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Abstract: In this work, two class NP-hard optimization problems on the graph are

discussed: the detour metric dimension and the bi-metric dimension. Both are used

in many distinct areas, as well as pattern recognition, keeping track of the movement
of robots on a network, and reviewing the structural properties of chemical structures.

The metric dimension dim(G) of graph G is the minimum number of vertices such

that every vertex of G is uniquely assigned by its vector of distances to the selected
vertices. This concept was expanded into the detour metric dimension Dβ(G) and

the bi-metric dimension βb(G) by considering the detour distance of two vertices. A

computational approach is needed to solve these two problems on large graphs. In
this research, we propose the BGWO algorithm to determine the metric dimension
of some generalized antiprism graphs. In addition, we develop a probabilistic-based

metaheuristic algorithm, namely ant colony optimization, to find the detour distance
and then modify the binary gray wolf optimization (BGWO) algorithm to solve the
detour metric dimension and the bi-metric dimension on some families of graphs. The
simulation shows that the BGWO algorithm gives better results for the generalized
antiprism graphs. Also, the hybrid ACO-BGWO algorithm gives the same detour

dimension result as in the literature. We show that the bi-metric dimension of the
generalized antiprism graph is the same as its metric dimension.
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1. Introduction

The notion of a resolving set first came in 1975, proposed by Slater [36]. Harrary and

Melter construct the same concept with a different name, metric dimension [15]. In

simple terms, the metric dimension of a connected graph A or dim(A) is the cardinality

of the minimum resolving set. The minimum resolving set is also often mentioned as

the basis. It can also be concluded that all of the vertices of graph A have a disparate

representation of the basis [4].

Let G be a connected graph. For an ordered set W = {w1, w2, . . . , wk} of

vertices and a vertex v in a connected graph G, the k−vector r(v|W ) :=

(d(v, w1), (d(v, w2), . . . , (d(v, wk)) is called the metric dimension of v with respect to

W, where d(x, y) is the distance between two vertices x and y. The set W is called a

resolving set for G if distinct vertices of G have distinct representation with respect to

W. A minimum resolving set is called a basis, and the metric dimension of G, dim(G),

is the cardinality of a basis for G. For example, consider the graph G of Figure 1. The

set W1 = {w1, w5} is not a resolving set for G since r(w2|W1) = (1, 1) = r(w3|W1). On

the other hand, W2 = {w2, w3, w5} is a resolving set for G since the representation for

the vertices of G with respect to W2 are: r(w1|W2) = (1, 1, 2), r(w2|W2) = (0, 1, 1),

r(w3|W2) = (1, 0, 1), r(w4|W2) = (2, 1, 1), r(w5|W2) = (1, 1, 0).

However, W2 is not a minimum resolving set since W3 = {w1, w4} is also resolving

set. Since no single vertex constitutes a resolving set for G, it follows that W3 is a

minimum resolving set [4].

Figure 1. Graph G

Research on the metric dimension has significantly advanced conceptual development

and its application across various fields. For conceptual development, metric dimen-

sions have evolved into multiple frameworks addressing various resolving set problems,

achieved by establishing new definitions of the resolving set itself. These advance-

ments include the detour metric dimension and the bi-metric dimension.

The Gray Wolf Optimizer (GWO) is a population-based metaheuristic algorithm in-

spired by the hunting behavior of gray wolves. It was developed by mimicking their

social structure and hunting strategies. The bibliometric analysis results show that

the GWO method is computer science’s most cited metaheuristic method [17]. The

binary version of GWO: BGWO has been proven to solve various problems in science,
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health science, and engineering [9],[22],[32] and [30]. The results of the first part of

this paper show that the BGWO algorithm gives satisfactory results in determining

the metric dimension of a generalized antiprism graph. The resulting metric dimen-

sion for a generalized antiprism graph is smaller than the upper bound, which has

been previously proven. They all motivate applying the BGWO algorithm to solve

the detour metric and bi-metric dimension problems.

Next, to determine the detour metric and bi-metric dimensions, it is necessary to

compute the longest distance between two vertices in a graph. A computational tool

is needed to handle this task in large graphs because manually calculating it would

take time and effort. The ant colony optimization (ACO) algorithm is a probabilistic

method employed to address computational problems that can be transformed into

the task of identifying optimal paths within graphs. The ACO algorithm is inspired by

the foraging behavior of ant colonies. This algorithm effectively solves combinatorial

problems like the Traveling Salesman Problem (TSP) [1, 8]. We are motivated to

apply the ACO algorithm to determine the longest distance between two vertices in

a graph.

In this paper, we give a better result for the metric dimension of some generalized

antiprism graphs than its upper bound. We get the result from the computational

approach, Binary Gray Wolf Optimization Algorithm. Because there has been no com-

putational approach to solve the detour metric dimension and bi-metric dimension

problem, we propose a hybrid algorithm between the ACO and BGWO algorithms

for determining the detour metric dimension and the bi-metric dimension. To deter-

mine their detour metric dimension, we apply that hybrid algorithm to several family

graphs: cycle, Jahangir, and friendship graphs. Also, we apply that hybrid algorithm

to some families of graphs: complete graphs and generalized antiprism graphs.

