have established certain essential lemmas that are beneficial for determining the

resolving set of T 3.

Lemma 1. Let T = (V,E) be a tree. Then every resolving set of T 3 is also a resolving
set of T .

Proof. Let S be a resolving set of T 3, and u, v ∈ V be any two vertices. Since

V (T 3) = V (T ) and S is a resolving set of T 3, there exists a vertex s ∈ S such that

dT 3(s, u) 6= dT 3(s, v), which implies ddT (s,u)
3 e 6= ddT (s,v)

3 e. Hence we get dT (s, u) 6=
dT (s, v), i.e., s resolves the vertices u and v in T . Therefore, S forms a resolving set

for T .
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We can immediately draw some conclusions from the above lemma.

Corollary 2. For any tree T , β(T 3) ≥ β(T ).

Proof. Let S be a metric basis for T 3. Then |S| = β(T 3). Using Lemma 1, we get

S to be a resolving set of T also. Therefore, β(T ) ≤ |S| = β(T 3).

Lemma 2. Let T = (V,E) be a tree and S be a resolving set of T 3. Then for every vertex
x ∈ V , S contains a vertex from each component of T \ {x} with one exception.

Proof. On the contrary, let T \ {x} have at least two components (say Ci, Cj) satis-

fying S ∩V (Ci) = ∅ and S ∩V (Cj) = ∅. Let u ∈ S ∩V (Ci) and v ∈ S ∩V (Cj) satisfy

dT (x, u) = dT (x, v). Now any vertex w ∈ V \(V (Ci)∪V (Cj)) must have to reach u or

v via x. Therefore, dT (w, u) = dT (w, x) + dT (x, u) = dT (w, x) + dT (x, v) = dT (w, v)

and hence dT 3(w, u) = ddT (w,u)
3 e = ddT (w,v)

3 e = dT 3(w, v). Therefore, a contradiction

arises. Hence, the result follows.

The following corollary is an essential tool for determining any resolving set of T 3.

Corollary 3. Let v be a major stem of a tree T having m legs L1, L2, . . . , Lm. Then, for
every resolving set S of T 3, the following conditions hold.

1. S ∩ Li 6= ∅ for all i ∈ {1, 2, . . . ,m} with one exception.

2. S contains at least m− 1 vertices from the legs adjacent to v.

Lemma 3. Let T = (V,E) be a tree, and v ∈ V be a core of degree m. If v is not a major
stem, then there exist at least m− 1 components of T containing major stems.

Proof. Since deg (v) = m, removing v from T will create m components. Now, as

v is not a major stem, there can exist at most one branch attached to it, which is

a path. Hence, there are m − 1 branches containing at least one vertex in each of

the branches, which have at least two branches out from them. Each of these m− 1

branches is not the path. We consider one such branch B of v and a vertex u on B

having deg (u) ≥ 3 for which dT (v, u) is maximum. Therefore, one can verify that

u must possess at least two branch paths, and hence u becomes a major stem of B,

as well as of T from Definition 1. Similar logic holds true for all other branches of v

that are not paths. Hence, the result follows.

Corollary 4. Let v be a core vertex of a tree T and T \ {v} contain m components
C1, . . . , Cm. If any component Ci contains li major stems where 1 ≤ i ≤ m, then for every

resolving set S of T 3, |S ∩ Ci| ≥
li∑

j=1

(nj − 1), where nj is the number of legs attached to a

major stem in Ci.
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Proof. If Ci is not a branch path, then applying Lemma 2 for each major stem of

Ci, it follows that S contains at least
li∑
j=1

(nj − 1) vertices from the legs adjacent to

the major stems of Ci.

Lemma 4. Let T = (V,E) be a tree and uv be an edge in T 3. Then a vertex x 6= u, v
resolves u, v in T 3 if and only if the following conditions happen.

• If x belongs to at least one among Tu or Tv, then either

dT (u, v) = 3 or

dT (u, v) = 2 and min{dT (x, u), dT (x, v)} ≡ 0 or 2 (mod 3) or

dT (u, v) = 1 and min{dT (x, u), dT (x, v)} ≡ 0 (mod 3)

• If x belongs to Tu,v, then dT (u, v) = 3 and min{dT (x, u), dT (x, v)} ≡ 0 (mod 3).

Proof. Since uv ∈ E(T 3), 1 ≤ dT (u, v) ≤ 3 clearly.

Case I. Without loss of generality, first we consider the case when x ∈ Tu. Then we

can write dT (x, u) = 3k+m and dT (x, v) = dT (x, u) + dT (u, v) = (3k+m) + dT (u, v)

for some integers k,m where k ≥ 0, 0 ≤ m < 3. Hence min{dT (x, u), dT (x, v)} =

dT (x, u).

Ifm = 0, dT 3(x, u) = d 3k
3 e = k 6= k+1 = d 3k+dT (u,v)

3 e = dT 3(x, v) as 1 ≤ dT (u, v) ≤ 3.

Therefore, when min{dT (x, u), dT (x, v)} = 3k ≡ 0 (mod 3), then x resolves u, v.

For m = 1 or 2, dT 3(x, u) = d 3k+m
3 e = k + 1 and dT 3(x, v) = d (3k+m)+dT (u,v)

3 e =

k + dm+dT (u,v)
3 e. Now x resolves u, v if and only if dT 3(x, v) = k + 2 (since

dT (u, v) ≤ 3). This can only happen when m + dT (u, v) > 3, i.e., when m =

1 and dT (u, v) = 3 or when m = 2 and 2 ≤ dT (u, v) ≤ 3. Therefore, if

dT (u, v) = 3 and min{dT (x, u), dT (x, v)} ≡ 1 or 2 (mod 3) or if dT (u, v) = 2 and

min{dT (x, u), dT (x, v)} ≡ 2 (mod 3), then x resolves u, v.

Case II. Next, we consider the case when x belongs to the same component of u and v,

i.e., in Tu,v. Since x 6= u, v, dT (u, v) > 1. Note that in this case, the only possibility of

x resolving u, v is when dT (u, v) = 3 and x occurs in some branch attached to u1 or v1,

where P = (u, u1, v1, v) is the path connecting u, v in T . Without loss of generality, we

assume min{dT (x, u), dT (x, v)} = dT (x, u). Then x must be attached to the branch of

u1. Let dT (x, u1) = 3k +m for some nonnegative integers k,m satisfying 0 ≤ m < 3.

Then dT (x, u) = dT (x, u1) + dT (u1, u) = (3k + m) + 1 and dT (x, v) = dT (x, u1) +

dT (u1, v) = (3k+m)+2. Therefore, dT 3(x, u) = k+dm+1
3 e and dT 3(x, v) = k+dm+2

3 e.
One can easily verify now that x resolves u, v ⇐⇒ dT 3(x, u) 6= dT 3(x, v)⇐⇒ m = 2.

Therefore, min{dT (x, u), dT (x, v)} = dT (x, u) = 3k + 3 ≡ 0 (mod 3).

If uv is an edge in T 3, then depending upon the different values of dT (u, v), we can

impose restrictions on the vertices that can resolve u, v.

Corollary 5. Let T = (V,E) be a tree and uv be an edge in T 3. Then a vertex x 6= u, v
resolves u, v in T 3 if and only if the following conditions are true:
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1. If dT (u, v) = 1, then at least one among any three consecutive vertices chosen from
Tu \ {u} or Tv \ {v} must coincide with x.

2. If dT (u, v) = 2, then x must be one among any two consecutive vertices chosen from
Tu \ {u} or Tv \ {v}.

3. If dT (u, v) = 3, then x is either in Tu \ {u} or Tv \ {v} or it is one among any three
consecutive vertices from any branch attached to u1 or v1, where u1 and v1 are the
intermediate vertices of the path (u, u1, v1, v) in T .

Proof. It is easy to observe that the distance from a fixed vertex to any three (or

two) consecutive vertices in T 3 must be different 1 computed in mod 3. The rest of

the verification is immediate from Lemma 4.

Lemma 5. Let T = (V,E) be a tree and u, v be two nonadjacent vertices in T 3. Then a
vertex x 6= u, v resolves u, v if and only if the following conditions are satisfied:

• If x belongs to Tu,v, then

min {dT (x, u), dT (x, v)} ≡ 0 (mod 3) and |dT (x, v)− dT (x, u)| ≥ 1 or

min {dT (x, u), dT (x, v)} ≡ 1 (mod 3) and |dT (x, v)− dT (x, u)| ≥ 3 or

min {dT (x, u), dT (x, v)} ≡ 2 (mod 3) and |dT (x, v)− dT (x, u)| ≥ 2.

• Any x belonging to Tu or Tv can resolve u, v.

Proof. In T 3, a vertex x 6= u, v resolves u, v if and only if dT 3(x, u) 6= dT 3(x, v).

This implies ddT (x,u)
3 e 6= ddT (x,v)

3 e and hence dT (x, u) 6= dT (x, v), i.e., |dT (x, v) −
dT (x, u)| ≥ 1. Since u and v are nonadjacent in T 3, we have dT (u, v) > 3. Consider

the two cases below.

Case I. First we consider the case when x is in Tu,v. Let s be the intermediate vertex

on the path P = (u, u1, . . . , s, . . . , v1, v) connecting the unique path joining x to s in

T . Now dT (x, u) 6= dT (x, v) ⇐⇒ dT (s, u) 6= dT (s, v). Without loss of generality, we

assume min {dT (s, u), dT (s, v)} = dT (s, u). Then dT (x, u) = dT (x, s) + dT (s, u) and

dT (x, v) = dT (x, s) + dT (s, v), and therefore min {dT (x, u), dT (x, v)} = dT (x, u). It

is easy to note that dT (x, u) ≥ 2 always.

a) If dT (x, u) ≡ 0 (mod 3), then dT (x, u) = 3k for some positive integer k, and

dT 3(x, u) = k. Since dT (x, v) > dT (x, u), dT (x, v) ≥ 3k + 1, which implies dT (x, v)−
dT (x, u) ≥ 1. Hence we get dT 3(x, v) ≥ d 3k+1

3 e = k + 1 > k = dT 3(x, u).

b) If dT (x, u) ≡ 1 (mod 3), then dT (x, u) = 3k+1 for positive integer k and dT 3(x, u) =

d 3k+1
3 e = k+1. Since dT (x, v) > dT (x, u), we have dT (x, v) ≥ 3k+2. Now dT 3(x, v) 6=

1 it must be a 3-permutation (or 2-permutation) of the set {0, 1, 2}
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dT 3(x, u)⇐⇒ ddT (x,v)
3 e 6= k+1. This implies that dT (x, v) 6= 3k+2, 3k+3 and hence

dT (x, v) ≥ 3k + 4. Therefore, dT (x, v)− dT (x, u) ≥ 3.

c) If dT (x, u) ≡ 2 (mod 3), then dT (x, u) = 3k + 2 for some integer k ≥ 0 and

dT 3(x, u) = d 3k+2
3 e = k+ 1. Also, dT (x, v) > dT (x, u) implies dT (x, v) ≥ 3k+ 3. Now

dT 3(x, v) 6= dT 3(x, u)⇐⇒ ddT (x,v)
3 e 6= k+ 1. This implies that dT (x, v) 6= 3k+ 3, and

hence dT (x, v) ≥ 3k + 4. Therefore, dT (x, v)− dT (x, u) ≥ 2.

If x is an intermediate vertex of the u− v path P , then considering s = x, a similar

logic will follow.

Case II. Next, we consider the case when x is either in Tu or Tv. Without loss

of generality, we assume that x is in Tu. Then dT (x, v) = dT (x, u) + dT (u, v) >

dT (x, u) + 3 as u and v are nonadjacent in T 3. Therefore dT 3(x, v) > dT 3(x, u) + 1.

Hence, any such x can resolve u, v.

Corollary 6. Let T = (V,E) be a tree and u, v be two nonadjacent vertices in T 3

satisfying 4 ≤ dT (u, v) ≤ 5. Then a vertex x 6= u, v resolves u, v in T 3 if and only if the
following conditions are true:

1. If dT (u, v) = 4, then x is either in Tu \ {u} or Tv \ {v}, or it is one among any two
consecutive vertices from any branch of T attached to the intermediate vertex u1 or v1
of the path (u, u1, w, v1, v) in T .

2. If dT (u, v) = 5, then x is either in Tu \ {u} or Tv \ {v}, or x coincides with u1 or v1
or any vertex on a branch attached to them, or it is one among any three consecutive
vertices from any branch of T attached to the intermediate vertices w1 or w2 of the
path (u, u1, w1, w2, v1, v) in T .

Proof. Let dT (u, v) = 4. Without loss of generality, we assume x, y to be two consec-

utive vertices on a branch B attached to u1. Then min{dT (x, u), dT (x, v)} = dT (x, u)

and min{dT (y, u), dT (y, v)} = dT (y, u). Now dT (x, v) − dT (x, u) = (dT (x, u1) +

dT (u1, v)) − (dT (x, u1) + dT (u1, u)) = dT (u1, v) − dT (u1, u) = 2 as dT (u, v) = 4.

Similarly, we get dT (y, v)− dT (y, u) = 2. Since the vertices x, y are consecutive along

B, at least one among dT (x, u) or dT (y, u) takes a value from the set {0, 2} computed

in mod 3. Let dT (x, u) ≡ 0 or 2 (mod 3). Then, by Lemma 5, x resolves u, v in T 3.

Similar logic follows if dT (y, u) ≡ 0 or 2 (mod 3).

The proof of resolvability for the case dT (u, v) = 5 is analogous and can be verified

using Lemma 5.

4. The necessary and sufficient conditions for resolving sets
of T 3

In the following, we present the necessary and sufficient conditions for a vertex subset

to become a resolving set for cube of trees.



10 On metric dimension of cube of trees

u v xx
0 (mod 3) 0 (mod 3)

u v xx
0 or 2 (mod 3) 0 or 2 (mod 3)

u vx x

x x

0 (mod 3) 0 (mod 3)

u vx x

x x

0 or 2 (mod 3) 0 or 2 (mod 3)

u vx x

x x

x x

x x

0 (mod 3)0 (mod 3)

Figure 1. Resolvability conditions in T 3 depending on dT (u, v) (all possible positions of x that resolves
u, v are depicted by red vertices)

Theorem 4. Let T = (V,E) be a tree. The necessary and sufficient conditions for a set
S ⊂ V to be a resolving set of T 3 are

1. For every edge uv ∈ E(T ), S contains at least one vertex x which is at distance 0 (mod
3) from u or v.

2. For every edge uv ∈ E(T 2), S contains at least one vertex x in Tu or Tv satisfying
min{dT (x, u), dT (x, v)} ≡ 0 or 2 (mod 3)

3. For every edge uv ∈ E(T 3), S contains one vertex x either in Tu or Tv such that
|dT (x, u)− dT (x, v)| = 3, otherwise min {dT (x, u), dT (x, v)} ≡ 0 (mod 3).

4. For every pair of four distance vertices u, v, S contains one vertex x either in Tu or Tv

such that |dT (x, u) − dT (x, v)| = 4, otherwise min {dT (x, u), dT (x, v)} ≡ 0 or 2 (mod
3) when dT (x, u) 6= dT (x, v).

5. For every pair of five distance vertices u, v, S contains one vertex x either in Tu or
Tv such that |dT (x, u) − dT (x, v)| = 5, otherwise |dT (x, u) − dT (x, v)| = 3 or min
{dT (x, u), dT (x, v)} ≡ 0 (mod 3).

Proof. Necessity: Let S be a resolving set of T 3, and x ∈ S resolves a pair of distinct

vertices u, v. If x 6= u, v, then condition 1, condition 2, and condition 3 hold from

Lemma 4. Also, condition 4 and condition 5 follow from Corollary 6. By triviality,

all the conditions hold if x = u or v.