The organization of this paper is as follows: the definition and example of the concept

of metric dimension, detour metric dimension, and bi-metric dimension are presented

in Section 2. In Section 3, the details of the ACO Algorithm and its procedure are

introduced in Section 3.1, and the details of Gray Wolf Optimization and its concept

are described in 3.2. The proposed algorithm is discussed in Section 4. In Section 5,

computational results are reported.

2. Metric, detour metric, and bi-metric dimension

2.1. Metric dimension

The study of the metric dimension problem (MDP) continues to expand. The ad-

vancement of this field begins with the determination of the metric dimensions for

various families of graphs. Hernando investigated the metric dimension of some of

them [18]. Fehr attempted to identify the metric dimensions of the Cayley digraph

[11]. Imran and Vetrik investigated circular graphs metric dimensions [19, 38]. Chau

continued his research by examining the MDP of circular graphs and their operation

results [6], Vetrik again continued his research on the metric dimensions of circulant
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graphs and directed circulant graphs [39]. Guo has carried out research on metric di-

mensions that have regular distances [14]. In addition, Feng succeeded in identifying

the metric dimension of graphs with bilinear form [12]; Feng researched the metric

dimensions of line graphs [13]. Eroh researched the metric dimensions of the functi-

graph [10]. Saputro researched the metric dimensions of a biregular graph [34]. Shao

conducted a study of the metric dimensions of some generalized Petersen graphs [35],

and elsewhere, Imran conducted a study of the metric dimensions of the generalized

Petersen multigraph family [20] and gear graphs [21]. Liu investigated the metric

dimensions of several Toeplitz graph families [24]. In the same year, Akhter studied

the metric dimensions of Fullerene graphs [2], and Sooryanarayana studied the metric

dimensions of generalized wheel graphs [37]. Bensmail found the relationship between

the metric dimensions of a graph and an oriented graph [3]. Rehman investigated the

metric dimensions of arithmetic graphs [33]. In [16], Jason described a character of

the 2-dimensional tree.

The metric dimension problem (MDP) was first modeled as an integer programming

by Chartrand et al. [5]. In the computational approach, the range of its solution

space spreads exponentially with the problem dimension. To handle this, the imple-

mentation of metaheuristic algorithms called genetic algorithms has been studied by

Kratica [23]. In [29], Murdiansyah presented a particle swarm optimization (PSO)

to solve MDP. Mladenovic designed a variable neighborhood search technique for

MDP and searched a minimal doubly resolving set of graphs [26]. Mohamed et al.

presented a binary of equilibrium to find the connected domination metric dimension

[28]. In [40], Wu et al. combined the hybrid algorithm with graph representation

learning to solve MDP. Mohamed introduced a hybrid of the water cycle and whale

optimization methods to solve MDP and manage the optimization procedures [27].

2.2. Detour metric dimension

The concept of MDP was developed. One of which is the detour metric dimen-

sion. Let G be a connected graph. The set V is the vertex set of G. The set

E is the edge set of G. Let u, v ∈ V. The distance D(u, v) is the length of the

longest u − v path in G. Let W ? = {w1, w2, . . . , wp} be an ordered subset of V.

For every v ∈ V, a representation of v with respect to W ? is defined as p tuples,

R(v|W ?) = (D(v, w1), D(v, w2), . . . , D(v, wp)). The set W ? is a detour resolving set

of G if every two distinct vertices u, v ∈ V satisfy R(u|W ?) 6= R(v|W ?). A detour

basis of G is a detour resolving set of G with minimum cardinality, and the detour

metric dimension of G refers to its cardinality, denoted by Dβ(G) [7]. For example,

consider the cycle graph C8 of Figure 2. The detour distance matrix of this graph is:
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0 7 6 5 4 5 6 7

7 0 7 6 5 4 5 6

6 7 0 7 6 5 4 5

5 6 7 0 7 6 5 4

4 5 6 7 0 7 6 5

5 4 5 6 7 0 7 6

6 5 4 5 6 7 0 7

7 6 5 4 5 6 7 0


From this matrix, it can be seen that each column always contains at least two

identical elements. This shows that no detour resolving set of C8 consists of only one

vertex. Next, suppose S = {v2, v4}. The representation of each vertex in S is as shown

in Figure 2. Thus, S is the minimum detour resolving set of C8 and Dβ(C8) = 2

Figure 2. Cycle graph C8

2.3. Bi-metric Dimension

An additional advancement in the Metric Dimension Problems (MDP) concept has

been achieved. For any two vertices x and y, d(x, y) and δ(x, y) respectively denote

the length of the shortest and longest path between x and y and are namely distance

and detour distance between x and y. Let G(V,E) be a simple connected graph. For

each vertex x ∈ V, we link a pair of vectors (u, v), denoted by Sx, with respect to a

subset S = {s1, s2, . . . , sk} of vertices of G where u = (d(x, s1), d(x, s2), . . . , d(x, sk))

and v = (δ(x, s1), δ(x, s2), . . . , δ(x, sk)). The subset S is then said to bi-resolve G if

Sx 6= Sy, whenever x 6= y. The minimum cardinality of a bi-resolving set S is termed

as bi-metric dimension of G and is denoted by βb(G) [31]. There is a difference in

[7] and [31] in defining the longest distance from a vertex to itself. In [7], the longest

distance from a vertex v to itself is 0. However, in [31], the longest distance from a

vertex v to itself is sought according to the given definition: the length of the longest

path from v to v. In this paper, we use the definition in [7] to find the detour metric

dimension and the definition in [31] to find the bi-metric dimension.