Sufficiency: Let u, v be any two arbitrary vertices of T 3. We consider the following

cases depending on their adjacency in T and prove the existence of a vertex x ∈ S
such that x resolves u, v in each case 2. (see Figure 1 and Figure 2)

2 we omit the trivial case, i.e., when x = u or v from rest of the part of this proof



S.Paul , et al. 11

u v

x1

x4 x3

x2
(1)

u
v

x1

x2

x3

x4

(2)
u

v

x1

x2 x3

x4

(3)

u
v

x1

x2

x3

x4

x5

(4)

u v

x1

x2 x3

x4
(5)

Figure 2. For the trees Ti, 1 ≤ i ≤ 5 and Si (set of all red vertices), all the conditions of Theorem 4 hold
true except condition i, which fails for the pair u, v satisfying dT (u, v) = i

Case 1. Let u and v be adjacent in T . From condition 1, for each edge uv, there

exists a vertex (say x) from S such that dT (x, u) ≡ 0 (mod 3) or dT (x, v) ≡ 0 (mod

3). Without loss of generality, we assume dT (x, u) ≡ 0 (mod 3). Then we get min

{dT (x, u), dT (x, v)} = dT (x, u) ≡ 0 (mod 3) and hence using Lemma 4, x resolves u

and v.

Case 2. Let u and v be nonadjacent in T . Consider the following cases according to

dT (u, v) is even or odd.

Subcase (2a). dT (u, v) is even.

Let dT (u, v) = 2. Then, by condition 2, one can able to find some x ∈ S, which is

at distance 0 or 2 (mod 3) from uv ∈ E(T 2). Therefore, x resolves u, v follows from

Lemma 4.

Let dT (u, v) = 4. Then, from condition 4, we get the existence of some x ∈ S such

that |dT (x, u) − dT (x, v)| = 4 or min {dT (x, u), dT (x, v)} ≡ 0 or 2 (mod 3) when

dT (x, u) 6= dT (x, v). If |dT (x, u)− dT (x, v)| = 4, x is either in Tu \ {u} or in Tv \ {v}.
Hence, by Corollary 6, x resolves u, v in T 3. For the other case, x must be attached

to some branch at s of the u − v path satisfying min {dT (x, u), dT (x, v)} ≡ 0 or 2

(mod 3). Let dT (x, u) = min{dT (x, u), dT (x, v)}. Since dT (x, u) 6= dT (x, v), we get

dT (x, v) − dT (x, u) = dT (s, v) − dT (s, u) = 2. Therefore, x resolves u, v in T 3 by

Lemma 5.

Next, we consider the case when dT (u, v) ≥ 6. Let (u, . . . , u1, u0, w, v0, v1, . . . , v) be

the path connecting u, v in T , where w is the middle vertex of the u−v path satisfying

dT (u,w) = dT (w, v).

Consider the two vertices u0, v0 that occur on either side of w within the path u −
w,w− v, respectively, satisfying dT (w, u0) = dT (w, v0) = 1. Applying condition 2 for
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the edge u0v0 ∈ E(T 2) we get the existence of some x ∈ S. Without loss of generality,

we assume x ∈ Tu0 .

If x occurs in the extended path of u− u0, then by Lemma 5, x resolves u, v in T 3 as

dT (x, v)− dT (x, u) = dT (u, v) ≥ 6.

Next, we consider x to be within the u− u0 path or attached to some vertex s of the

u− u0 path. Then dT (x, u0) = min{dT (x, u0), dT (x, v0)} ≡ 0 or 2 (mod 3). It is easy

to note that dT (x, u) = min{dT (x, u), dT (x, v)}.

a) Let dT (x, u0) ≡ 0 (mod 3).

Let dT (x, u) = dT (x, s)+dT (s, u) = dT (x, u0)−dT (s, u0)+dT (s, u) = 3k−dT (s, u0)+

dT (s, u) for some integer k ≥ 0. Then dT (x, v) = dT (x, u0) + dT (u0, w) + dT (w, v) =

3k + 1 + (dT (u, s) + dT (s, u0) + 1) as dT (w, v) = dT (u,w). Therefore, dT (x, v) −
dT (x, u) = 2+2dT (s, u0) ≥ 4 when dT (s, u0) ≥ 1. Hence, by Lemma 5, it follows that

x resolves u, v. If dT (s, u0) = 0, then also x resolves u, v if dT (x, u) ≡ 0 or 2 (mod 3)

as dT (x, v)− dT (x, u) = 2.

Hence the case remains when dT (s, u0) = 0 (i.e., s = u0) and dT (x, u) ≡ 1 (mod 3).

Since dT (x, u0) ≡ 0 (mod 3), we have dT (u, u0) = dT (v, v0) ≡ 1 (mod 3). Therefore,

dT (u, v) = dT (u, u0)+dT (u0, v0)+dT (v0, v) ≡ (1+2+1) (mod 3) ≡ 1 (mod 3). Since

the distance between u and v is even, dT (u, v) ≥ 10.

Now consider the two vertices u1, v1 on either side of w satisfying dT (w, u1) =

dT (w, v1) = 2. Then, applying condition 4 on the four distance vertices u1, v1, we get

the existence of some y ∈ S. Two cases may arise here.

i) If y lies in any extended branch of u1 − u, then by Lemma 5, it follows that y

resolves u, v in T 3. Again, if y is attached to some vertex s of the u1 − u path or

lies within the u1 − u path (i.e., y = s), then dT (y, v) − dT (y, u) = (dT (y, u1) +

dT (u1, v1) + dT (v1, v))− (dT (y, u1) + dT (u, u1)− 2dT (s, u1)) = 2dT (s, u1) + 4 ≥ 4 as

dT (u, u1) = dT (v, v1). Hence, applying Lemma 5, it is easy to conclude that y resolves

u, v in T 3.

Similar logic follows if y is attached to some intermediate vertex of the v1 − v path

or lies within or in the extended path of v1 − v.

ii) If y is attached to u0 satisfying dT (y, u1) = min{dT (y, u1), dT (y, v1)} ≡ 0 or 2 (mod

3). Then dT (y, v) − dT (y, u) = (dT (y, u0) + dT (u0, v1) + dT (v1, v)) − (dT (y, u1) +

dT (u1, u)) = (dT (y, u1) − 1) + 3 − dT (y, u1) = 2 as dT (u, u1) = dT (v, v1) and min

{dT (y, u), dT (y, v)} = dT (y, u) = dT (y, u1)+dT (u1, u) ≡ 0 or 2 (mod 3) as dT (u, u1) =

dT (u, u0)−dT (u0, u1) ≡ 0 (mod 3). Therefore, by Lemma 5, it follows that y resolves

u, v in T 3.

Similarly, one can show that if y is attached to v0 satisfying dT (y, v1) =

min{dT (y, v1), dT (y, u1)} ≡ 0 or 2 (mod 3), then y resolves u, v.

b) Let dT (x, u0) ≡ 2 (mod 3). Then, analogous to the previous case, one can show

that dT (x, v)− dT (x, u) ≥ 4 if dT (s, u0) ≥ 1. Therefore, x resolves u, v by Lemma 5.
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Again, when dT (s, u0) = 0, then dT (x, v)− dT (x, u) = 2, therefore, if dT (x, u) ≡ 0 or

2 (mod 3), then x resolves u, v.

Hence, the only case remains when s = u0 and dT (x, u) ≡ 1 (mod 3). Then

dT (u, u0) = dT (v, v0) ≡ 2 (mod 3) as dT (x, u0) ≡ 2 (mod 3). Hence dT (u, v) =

dT (u, u0) + dT (u0, v0) + dT (v0, v) ≡ 0 (mod 3).