To illustrate finding the bi-resolving set of a graph, consider the graph G in Figure 1.
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The bi-representation of each vertex in G with respect to W3 is shown in Figure 3.

Since no single vertex constitutes a bi-resolving set for G, it follows that W3 is also a

minimum bi-resolving set, and thus βb(G) = 2.

Figure 3. Bi-representation of G

Furthermore, consider the graphH as shown in Figure 4. The set S = {w1, w2, w3, w5}
is a minimum resolving set; hence, their metric dimension is 4. But the set

M = {w1, w3, w6} is a minimum bi-resolving set for the graph H. Thus, the bi-metric

dimension of H = βb(H) = 3 < 4 = dim(H). So we are motivated to study the

bi-metric dimension further. In certain graphs, the bi-metric dimension parameter

yields a smaller value than the metric dimension. This will lead to a reduction in

the cost of establishing a network with fewer navigation agents. However, it will

take time and effort to determine the longest distance, detour metric dimension, and

bi-metric dimension of the graph in a large graph with many vertices and edges.

Computational tools are needed to solve these three problems.

Figure 4. graph H having a bi-metric dimension less than its metric dimension
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3. Ant Colony Optimization Algorithm and Gray Wolf Opti-
mization Algorithm

3.1. The Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) algorithm is probabilistic, inspired by the forag-

ing behavior of an ant species. Because ants are blind, they move randomly from one

place to another and choose routes based on probability. When traveling, ants release

certain amounts of pheromones. This will mark the route for other ants to follow.

When other ants are looking for food, most of the other ants will follow the route with

more pheromones until all the ants finally choose to take the shortest route to reach

the food source. This mechanism of ants is modeled in a mathematical formulation.

Ants select the following city to be visited through a stochastic mechanism. When

ant k is in the city i and has constructed the partial solution sp. The probability of

going to city j is given by:

P kij =


ταijη

β
ij∑

Cil∈N(sP ) τ
α
ilη

β
il

if Cij ∈ N(sP ),

0 otherwise,
(3.1)

N(sp) represents the collection of feasible components, referring to edges (i, l) where

l signifies a city that the ant k has not yet visited. The values of α and β dictate the

significance between the pheromone levels and the heuristic information ηi,j , which is

given by:

ηi,j =
1

di,j
, (3.2)

di,j represents the distance measurement between cities i and j.

The pheromone τi,j , linked with the edge joining cities i and j, is updated as follows:

τij ← (1− ρ)τi,j +

m∑
k=1

∆τkij , (3.3)

Here, ρ represents the evaporation rate, m is the total number of ants, and ∆τkij
indicates the amount of pheromone deposited on edge (i, j) by ant indexed as k:

∆τkij =

{
Q
Lk

if ant k used edge (i, j) in its tour,

0 otherwise,
(3.4)

In this context, Q denotes a constant, and Lk represents the route length created by

ant k [1].
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3.2. Gray Wolf Optimization Algorithm

The GWO algorithm was developed based on the hunting patterns of a group of gray

wolves. These animals tend to favor residing in communal settings or groups. The

first level is the alpha wolf, which contains a male or female wolf who is the leader

of the gray wolf pack. Alpha is accountable for making choices regarding hunting,

selecting a sleeping location, determining wake-up times, and similar considerations.

Alpha wolves are also called dominant wolves because the pack must follow their

orders. Beta is the subsequent tier within the gray wolf pack’s social structure.

Betas are alpha subordinates who help alphas in decision-making or other behavioral

activities. The lowest level in the gray wolf hierarchy is omega. Omega wolves

are always submissive to all the other dominant wolves. Omega is not an essential

individual in the group. If a wolf in a pack is not alpha, beta, or omega, or the wolf

dominates the omega wolf, then this wolf is called a delta. Delta wolves are required

to yield to the alpha and beta members, but they dominate omega wolves. When

designing the GWO algorithm, The fittest solution is α (alpha). The second fittest

solution is β (beta), and the third is δ (delta). Apart from the three types above,

gray wolves are classified as ω (omega). [25].

A pack of gray wolves surrounds their prey in the process of hunting. In mathematical

modeling, this process is written in the form of the subsequent equation:

~D =| ~C. ~Xp(t)− ~X(t) | (3.5)

~X(t+ 1) = ~Xp(t)− ~A. ~D (3.6)

In this context, t represents the current iteration, ~A and ~C are coefficient vectors.
~Xp denotes the position vector of the prey, ~X denotes the position vector of the gray

wolf. The vector ~A and vector ~C are determined based on the following formula:

~A = 2~a.~r1 − ~a (3.7)

~C = 2~r2 (3.8)

Here, ~a linearly decreases from 2 to 0 throughout the iteration process, and ~r1 and

~r2 represent random vectors within the range of [0,1].

In mathematically simulating the hunting behavior of the gray wolf, alpha (the most

optimal candidate solution), beta, and delta had better knowledge of the prospective

position of the prey. Hence, we preserve the initial three most optimal solutions

acquired and then require the other search wolves (incorporating the omega members)
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to adjust their positions according to the positions of the most proficient searching

wolves. Formulas (3.9)-(3.15) represent this hunting activity.

~Dα =| ~C1. ~Xα − ~X |, (3.9)

~Dβ =| ~C2. ~Xβ − ~X |, (3.10)

~Dδ =| ~C3. ~Xδ − ~X | (3.11)

~X1 = ~Xα − ~A1.( ~Dα), (3.12)

~X2 = ~Xβ − ~A2.( ~Dβ), (3.13)

~X3 = ~Xδ − ~A3.( ~Dδ) (3.14)

~X(t+1) =
~X1 + ~X2 + ~X3

3
(3.15)

4. The Proposed ACO-BGWO Algorithm

4.1. BGWO Algorithm for Metric Dimension Problem

In the gray wolf optimization (GWO) algorithm, wolves consistently alter their

positions to any location within the space. In metric dimension problems, the

solutions are confined within the binary set {0, 1}. In this study, the modification of

binary GWO algorithm from [9] proposed for the MDP also detour metric dimension

and bi-metric dimension.

Within the BGWO approach, the primary updating equation is expressed as illus-

trated in equation (4.1); refer to Algorithm 1 for further details.

Xt+1
i = Crossover(x1, x2, x3) (4.1)

Here, Crossover(x1, x2, x3) signifies an appropriate crossover operation involving so-

lutions x, y, z, and x1, x2, x3 are binary vectors denoting the impact of a wolf’s move-

ment towards the α, β, and δ gray wolves sequentially. The x1, x2, x3 are determined

using equations (4.2),(4.5), and (4.8) correspondingly.

xd1 =

{
1 if(xdα + bstepdα) ≥ 1

0 otherwise
(4.2)
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Here, xdα represents the position vector of the alpha wolf in dimension d, while bstepdα
signifies a binary step in dimension d, which can be computed as described in equation

(4.3).

bstepdα =

{
1 ifcstepdα ≥ rand
0 otherwise

(4.3)

Here, rand is a randomly generated number from a uniform distribution within the

[0, 1] range. cstepdα stands for the continuous-valued step size for dimension d and can

be computed using a sigmoidal function as outlined in equation (4.4).

cstepdα =
1

1 + e−10(Ad1D
d
α−0.5)

(4.4)

Here, Ad1 and Dd
α are determined by equations (3.7), and (3.12) in the dimension d.

xd2 =

{
1 if (xdβ + bstepdβ) ≥ 1

0 otherwise
(4.5)

The vector xdβ represents the position vector of the beta wolf in dimension d, and

bstepdβ represents a binary step in dimension d that can be determined as in equation

(4.6).

bstepdβ =

{
1 if cstepdβ ≥ rand
0 otherwise

(4.6)

Here, the rand denotes a randomly generated number from a uniform distribution

within the range ∈ [0, 1], and cstepdβ represents the continuous-valued step size for

dimension d which can be computed using a sigmoidal function as outlined in equation

(4.7).

cstepdβ =
1

1 + e−10(Ad1D
d
β−0.5)

(4.7)

Here, Ad1 and Dd
β are computed using equations (3.7) and (3.12) in the dimension d.

xd3 =

{
1 if (xdδ + bstepdδ) ≥ 1

0 otherwise
(4.8)
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Here xdδ represents the position vector of the delta wolf in dimension d, while bstepdδ
denotes a binary step in dimension d, calculated according to equation (4.9).

bstepdδ =

{
1 if cstepdδ ≥ rand
0 otherwise

(4.9)

Where rand is a random number drawn from the uniform distribution ∈ [0, 1], and

cstepdδ is the continuous-valued step size for dimension d and can be calculated using

sigmoidal function as in equation (4.10).

cstepdδ =
1

1 + e−10(Ad1D
d
δ−0.5)

. (4.10)

A stochastic crossover strategy is implemented per dimension to perform the crossover

operation among the solutions a, b, c solutions, as demonstrated in equation (4.11).

xd =


ad if rand < 1

bd if 1
3 ≤ rand <

2
3

cd otherwise.

(4.11)

Here, ad, bd, cd represent the binary values for the first, second, and third parameter

in dimension d, xd denotes the crossover output at dimension d, and rand is a

randomly generated number from a uniform distribution within the range [0,1]. The

procedure of the proposed BGWO algorithm, as seen in Algorithm 1.