Now consider two neighbours of u0, one is u1 on the path u − u0, and another (say

p0) is on the path u0 − x. Then dT (u1, p0) = dT (u1, u0) + dT (u0, p0) = 2. Clearly,

dT (u, u1) ≡ 1 (mod 3). Applying condition 2 on u1, p0, we get the existence of some

y ∈ S. Three cases may arise here.

i) If y occurs in an extended path from p0, then min {dT (y, p0), dT (y, u1)} =

dT (y, p0) ≡ 0 or 2 (mod 3). Then dT (y, v) = dT (y, p0) + dT (p0, u0) + dT (u0, v0) +

dT (v0, v) and dT (y, u) = dT (y, p0) + dT (p0, u0) + dT (u0, u). Therefore dT (y, v) −
dT (y, u) = 2 and min {dT (y, v), dT (y, u)} = dT (y, u) = dT (y, p0) + dT (p0, u1) +

dT (u1, u) ≡ 0 or 2 (mod 3). Hence, y resolves u, v in T 3 by Lemma 5.

ii) If y occurs in the intermediate path of u − u0, then dT (y, v) = dT (y, u0) +

dT (u0, v0) + dT (v0, v) and dT (y, u) = dT (u, u0) − dT (y, u0). Therefore, dT (y, v) −
dT (y, u) = 2dT (y, u0) + 2 > 3 clearly. Hence, by Lemma 5, we can conclude that y

resolves u, v in T 3.

iii) If y occurs in the extended path from u − u0, then it also resolves u, v in T 3 by

Lemma 5.

Subcase (2b). dT (u, v) is odd. Let dT (u, v) = 2m + 1 for some positive integer

m ≥ 1.

When m = 1, then dT (u, v) = 3. From condition 3, either there exists a x ∈ S such

that |dT (x, v)−dT (x, u)| = 3 (i.e., x ∈ Tu or Tv) or min{dT (x, u), dT (x, v)} ≡ 0 (mod

3) and hence from Lemma 4 the result follows. Again, when m = 2, i.e., dT (u, v) = 5.

Let (u, u0, w1, w2, v0, v) be the path between u, v in T . Then, from condition 5,

there exists a x ∈ S either coming from Tu or Tv satisfying |dT (x, v) − dT (x, u)| =

5, otherwise |dT (x, v) − dT (x, u)| = 3 or min {dT (x, u), dT (x, v)} = 0 (mod 3). If

|dT (x, v) − dT (x, u)| = 5 or 3, then by Lemma 5, x resolves u, v in T 3. In the other

case, when min{dT (x, u), dT (x, v)} = 0 (mod 3) and x is in the same component Tu,v
of u, v, it must be attached to the vertex w1 or w2 satisfying |dT (x, v)−dT (x, u)| = 1.

Hence, by Lemma 5, x resolves u, v in T 3 .

Next, we consider the case when m ≥ 3, i.e., dT (u, v) ≥ 7. We consider the u − v
path as (u, . . . , u1, u0, w1, w2,

v0, v1, . . . , v) where dT (u,w1) = dT (v, w2) = m, dT (u1, v1) = 5.

a) Let m ≡ 0 (mod 3).

Applying condition 1 for the edge w1w2, we get the existence of a vertex x ∈ S.

Without loss of generality, we assume x ∈ Tw1
. Then min{dT (x,w1), dT (x,w2)} =
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dT (x,w1) ≡ 0 (mod 3).

If x occurs in the extended path of u − w1, then dT (x, v) − dT (x, u) = dT (u, v) ≥
7. Again, if x occurs in a branch attached to some vertex s within the path u −
w1, then dT (x, v) = dT (x, s) + dT (s, w1) + dT (w1, w2) + dT (w2, v) and dT (x, u) =

dT (x, s)+dT (s, u) = dT (x, s)+dT (u,w1)−dT (s, w1). Therefore, dT (x, v)−dT (x, u) =

2dT (s, w1) + 1 ≥ 3 when dT (s, w1) ≥ 1. Again, if dT (s, w1) = 0, i.e., when s = w1,

we get dT (x, u) = dT (x,w1) + dT (w1, u) ≡ 0 (mod 3) and dT (x, v) − dT (x, u) = 1.

Therefore, by Lemma 5, x resolves u, v in T 3 for the above cases.

b) Let m ≡ 2 (mod 3).

It is easy to note that dT (u, u1) ≡ 0 (mod 3) in this case. Applying condition 5

to the vertices u1, v1, we get to know the existence of a x ∈ S. Without loss of

generality, we assume x ∈ Tw1
. Then dT (x, u1) = min{dT (x, u1), dT (x, v1)} and

hence dT (x, u) = min{dT (x, u), dT (x, v)}.
When |dT (x, u1) − dT (x, v1)| = 5, then x is in the extended path of u1 − w1. Then

|dT (x, v) − dT (x, u)| = 5 ≥ 3. If |dT (x, u1) − dT (x, v1)| = 3, then x = u0 or x is on

a branch attached to u0 as x ∈ Tw1
. Therefore dT (x, v) − dT (x, u) = 3. Again, if

x is attached to w1 satisfying dT (x, u1) ≡ 0 (mod 3). Then dT (x, v) = dT (x,w1) +

dT (w1, w2) + dT (w2, v), dT (x, u) = dT (x,w1) + dT (w1, u), and therefore dT (x, v) −
dT (x, u) = 1. Moreover, dT (x, u) = dT (x, u1)+dT (u1, u) ≡ 0 (mod 3) in this situation.

Hence, by Lemma 5, x resolves u, v in T 3.

c) Let m ≡ 1 (mod 3).

In this case, dT (u, u0) ≡ 0 (mod 3). Since dT (u0, v0) = 3, applying condition 3 on

the edge u0v0 we get the existence of some x ∈ S. Without loss of generality, we

assume x ∈ Tw1 . Therefore dT (x, u) = min{dT (x, u), dT (x, v)}. Now if x occurs in

the extended path of u − u0 or is attached to some intermediate vertex of the path

u− u0, then |dT (x, v)− dT (x, u)| ≥ 3, therefore by Lemma 5, x resolves u, v in T 3.

Therefore, the case remains when x is attached to a branch at w1 satisfying min

{dT (x, u0), dT (x, v0)} = dT (x, u0) ≡ 0 (mod 3). In this case, we have dT (x, v) −
dT (x, u) = (dT (x,w1) + dT (w1, w2) + dT (w2, v)) − (dT (x,w1) + dT (w1, u)) = 1 as

dT (w2, v) = dT (w1, u). Furthermore, we get dT (x, u) = min{dT (x, u), dT (x, v)} =

dT (x, u0) + dT (u0, u) ≡ 0 (mod 3). Hence, by Lemma 5, it follows that x resolves u, v

in T 3.

Thus, we prove that S is a resolving set of T 3.

5. Lower bound on the metric dimension of T 3

In this section, for a given tree T , we determine the lower bound on β(T 3).

Lemma 6. Let T = (V,E) be a tree, and v0 be a major stem of T containing n0 legs.
Then any metric basis of T 3 must contain n0 + m0 − 2 number of vertices from the legs of
v0, where m0 ≥ 1 is the number of mid legs attached to v0.
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Proof. Let S be an arbitrary metric basis of T 3. Let B(v0) be the set of all leg

vertices3 corresponding to v0 in T and n0 = p0 +m0 + l0, where p0,m0 and l0 denote

the number of pendants, mid legs, and long legs, respectively.

Consider any arbitrary pair of vertices {u, v} ⊂ B(v0) satisfying dT (v0, u) = dT (v0, v).

Now if both u, v are on short legs, then dT (u, v) = 2 or 4. One can verify from

Theorem 4 that no vertex w 6= u, v can resolve them in T 3. Therefore, it is necessary

to include at least p0 + 2m0 − 2 vertices in S when m0 ≥ 1. Since |S| is minimum

in comparison to any resolving set of T 3, there will always be a pair of vertices

{a0, b0} ⊂ B(v0) satisfying dT (v0, a0) = 1, dT (v0, b0) = 2, left aside from vertex

selection while constructing S coming from short legs when m0 ≥ 1.