Figure 5. Graph A3
3

To illustrate, consider a graph A3
3 with V (A3

3) = {v1, v2, v3, v4, v5, v6, v7, v8} in Figure

5. Graph A3
3 will initially be transformed into an adjacent matrix denoted by M,

facilitating computational processing. For this purpose, the elements on the diagonal

are 0; if two vertices are adjacent, the value is 1. If two vertices are not adjacent, then

the value is 0.
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Algorithm 1 BGWO Algorithm for Metric Dimension Problem
Input: n number of nodes, distance matrix, popsize, MaxIt

Output: xα optimal gray wolf, Metric dimension

1. Initialize a population of a popsize wolves positions at random ∈ [0, 1]

2. Find the representation of every node with respect to wolves

3. Replace the population based on objective value

4. Find the α, β, and δ based on fitness

5. while stopping criteria not met do

foreach wolfi ∈ pack do

Calculate x1, x2, x3 using equations (4.2), (4.5), and (4.8)

xt+1
i ← crossover among x1, x2, x3 using equation (4.11)

end (for)

I. Update a,A,C
II. Evaluate the positions of individual wolves

III. Update α, β, and δ

end (while)

M =



0 1 1 1 0 1 0 0 0

1 0 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 0

1 1 0 0 1 1 1 0 1

0 1 1 1 0 1 1 1 0

1 0 1 1 1 0 0 1 1

0 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 0 1

0 0 0 1 0 1 1 1 0


Suppose we aim to determine the metric dimension of graph A3

3. First, we apply the

Floyd-Warshall algorithm to obtain a distance matrix of A3
3. We skip the detailed

step and present the distance matrix of A3
3 as D.

D =



0 1 1 1 2 1 2 2 2

1 0 1 1 1 2 2 2 2

1 1 0 2 1 1 2 2 2

1 1 2 0 1 1 1 2 1

2 1 1 1 0 1 1 1 2

1 2 1 1 1 0 2 1 1

2 2 2 1 1 2 0 1 1

2 2 2 2 1 1 1 0 1

2 2 2 1 2 1 1 1 0


Let the number of gray wolves in the pack be n = 5, and the number of iterations for



H. Hendy, et al. 13

optimization is Niter = 10. The α is the optimal gray wolf binary position: minimum

resolving set, and f(α) is the best fitness value: metric dimension.

Step 1

Initialize a (candidate) population of n wolves position at random ∈ [0, 1]. Suppose

that :

Wolf 1 =
[
1 0 1 1 0 0 1 1 1

]
Wolf 2 =

[
1 1 0 1 0 1 1 0 0

]
Wolf 3 =

[
1 0 0 1 1 1 0 0 1

]
Wolf 4 =

[
0 1 0 1 0 1 0 1 1

]
Wolf 5 =

[
1 0 1 1 1 0 0 0 1

]
The following presents a method for determining the fitness value of each wolf.

Wolf 1
[
1 0 1 1 0 0 1 1 1

]
From the vector generated at Wolf 1, the (candidate) resolving set is

S1 = {v1, v3, v4, v7, v8, v9}. In step 1, Determine the representation of all ver-

tices in the graph A3
3 with respect to S1. Computationally, the elements in the

representation vectors are taken from the elements of D.

r(v1|S1) = (0, 1, 1, 2, 2, 2),

r(v2|S1) = (1, 1, 1, 2, 2, 2),

r(v3|S1) = (1, 0, 2, 2, 2, 2),

r(v4|S1) = (1, 2, 0, 1, 2, 1),

r(v5|S1) = (2, 1, 1, 1, 1, 2).

r(v6|S1) = (1, 1, 1, 2, 1, 1),

r(v7|S1) = (2, 2, 1, 0, 1, 1),

r(v8|S1) = (2, 2, 2, 1, 0, 1),

r(v9|S1) = (2, 2, 1, 1, 1, 0).

Step 2

Sort the representation vectors generated in Step 1 according to the lexicographic

order. The sorted result for the representation of wolf 1 is as follows:

r(t1|S1) = r(v1|S1) = (0, 1, 1, 2, 2, 2),

r(t2|S1) = r(v3|S1) = (1, 0, 2, 2, 2, 2),

r(t3|S1) = r(v6|S1) = (1, 1, 1, 2, 1, 1),

r(t4|S1) = r(v2|S1) = (1, 1, 1, 2, 2, 2),

r(t5|S1) = r(v4|S1) = (1, 2, 0, 1, 2, 1).

r(t6|S1) = r(v5|S1) = (2, 1, 1, 1, 1, 2),

r(t7|S1) = r(v7|S1) = (2, 2, 1, 0, 1, 1),

r(t8|S1) = r(v9|S1) = (2, 2, 1, 1, 1, 0),

r(t9|S1) = r(v8|S1) = (2, 2, 2, 1, 0, 1).



14 Hybrid ant colony

Table 1. The results of steps 1-3 for wolves 1-5.

wolf Si q S∗i wolf(i)∗

1 S1 = {v1, v3, v4, v7, v8, v9} 5 S∗1 = {v1, v3, v4, v7, v8} wolf 1*= [ 1 0 1 1 0 0 1 1 0 ]

2 S2 = {v1, v2, v4, v6, v7} 4 S∗2 = {v1, v2, v4, v6} wolf 2*= [ 1 1 0 1 0 1 0 0 0 ]

3 S3 = {v1, v4, v5, v6, v9} 4 S∗3 = {v1, v4, v5, v6} wolf 3*= [ 1 0 0 1 1 1 0 0 0 ]
4 S4 = {v2, v4, v6, v8, v9} 4 S∗4 = {v2, v4, v6, v8} wolf 4*= [ 0 1 0 1 0 1 0 1 0 ]

5 S5 = {v1, v3, v4, v5, v9} 5 S∗5 = S5 wolf 5*=wolf 5

Next, for i = 1, 2, ..., (n − 1) find j(i) as the minimal coordinate where the vectors

r(ti, S) and r(ti+1, S) are different. If such coordinate does not exist for some index

i, i.e. r(ti, S) = r(ti+1, S), then S is not a resolving set, and the procedure stops.

From the calculation of the value of j(i) at wolf 1: j(1) = 1, j(2) = 2, j(3) = 5, j(4) =

2, j(5) = 1, j(6) = 2, j(7) = 4, j(8) = 3.

Step 3

Determine q = max{j(1), j(2), ..., j(n − 1)}, and keep in S only the first q elements.

[23]. For wolf 1: q = max{1, 2, 5, 2, 1, 2, 4, 3} = 5, thus S1∗ = {v1, v3, v4, v7, v8},
and Wolf 1* =

[
1 0 1 1 0 0 1 1 0

]
with the fitness value equal to the number of

element 1 for a wolf 1* = 5. Table 1 presents the steps 1-3 results for wolves 1-5.

Table 1 presents the results of steps 1-3 for wolves 1-5.

Thus, the initial population of gray wolves is:

Wolf 1∗ =
[
1 0 1 1 0 0 1 1 0

]
Wolf 2∗ =

[
1 1 0 1 0 1 0 0 0

]
Wolf 3∗ =

[
1 0 0 1 1 1 0 0 0

]
Wolf 4∗ =

[
0 1 0 1 0 1 0 1 0

]
Wolf 5∗ =

[
1 0 1 1 1 0 0 0 1

]
Based on the fitness values, wolves 2,3,4 have the same fitness value = 4. This value is

the smallest. Alpha is chosen randomly from the three wolves, as are beta and omega.

α =
[
1 1 0 1 0 1 0 0 0

]
β =

[
1 0 0 1 1 1 0 0 0

]
δ =

[
0 1 0 1 0 1 0 1 0

]
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Next, we apply equations (3.7) until (3.14).

For t=1

a = 2− 2. 13 = 2− 2
3 = 4

3 = 1.3333.

Suppose that:

~r1 =



0.5392

0.2111

0.6792

0.5733

0.8245

0.9713

0.5324

0.3333

0.2178


~r2 =



0.9211

0.5439

0.6745

0.5556

0.4321

0.5543

0.7214

0.8151

0.6253


then:

~A = 2a~r1 − a = 2



1.3333

1.3333

1.3333

1.3333

1.3333

1.3333

1.3333

1.3333

1.3333


◦



0.5392

0.2111

0.6792

0.5733

0.8245

0.9713

0.5324

0.3333

0.2178


−



1.3333

1.3333

1.3333

1.3333

1.3333

1.3333

1.3333

1.3333

1.3333


=



0.1045

−0.7704

0.4779

0.1955

0.8648

1.2568

0.0864

−0.4445

−0.7525


Operation ◦ is a Hadamard (Schur) product.

~C = 2~r2 = 2



0.9211

0.5439

0.6745

0.5556

0.4321

0.5543

0.7214

0.8151

0.6253


=



1.8422

1.0878

1.3490

1.1112

0.8642

1.1086

1.4428

1.6302

1.2506


~C1 = ~C2 = ~C3 = ~C.
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Next, ~Dα = ~C1 ◦ ~Xα − ~X =



1.8422

1.0878

1.3490

1.1112

0.8642

1.1086

1.4428

1.6302

1.2506


◦



1

1

0

1

0

1

0

0

0


−



1

0

1

1

0

0

1

1

0


=



0.8422

0.0878

−1

0.1112

0

1.1086

−1

−1

0


,

~Dβ = ~C2 ◦ ~Xβ − ~X =



1.8422

1.0878

1.3490

1.1112

0.8642

1.1086

1.4428

1.6302

1.2506


◦



1

0

0

1

1

1

0

0

0


−



1

0

1

1

0

0

1

1

0


=



0.8422

0

−1

0.1112

0.8642

1.1086

−1

−1

0


,

~Dδ = ~C3 ◦ ~Xδ − ~X =



1.8422

1.0878

1.3490

1.1112

0.8642

1.1086

1.4428

1.6302

1.2506


◦



0

1

0

1

0

1

0

1

0


−



1

0

1

1

0

0

1

1

0


=



−1

1.0878

−1

0.1112

0

1.1086

−1

0.6302

0


,

Next, we apply equations (4.2) until (4.11).

For d=1

cstep1α = 1
1+e−10(0.1045.0.8422−0.5) = 0.0159.

A random number is generated. For example, r = 0.8147. Because of

cstep1α = 0.0159 < 0.8147, then bstep1α = 0.

Because of x1α + bstep1α = 1 + 0 = 1 ≥ 1, then x11 = 1.