Consider a long leg L attached to v0, and let {x, y} ⊂ B(v0) be the pair of vertices

on L satisfying dT (v0, x) = 1 and dT (v0, y) = 2, respectively. We consider the pair of

vertices {a0, x}, {b0, y}. Clearly, dT (x, a0) = 2 and dT (y, b0) = 4. Now to resolve any

of the above pairs and keep |S| to be minimum, it is necessary to include one vertex z

from L satisfying dT (x, z) ≡ 0 or 2 (mod 3) by Theorem 4. It can be noted that any

z 6= x, y on L satisfying dT (v0, z) ≡ 0 or 1 (mod 3) will work. Since there are l0 long

legs attached to v0, applying similar logic, it is necessary to include l0 vertices in S

from each of the long legs. Hence, the total number of vertex insertions necessary for

constructing any metric basis S of T 3 is p0+2m0−2+l0 = (p0+m0+l0−1)+(m0−1) =

(n0 − 1) + (m0 − 1) = n0 +m0 − 2.

Theorem 5. Let T = (V,E) be a tree. Then

β(T 3) ≥ β(T ) +

k∑
i=1,mi≥1

mi − k,

where k is the total number of major stems of T containing at least one mid leg and mi

denotes the number of mid legs attached to the major stem vi, 1 ≤ i ≤ k.

Proof. Let S be a resolving set of T 3. Then, by Lemma 1, it is also a resolving set

of T . Let V ′ be the set of all major stems of T , and each vi ∈ V ′ contains ni legs,

1 ≤ i ≤ |V ′|. From Lemma 6, we get to know that while constructing any metric

basis of T 3, we necessarily need to insert ni +mi− 2 number of vertices from the legs

of vi where mi ≥ 1 and the number is ni − 1 for the remaining major stems (where

mi = 0) from Corollary 3. Therefore, |S| ≥
k∑
i=1

(ni + mi − 2) +
|V ′|−k∑
j=1

(nj − 1). This

holds for every resolving set S of T 3, hence we get β(T 3) ≥
|V ′|∑
i=1

(ni−1)+
k∑
i=1

(mi−1) =

3 vertices that are along the legs attached to some common major stem
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β(T ) +
k∑

i=1,mi≥1

mi − k using Corollary 1.

Corollary 7. Let T = (V,E) be a tree. Then

β(T 3) ≥ β(T ) +

l∑
i=1,mi≥2

mi − l

where l is the number of major stems of T containing at least two mid legs and mi is the
number of mid legs attached to the major stem vi, 1 ≤ i ≤ l.

6. Upper bound on the metric dimension of T 3

In the following theorem, for a given tree T , we determine the upper bound on β(T 3).

Theorem 6. Let T = (V,E) be a tree. Then

β(T 3) ≤ β(T ) +

l∑
i=1,mi≥2

(mi − 1) +M + 1− l

where M is the total number of major stems and l is the number of major stems containing
at least two mid legs, and mi denotes the number of mid legs attached to the major stem vi
where 1 ≤ i ≤ l.

Proof. Let V ′ be the set of all major stems of T , and hence |V ′| = M . Let pv,mv

and lv denote the number of pendants, mid legs, and long legs attached to an arbitrary

major stem v ∈ V ′ and B(v) be the set of all leg vertices corresponding to v in T . We

denote B[v] = B(v) ∪ {v}. Now, depending on the number of different types of legs

attached to each major stem, we build a resolving set S for T 3 in the following way:

Construction of S:

1) mv ≥ 1

We choose all the vertices from every mid leg in S, leaving one mid leg aside as

unpicked. Now if lv ≥ 1, we pick the vertex from each long leg, which is at a distance

of three from v in B(v). Again, if pv ≥ 1, then we include all the pendants of B(v)

in S.

2) pv ≥ 1,mv = 0

Except for one pendant, we choose all the pendants of B(v) in S. Also, we include

all distance three vertices of B(v) that occur along long legs when lv ≥ 1.

3) pv = mv = 0

It is easy to note that lv ≥ 1 as v is a major stem. In this case, except for one long

leg, we include all vertices that are at a distance of 3 from v along long legs in S.
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vk vi vj

xk

yk

zk

yi

zi

vk vj

vp vr

Figure 3. Tree T having red vertices as elements of a metric basis of it, blue vertices are extra inserted
to form a metric basis S of T 3, above (left and right) figures correspond to the situation when
T contains at least one major stem, and below figures indicate the situation when there is no
major stem containing long legs in T

As per our above construction, β(T )+
l∑

i=1,mi≥2

(mi−1) number of vertices has already

been included in S. We now insert M + 1− l extra vertices in S. But this insertion

of vertices depends on some circumstances listed below.

Method of insertion of M + 1− l extra vertices in S:

a) First, we consider the case when there is at least one major stem containing long

legs in T . (see Figure 3)

i) If there is at least one major stem (say vk) containing long legs satisfying mvk ≤ 1,

then we select a long leg (say Lk) attached to vk from which the vertex zk satisfying

dT (vk, zk) = 3 has already been included in S. Next, we pick xk, yk from Lk satisfying

dT (vk, xk) = 1, dT (vk, yk) = 2, and include them in S.

Now if vi 6= vk be a major stem possessing long legs satisfying mvi ≤ 1, then we select

a long leg Li of vi from where zi is already chosen for S satisfying dT (vi, zi) = 3. We

pick yi from Li satisfying dT (vi, yi) = 2 and insert in S.

Also, we include all those major stems vj in S for which lvj = 0 and mvj ≤ 1.

ii) If every major stem that contains at least one long leg also satisfies mv ≥ 2, then

we insert one such major stem (say vk) in S. We also insert all those major stems vj
in S that satisfy lvj = 0 and mvj ≤ 1.

b) Next, we consider the case when there is no major stem containing long legs in T .

If there exists at least one major stem vp satisfying mvp ≥ 2, then include vp in S,

otherwise, we include a neighbour of an arbitrary major stem vr in S, which does not

belong to B(vr). We also include all those major stems in S that contain at most one

mid leg attached to them.

Therefore, the maximum number of extra vertex insertions in the aforementioned

scenarios is M + 1− l.
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Proof showing that S is a resolving set of T 3:

We now show that S resolves every pair of vertices u, v ∈ V \S. For this, it is sufficient

to prove for the cases when dT (u, v) ≤ 5 as per Theorem 4. Recall that, in T , there

always exists a unique path joining any two vertices. From the construction of S,

one can observe that there always exists a major stem v1 (say) (v1 = vk or vp or vr
in Figure 3) having three consecutive vertices of B[v1] (or two vertices from B[v1]

and one is the neighbour of v1 that does not belong to B[v1]) and all other major

stems having two consecutive vertices from their legs included in S that occur in the

extended path of u− v (i.e., in Tu or Tv) or within the same component of u, v (i.e.,

in Tu,v), then using Corollary 5 and Corollary 6, u, v can be resolved by one of these

leg vertices that has been selected for S.

Theorem 7. For any positive integer n, there always exists a tree T satisfying β(T 3) = n.

Proof. First, we consider the situation when n is even. For this, we consider a tree

T (see Figure 4) having M = n
2 − 1 number of major stems. Here each of the two

major stems v0, v1 contains exactly two mid legs satisfying dT (v0, v1) ≡ 0 (mod 3),

other k = M − 2 = n
2 − 3 major stems wi, 1 ≤ i ≤ k, contain pendants as their only

legs, where dT (v0, wi) ≡ 1 (mod 3). Furthermore, we consider k − 1 of these major

stems to contain exactly two pendants and one among them to contain exactly three

pendants. From Theorem 3, it is clear that the metric dimension of T , i.e., β(T ) = n
2 .

Below, we construct a resolving set S of T 3. Since T contains exactly two major stems

having two mid legs, from Theorem 5 it follows that we need to insert at least two

more vertices from these mid legs in S. Also, we need to include k (= n
2 − 3) more

vertices in S to resolve the following pair of vertices {u1, w1}, {u2, w2}, . . . , {uk, wk}
in T 3. We insert w1, w2, . . . , wk in S. Again, no vertex of S inserted so far can resolve

the vertices v0, x0 in T 3, therefore, we include one more vertex v0 in S. One can

verify that by applying Theorem 4, S becomes a resolving set of T 3. Furthermore,

|S| ≥ β(T ) + 2 + k + 1 = n
2 + 3 + n

2 − 3 = n. From Theorem 6, it follows that

β(T 3) ≤ β(T )+
l∑

i=1,mi≥2

(mi−1)+M +1− l = n
2 +2+(n2 −1)+1−2 = n. Therefore,

β(T 3) = n and hence S becomes a metric basis of T 3.

Next, we consider the case when n is odd. Then we consider a tree T (see Figure

4) having M = n−1
2 number of major stems, where each of the two major stems

v0, v1 contains exactly two mid legs satisfying dT (v0, v1) ≡ 0 (mod 3) and the other

k = M − 2 = n−5
2 number of major stems wi, 1 ≤ i ≤ k, contain two pendants each

satisfying dT (v0, wi) ≡ 1 (mod 3). Proceeding similarly as above, one can verify that

β(T ) = n−1
2 and a minimum resolving set S of T 3 contains exactly n vertices, hence

β(T 3) = n.

The following corollary is immediate from the proof of the above theorem:
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0 (mod 3) 1 (mod 3)

x0

u1

u2

uk

v1 v0

w1

w2

wk

v1 v0

w1

w2

wk

0 (mod 3) 1 (mod 3)

x0

u1

u2

uk

Figure 4. Tree T with β(T 3) = n (left when n is odd, right when n is even) where the red vertices form
the metric basis of T and the blue vertices are extra inserted to form a metric basis of T 3

Corollary 8. For a tree T , there always exists a family of trees attaining every value
between the lower and upper bounds on β(T 3).

7. Metric dimension of some well-known cube of trees

In this section, we present some well-known cube of trees (e.g., caterpillar, lobster

tree, spider tree, and d-regular tree) that have attained the expected bounds on the

metric dimension.

Let P be the central path 4 of caterpillar/lobster, and v0, vn be the starting and

ending major stems on P . The total number of major stems of any of the trees

above-mentioned containing at least two mid legs is denoted by l. On the other hand,

mi denotes the number of mid legs attached to the major stem vi, where 1 ≤ i ≤ l.

Below, we construct the resolving sets S0 and S of T and T 3, respectively. In each

of the figures in this section, the red vertices form S0. One can verify that such

choices can be made by Corollary 1. Furthermore, S can be obtained by inserting

the blue vertices in S0. Following Theorem 4, it can be verified that S resolves any

two arbitrary vertices of V . One can find the lower and upper bounds on β(T 3) by

applying Corollary 7 and Theorem 6, respectively.

Example 1. Let T = (V,E) be a caterpillar. It is easy to observe that there can not
be any mid leg (or long leg) attached to any stem except v0 or vn. Furthermore, if there
is any mid leg or long leg attached to v0 or vn, then that should be one in number. Also,
no long leg and mid leg can occur simultaneously at v0 or vn. Again, while constructing S,
first we consider that v0 contains a long leg (or mid leg) attached to it. A similar choice
of vertices can be made for S if vn contains a long leg (or mid leg) attached to vn and v0
contains only pendants. Another case remains when v0, vn contain only pendants attached
to them. Hence, β(T ) ≤ β(T 3) ≤ β(T ) + 3. (see Figure 5)

4 longest path between any two pendant vertices of a tree
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v0 vn

v0 vn

Figure 5. caterpillar

v0 vn

v0 vn

Figure 6. Lobster

Example 2. Let T be a lobster tree. Then either v0 or vn, or both of them, only contain
a single long leg, and the other major stems contain only mid legs and pendants. In this

case, β(T ) +
l∑

i=1,mi≥2

mi − l ≤ β(T 3) ≤ β(T ) +
l∑

i=1,mi≥2

mi − l + 3. (see Figure 6)

Example 3. Let T be a spider tree. If it is a star, then β(T 3) = β(T ) + 1, otherwise, we

have β(T ) +
l∑

i=1,mi≥2

mi − l ≤ β(T 3) ≤ β(T ) +
l∑

i=1,mi≥2

mi − l + 2. (see Figure 7)

In a d-regular tree T , only pendants can be attached to every major stem. Let the

length of a central path P in T is 2t, where t is the depth of T . Then the total number

of pendants in T is d(d− 1)t−1.

Example 4. Let T be a d-regular tree (d ≥ 3) with depth t. If t ≤ 2, then β(T ) ≤
β(T 3) ≤ β(T ) + d and for t ≥ 3, β(T ) ≤ β(T 3) ≤ β(T ) + d(d− 1)t−3(d− 2). (see Figure 8)

Figure 7. Spider
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t-depth

Figure 8. A d-regular tree

8. Characterization of some restricted T 3 satisfying β(T 3) =
β(T )

Proposition 1. Let T = (V,E) be a tree having at least two major stems. If
β(T 3) = β(T ), then there exists at least one pair of major stems vi, vj satisfying dT (vi, vj) ≡
1 or 2 (mod 3).

Proof. On the contrary, let every pair of major stems have their distances as 0 (mod

3). Using Theorem 3, we observe that since β(T 3) = β(T ), except for one, from all

the legs of every major stem of T , we can pick at most one vertex for the metric basis

of T 3. Hence, from Theorem 5, it can be easily verified that the number of mid legs

attached to any major stem is at most one.

Claim 1. To choose vertices for a metric basis S of T 3, if we select a vertex from a long
leg (or a mid leg) attached to any major stem v (say), it is mandatory to choose the vertex
that is at a distance 0 or 1 (mod 3) from v on the same leg.

Proof. If we select a vertex (say y) in S from a long leg/mid leg L attached to the

major stem v satisfying dT (v, y) ≡ 2 (mod 3), then the vertices x and x′ will possess

the same code in T 3 measured from y, z where x, x′ are two neighbours of v on the

legs L,L′, respectively, where L′ is the leg that is left aside from vertex selection for

S and z is a vertex from any branch of v apart from L and L′. Hence dT (v, y) ≡ 0 or

1 (mod 3).

Using Claim 1, we construct a vertex subset S of V by inserting a vertex from each

leg (apart from one) of all the major stems that are at a distance of 0 or 1 (mod 3)

from the major stems.

Claim 2. There will always remain at least one pair of vertices in T 3 that can not be
resolved by any vertex of S.

Proof. Let v1 and v2 be two major stems satisfying dT (v1, v2) = 3m for some integer

m. Now consider the vertices u0, v0 of an edge e(= u0v0) ∈ E on the intermediate

path joining the vertices v1, v2 in T so that dT (v1, u0) ≡ 1 (mod 3) and dT (v2, v0) ≡ 1
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(mod 3). Using the result of Claim 1, one can verify that there is no vertex x coming

from the legs of v1, v2, which can resolve u0, v0 as min {dT (x, u0), dT (x, v0)} ≡ 1 or 2

(mod 3). Similarly, it can be verified that u0, v0 can not be resolved in T 3 by any x

coming from the legs of some other major stems that occur in the extended path of

v1 or v2 as dT (vi, vj) ≡ 0 (mod 3) for all vi 6= vj .

Now, we show that u0 and v0 can not be resolved by any vertex x that comes from

the leg of a major stem v3 connected to an intermediate vertex s of the path joining

v1 and v2. For this, first, we consider the case when s = u0 or v0. Without loss of

generality, if v0 = s, then dT (v3, s) ≡ 2 (mod 3) as dT (v3, v2) ≡ 0 (mod 3). Therefore,

dT (v1, v3) = dT (v1, u0) + dT (u0, v0) + dT (v0, v3) ≡ 1 + 1 + 2 (mod 3) ≡ 1 (mod 3).