The calculation continues until d = n, and similar way for β and δ.
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Table 2. Result of BGWO Algorithm for Metric Dimension on some Generalized Antiprism Graphs.

graph n m popsize maxIt resolving set dim

A3
3 9 21 20 50 {a2, b1, c1} 3

A4
3 12 30 20 50 {a2, a3, c1, c3} 4

A5
3 15 39 25 50 {a3, b3, c3, d1, e1} 5

A6
3 18 48 25 50 {a1, a2, c3, d3, e2, e3} 6

A7
3 21 57 25 50 {b1, b2, d2, e2, f2, f3} 7

A8
3 24 66 30 75 {a1, a2, c2, d1, d2, f3, g1, g2} 8

A9
3 27 75 50 150 {a1, b3, d1, d2, e1, f2, g2, h1, h2} 9

A10
3 30 84 75 200 {a1, b1, d1, d3, e3, f2, h3, i2, i3} 9

A3
4 12 28 20 50 {a2, a4, b1} 3

A4
4 16 40 20 50 {a1, b1, b3, b4} 4

A5
4 20 52 35 100 {a4, b2, b3, b4} 4

A6
4 24 64 50 150 {a3, b2, d1, d3, d4} 5

A7
4 28 76 70 200 {a4, b2, d1, e1, e4, f1} 6

A8
4 32 88 80 300 {a1, b3, c1, c4, f3, f4, g2} 7

A9
4 36 100 90 400 {a4, c3, c4, e1, e3, f4, g1, h1, h2} 9

A10
4 40 112 90 400 {a1, a4, b1, c1, e1, e3, f4, h3, h4, i2} 10

4.2. ACO-BGWO Algorithm for Detour Metric Dimension Problem

In this section, we proposed a new hybrid algorithm, ACO-BGWO, which combines

ACO and BGWO techniques. First, ACO is used to search for the detour distance

of two vertices in a graph (see algorithm 2). Secondly, we modified the BGWO

algorithms to find the detour metric dimension of the graph. The main structure of

the BGWO algorithm is presented in algorithm 3.

As an illustration, suppose the results of determining the detour distance from every

two points on the graph A3
3 are presented in the matrix ∆.

∆ =



0 8 8 8 8 8 8 8 8

8 0 8 8 8 8 8 8 8

8 8 0 8 8 8 8 8 8

8 8 8 0 8 8 8 8 8

8 8 8 8 0 8 8 8 8

8 8 8 8 8 0 8 8 8

8 8 8 8 8 8 0 8 8

8 8 8 8 8 8 8 0 8

8 8 8 8 8 8 8 8 0


This ∆ matrix replaces the distance matrix D in determining the detour metric di-

mension in algorithm 3.

Algorithm 2 ACO Algorithm for Detour Distance Problem

Input: n number of nodes, adjacency matrix, maxAnt, MaxIt, startNode, endNode

Output: longest route, detour distance Initialize stage
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foreach i = 1 : maxAnt do

P (i, j) = P0(i, j) = 1

find visibility η(i,j) = h.d(i,j)

where h =


1
2 if j adjacent to endNode
1
4 if j is endNode

0 if j has been passed

1 otherwise

, and di,j is element of adjacency matrix

end (for)

while it ¡ maxIt do

place Ant on startNode

foreach i = 1 : maxAnt

Start from startNode

Calculate the pheromone level for each edge which is connected with startNode

Calculate the transition probability from a starNode to another node

Generate random numbers

Use roulette wheel selection to select the nextNode

end (for)

foreach i = maxAnt do calculate x = total route distance generated by each Ant

Update pheromone matrix Pk(i, j) = 0.5 ∗ Pk−1(i, j) + x

end (for)

end (while)

Algorithm 3 BGWO Algorithm for Detour Metric Dimension Problem

Input: n number of nodes, detour distance matrix, popsize, MaxIt

Output: xα optimal gray wolf, Detour metric dimension

1. Initialize a population of a popsize wolves positions at random ∈ [0, 1]

2. Determine the representation of each node for each gray wolf based on the detour

distance matrix

3. Replace the population based on objective value

4. Find the α, β, and δ based on fitness

5. while stopping criteria not met do

foreach wolfi ∈ pack do

Calculate x1, x2, x3 using equations (4.2), (4.5), and (4.8)

xt+1
i ← crossover among x1, x2, x3 using equation (4.11)

end(for)

I. Update a,A,C
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II. Evaluate the positions of individual wolves

III. Update α, β, and δ

end(while)

Table 3. Result of the ACO-BGWO Algorithm for Detour Metric Dimension on some Cycle Graphs.

graph n m popsize maxIt detour resolving set Dβ(G)

C8 8 8 20 50 {a2, a3} 2
C9 9 9 20 50 {a6, a9} 2

C10 10 10 30 100 {a4, a7} 2

C11 11 11 30 100 {a4, a8} 2
C12 12 12 30 100 {a3, a5} 2

C13 13 13 30 100 {a7, a8} 2

C14 14 14 40 150 {a3, a13} 2
C15 15 15 40 150 {a11, a14} 2

Table 4. Result of the ACO-BGWO Algorithm for Detour Metric Dimension on some Jahangir Graphs.