This introduces a contradiction. Next, we consider the case when s 6= u0, v0. Without

loss of generality, we assume min {dT (v3, v0), dT (v3, u0)} = dT (v3, v0). Therefore, s

must lie within the intermediate path of v0 − v2.

If dT (v3, s) ≡ 1 (mod 3), then dT (s, v2) ≡ 2 (mod 3) as dT (v2, v3) ≡ 0 (mod 3). Hence,

dT (v0, s) = dT (v0, v2) − dT (s, v2) ≡ 2 (mod 3). Therefore, dT (v1, v3) = dT (v1, u0) +

dT (u0, v0) + dT (v0, s) + dT (s, v3) ≡ 1 + 1 + 2 + 1 (mod 3) ≡ 2 (mod 3), which is not

true as per our assumption.

If dT (v3, s) ≡ 2 (mod 3), then we get dT (v1, v3) ≡ 1 (mod 3), therefore, a similar

contradiction arises.

If dT (v3, s) ≡ 0 (mod 3), then dT (v0, s) = dT (v0, v2)− dT (s, v2) = 1− 0 (mod 3) ≡ 1

(mod 3). Hence, dT (v0, v3) = dT (v0, s) + dT (s, v3) = 1 + 0 (mod 3)≡ 1 (mod 3).

Therefore, following Lemma 4, one can verify that u0, v0 can not be resolved by any

vertex x ∈ S coming from the legs of v3 as dT (x, v3) ≡ 0 or 1 (mod 3) from Claim 1

implies dT (x, v0) ≡ 1 or 2 (mod 3).

Since β(T 3) = β(T ), any metric basis of T 3 can only be constructed in the above way,

as we did for S. But from Claim 2 we will always get a pair of vertices in T 3 that can

not be resolved by any vertex of S. Hence, we get a contradiction. Therefore, there

always exists a pair of major stems (say {vi, vj}) satisfying dT (vi, vj) ≡ 1 or 2 (mod

3).

2 (mod 3) 2 (mod 3) 2 (mod 3)
v1 vk1

vk1−1 vk2
vk3 vl vn

x1 xk1
xk2

xk3
xn

Figure 9. Trees satisfying β(T 3) = β(T ) (set of all red vertices forms a metric basis of T 3)

Below, we characterize those cube of trees that possess all their stems on one of

their central paths 5, stems contain pendants only as their legs and have their metric

5 also known as diametral paths
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dimension similar to the metric dimension of their associated trees.

Theorem 8. Let T = (V,E) be a tree where every stem contains pendants only as their
legs in T . If all the stems lie on a central path, P = (x1, v1, v2, . . . , vn, xn) 6 of T (see Figure
9), then β(T 3) = β(T ) if and only if the following conditions are satisfied:

1. There are at least three major stems, vk1 , vk2 , vk3 between v1 and vn along P such that
dT (v1, vk1) ≡ 2 (mod 3), dT (v1, vk2) ≡ 1 (mod 3), dT (v1, vk3) ≡ 0 (mod 3). Distances
between any of the above pairs considered to be minimum satisfying the above criteria.

2. There does not exist any stem between v1 and vk1 that is at 1 (mod 3) distance from
v1 along P .

3. If dT (vp, vn) ≡ 1 (mod 3) for some stem vp < vn
7 along P , then there must exist some

major stem vl satisfying vp < vl < vn such that dT (vl, vn) ≡ 2 (mod 3).

Proof. Necessity: Let β(T 3) = β(T ). Then any metric basis of T 3 must contain one

except all the pendants attached to every major stem of the tree T by Corollary 3.

Also, if S is a metric basis of T 3, then all the conditions of Theorem 4 must hold.

Proof of condition 1 and 2. To resolve v1 and x1, there must exist a pendant xk1 ∈ S
such that dT (v1, xk1) ≡ 0 (mod 3) by condition 1 of Theorem 4. Hence, without

loss of generality, we choose vk1 to be the minimum distance major stem from v1

satisfying dT (v1, vk1) ≡ 2 (mod 3). Let vk1−1 be the neighbour of the major stem

vk1 satisfying v1 < vk1−1 < vk1 along P . Now to resolve vk1−1, vk1 , we need a major

stem vk2 and its pendant xk2 ∈ S such that min {dT (vk1 , xk2), dT (vk1−1, xk2)} ≡ 0

(mod 3) from condition 1 of Theorem 4. If v1 < vk2 < vk1 on P , then dT (v1, vk2) =

dT (v1, vk1)− (dT (vk1 , vk1−1) + dT (vk1−1, vk2)) ≡ 2 (mod 3), which is not possible by

the choice of vk1 . Therefore, vk2 > vk1 on P . We consider vk2 to be the minimum

distance major stem from vk1 satisfying dT (vk1 , vk2) ≡ dT (v1, vk1) + dT (vk1 , vk2) ≡ 2

(mod 3).

Let there be a stem vm between v1 and vk1 satisfying dT (v1, vm) ≡ 1 (mod 3), and

let xm be the pendant of vm which is not in S. Then, to resolve xm, vm−1, there

must exist a pendant xr ∈ S attached to some major stem vr within v1, vm along P

such that dT (xr, vm−1) ≡ 0 or 2 (mod 3) by condition 2 of Theorem 4. Therefore,

dT (vr, vm−1) ≡ 1 or 2 (mod 3). If dT (vr, vm−1) ≡ 1 (mod 3), we get dT (v1, vr) =

dT (v1, vm)−(dT (vr, vm−1)+dT (vm−1, vm)) ≡ 2 (mod 3), which contradicts the choice

of vk1 . Again, if dT (vr, vm−1) ≡ 2 (mod 3), then we get dT (v1, vr) ≡ 1 (mod 3).

Since v1 < vr < vk1 and dT (v1, vr) ≡ 1 (mod 3), proceeding similarly as above, a

contradiction arises after finite steps when we get the minimum distance stem from

v1 at 1 (mod 3) distance.

6 v1, . . . vn are path vertices and x1, xn are pendants attached to v1, vn, respectively. It is to be noted
that v1, vn must be major stems since P is the central path and T contains legs as only pendants.
7 vi ≤ vj indicates that vi occurs left to vj along P
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Further, to resolve vk2−1, vk2 , there must exist some pendant xk3 ∈ S attached to some

major stem vk3 such that min {dT (xk3 , vk2), dT (xk3 , vk2−1)} ≡ 0 (mod 3) by condition

1 of Theorem 4. If vk1 < vk3 < vk2 along P , then dT (vk1 , vk3) = dT (vk1 , vk2) −
dT (vk2 , vk3) ≡ 2 (mod 3), which contradicts the choice of vk2 . Again, if v1 < vk3 < vk1 ,

then dT (v1, vk3) = dT (v1, vk1) − dT (vk1 , vk3) ≡ 1 (mod 3), which is not possible

from the above paragraph. Therefore, vk2 < vk3 < vn, which implies dT (v1, vk3) =

dT (v1, vk2) + dT (vk2 , vk3) ≡ 0 (mod 3). We consider vk3 to be the minimum distance

major stem from vk2 satisfying dT (vk2 , vk3) ≡ 2 (mod 3).

Proof of condition 3. Let dT (vp, vn) ≡ 1 (mod 3) for some stem vp < vn along P . Let

u be a pendant of vp, which is not in S and v = vp+1. Then to resolve u, v, there

must exist some xl ∈ S attached to a major stem vl satisfying vp < vl < vn, such

that dT (vp+1, xl) ≡ 0 or 2 (mod 3) by condition 2 of Theorem 4. This implies

dT (vp+1, vl) ≡ 2 or 1 (mod 3). If dT (vp+1, vl) ≡ 1 (mod 3), then dT (vl, vn) =

dT (vp, vn)− dT (vp, vp+1)− dT (vp+1, vl) ≡ 2 (mod 3).

Again, if dT (vp+1, vl) ≡ 2 (mod 3), then dT (vl, vn) ≡ 1 (mod 3). Therefore, following

a similar argument as did in the above paragraph, after finite steps, we can find some

major stem vl such that dT (vl, vn) ≡ 2 (mod 3).

Sufficiency: We consider T to be a tree that satisfies all the given conditions. From

Corollary 2, it is already known that β(T 3) ≥ β(T ). Hence, to prove β(T 3) = β(T ), it

is sufficient to show that β(T 3) ≤ β(T ). Let S be any metric basis of T , then all except

one pendant from every major stem of T are the only members of S by Theorem 3.

Now we show that S is a resolving set of T 3 also. For this, following Theorem 4, it

is sufficient to prove that any two vertices u, v ∈ V \ S satisfying dT (u, v) ≤ 5 can

be resolved by at least one vertex of S. Let x1, xk1 , xk2 , xk3 and xn be the pendants

attached to the major stems v1, vk1 , vk2 , vk3 and vn, respectively, which are included

in S. (see Figure 9)

i) If u and v both appear on the central path P or one of them is attached to a stem

on P .

Let vl be the minimum distance major stem from vn satisfying dT (vl, vn) ≡ 2 (mod

3) and xl ∈ S be a pendant attached to vl. We will show that at least one among

x1, xk1 , xk2 , xk3 , xl and xn resolves u, v in T 3.

Condition 1 guarantees the presence of the above pendants when dT (u, v) 6= 2. Then

following Lemma 4 and Lemma 5, the result follows. Next, we consider the situation

when dT (u, v) = 2 and u is a pendant attached to some stem vp and v is on the central

path P .

Let v = vp+1. If dT (vp, vn) ≡ 0 or 2 (mod 3), then xn resolves u, v in T 3 by Lemma

4. Next, we consider the situation when dT (vp, vn) ≡ 1 (mod 3). Then by using

condition 3, we get an existence of a major stem vl satisfying vp < vl < vn such

that dT (vl, vn) ≡ 2 (mod 3). Without loss of generality, we can assume vl to be

the minimum distance vertex from vn satisfying dT (vl, vn) ≡ 2 (mod 3). Hence, any

pendant xl ∈ S attached to vl resolves u, v by Lemma 4.
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Let v = vp−1. Then, by Lemma 4, at least one among xk1 , x1 resolves u, v when

vk1 ≤ vp ≤ vn along P . Again, if v1 < vp < vk1 , then dT (v1, vp) 6≡ 2 (mod 3)

from the definition of vk1 . Further, dT (v1, vp) 6≡ 1 (mod 3) by condition 2. Hence

dT (v1, vp) ≡ 0 (mod 3) and therefore dT (x1, vp−1) = dT (x1, v1) + dT (v1, vp−1) ≡ 0

(mod 3). Hence, x1 resolves u, v in T 3 by Lemma 4.

ii) If both u and v are pendants attached to two different stems, vm1
and vm2

, respec-

tively. Let vm1 < vm2 on P .

First, we consider the situation when dT (u, v) = 3.

If dT (v1, vm1
) ≡ 1 (mod 3), then dT (x1, u) ≡ 0 (mod 3). Then x1 resolves u, v by

Lemma 4, since min{dT (x1, u), dT (x1, v)} ≡ 0 (mod 3).

Next, if dT (v1, vm1
) ≡ 2 (mod 3), then dT (v1, vm2

) ≡ 0 (mod 3). Clearly, vk2 6= vm2
.

If vk2 > vm2 along P , then dT (vm2 , vk2) = dT (v1, vk2)−dT (v1, vm1)−dT (vm1 , vm2) ≡
1 (mod 3). Therefore, min {dT (xk2 , v), dT (xk2 , u)} = dT (xk2 , v) = dT (xk2 , vk2) +

dT (vk2 , vm2) + dT (vm2 , v) ≡ 0 (mod 3). Hence xk2 resolves u, v in T 3 by Lemma 4.

Again, if vk2 < vm2
, then vk2 < vm1

clearly. Hence proceeding similarly one can verify

that xk2 resolves u, v in T 3.

Again, if dT (v1, vm1
) ≡ 0 (mod 3), then vk1 < vm1

, otherwise, dT (v1, vm2
) = 1

(mod 3) when vm2
< vk1 contradicts condition 2. Therefore, dT (vk1 , vm1

) =

dT (v1, vm1
) − dT (v1, vk1) ≡ 1 (mod 3). Hence min {dT (xk1 , u), dT (xk1 , v)} =

dT (xk1 , u) = dT (xk1 , vk1) + dT (vk1 , vm1
) + dT (vm1

, u) ≡ 0 (mod 3). Hence xk1 re-

solves u, v in T 3 by Lemma 4.

Next, we consider the situation when dT (u, v) = 4. Then x1 resolves u, v when

dT (v1, vm1) ≡ 0 or 1 (mod 3). Again, if dT (v1, vm1) ≡ 2 (mod 3), then if vm1 < vk1 ,

then vk1 > vm2
clearly. Therefore, condition 2 gets contradicted since dT (v1, vm2

) ≡ 1

(mod 3). Hence vk1 ≤ vm1
and dT (vk1 , vm1

) ≡ 0 (mod 3), therefore xk1 resolves u, v

in T 3 following Lemma 5.

Lastly, if dT (u, v) = 5, then |dT (x1, u)− dT (x1, v)| = 5 or |dT (x1, u)− dT (x1, v)| = 3

as per the situation vm1 6= v1 or vm1 = v1. Hence, following Lemma 5, x1 resolves

u, v in T 3 in both circumstances.

Since all the conditions of Theorem 4 are satisfied, S becomes a resolving set of T 3.

9. Conclusion

In this article, we have determined the necessary and sufficient conditions for a resolv-

ing set to be a metric basis for the cube of trees. Also, we developed the upper and

lower bounds on the metric dimension of the same graph class. Further, we discussed

the characterization of some restricted class of cube of trees satisfying β(T 3) = β(T ).

The following open problems are immediate from our study:

Problem 1. Find the bounds on the metric dimension of T r for any positive integer

r ≥ 4.
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Problem 2. Characterize the class of trees that satisfy β(T r) = β(T ) for any positive

integer r.
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[6] Z. Bartha, J. Komjáthy, and J. Raes, Sharp bound on the truncated metric di-

mension of trees, Discrete Math. 346 (2023), no. 8, Article ID: 113410.

https://doi.org/10.1016/j.disc.2023.113410.

[7] P. Buczkowski, G. Chartrand, C. Poisson, and P. Zhang, On k-dimensional graphs

and their bases, Period. Math. Hungar. 46 (2003), no. 1, 9–15.

https://doi.org/10.1023/a:1025745406160.

[8] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in

graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000),

no. 1-3, 99–113.

https://doi.org/10.1016/S0166-218X(00)00198-0.

[9] E. Galby, L. Khazaliya, F. Mc Inerney, R. Sharma, and P. Tale, Metric dimension

parameterized by feedback vertex set and other structural parameters, SIAM J.

Discrete Math. 37 (2023), no. 4, 2241–2264.

https://doi.org/10.1137/22M1510911.

[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-completeness, wh freeman New York, 2002.



S.Paul , et al. 27

[11] A. Hakanen, V. Junnila, T. Laihonen, and I.G. Yero, On vertices contained in all

or in no metric basis, Discrete Appl. Math. 319 (2022), 407–423.

https://doi.org/10.1016/j.dam.2021.12.004.

[12] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars. Combin.

2 (1976), 191–195.

[13] I. Javaid, M.T. Rahim, and K. Ali, Families of regular graphs with constant metric

dimension, Util. Math. 75 (2008), no. 1, 21–33.

[14] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete

Appl. Math. 70 (1996), no. 3, 217–229.

https://doi.org/10.1016/0166-218X(95)00106-2.
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