graph n m popsize maxIt Dβ(G)

J2,5 11 15 50 300 9
J2,6 13 18 50 300 11

J2,7 15 21 50 300 13

J2,8 17 24 50 300 15
J2,9 19 27 50 300 17

J2,10 21 30 50 300 19
J2,11 23 33 50 300 21

J2,12 25 36 50 300 23

Table 5. Result of the ACO-BGWO Algorithm for Detour Metric Dimension on some Friendship Graphs.

graph n m popsize maxIt Dβ(G)

F8 17 24 50 400 17
F9 19 27 50 400 19

F10 21 30 50 400 21

F11 23 33 50 400 23
F12 25 36 50 400 25

F13 27 39 50 400 27

F14 29 42 50 400 29
F15 31 45 50 400 31
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4.3. ACO-BGWO Algorithm for Bi-metric Dimension Problem

In this section, first, ACO is used to search for the detour distance of two vertices

in a graph (see Algorithm 2). Secondly, we modified the BGWO algorithms to find

the bi-metric dimension of the graph. The main structure of the BGWO algorithm

is presented in algorithm 4. In Algorithm 4, the distance matrix D and the detour

distance matrix ∆ are considered as inputs in the bi-metric dimension search.

Algorithm 4 BGWO Algorithm for Bi-metric Dimension Problem
Input: n number of nodes, distance matrix, detour distance matrix, popsize, MaxIt

Output: xα optimal gray wolf, Bi-metric dimension

1. Initialize a population of a popsize wolves positions at random ∈ [0, 1]

2. Determine the representation of each node for each gray wolf based on the union matrix of

the distance matrix and the detour distance matrix

3. Replace the population based on objective value

4. Find the α, β, and δ based on fitness

5. while stopping criteria not met do

foreach wolfi ∈ pack do

Calculate x1, x2, x3 using equations (4.2), (4.5), and (4.8)

xt+1
i ← crossover among x1, x2, x3 using equation (4.11)

end (for)

I. Update a,A,C
II. Evaluate the positions of individual wolves

III. Update α, β, and δ

end (while)

5. Results and Discussions

First, we give an upper bound on the metric dimension of the graph A3
3.

Theorem 1. Dim(An3 ) ≤ n

Proof. Suppose n = 3, and V (A3
3) = {a1, a2, a3, b1, b2, b3, c1, c2, c3}

Since A3
3 is not a path, then dim(A33) ≥ 2. Next, there are five possibilities of

resolving sets with cardinality 2 as follows:

Suppose S1 = {a1, a2}. Because r(a3 | {a1, a2}) = (1, 1) = r(b1 | {a1, a2}), then S1 is

not a resolving set.



H. Hendy, et al. 21

Table 6. Result of the ACO-BGWO Algorithm for Bi-metric Dimension on some Complete Graphs and
Generalized Antiprism Graphs.

graph n m popsize maxIt βb(G)

K8 8 28 50 500 7
K9 9 36 50 500 8

K10 10 45 50 500 9

K11 11 55 50 500 10
K12 12 66 50 500 11

A3
3 9 21 30 400 3

A3
4 12 30 30 400 4

A3
5 15 39 30 400 5

A3
6 18 48 50 400 6

A3
7 21 57 50 400 7

Suppose S2 = {b1, b2}. Because r(b2 | {b1, b2}) = (2, 1) = r(c1 | {b1, b2}), then S2 is

not a resolving set.

Suppose S3 = {a1, b1}. Because r(b2 | {b1, b2}) = (1, 1) = r(c1 | {b1, b2}), then S3 is

not a resolving set.

Suppose S4 = {a1, b2}. Because r(a2 | {a1, b2}) = (1, 1) = r(a3 | {a1, b2}), then S4 is

not a resolving set.

Suppose S5 = {a1, c1}. Because r(a2 | {a1, c1}) = (1, 2) = r(a3 | {a1, c1}), then S5 is

not a resolving set.

Now consider the set S = {a1, b1, c3}. The representation of each vertex in A3
3 are as

follows:

r(a1 | {a1, b1, c3}) = (0, 1, 2),

r(a2 | {a1, b1, c3}) = (1, 1, 2),

r(a3 | {a1, b1, c3}) = (1, 2, 2),

r(b1 | {a1, b1, c3}) = (1, 0, 1),

r(b2 | {a1, b1, c3}) = (2, 1, 2),

r(b3 | {a1, b1, c3}) = (1, 1, 1),

r(c1 | {a1, b1, c3}) = (2, 1, 1),

r(c2 | {a1, b1, c3}) = (2, 2, 1),

r(c3 | {a1, b1, c3}) = (2, 1, 0).

Thus S is a basis of A3
3 and dim(A3

3) = 3.

Suppose n > 3, and V (A3
3 = {a11, a21, a31, a12, a22, a32, . . . , a13, a23, a33}. Choose

Sk = a11, a
1
2, a

3
3, ..., a

3
n ⊆ V (A3

3). The representation of each vertex in A3
3 are as

follows:
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r(a11 | {a11, a12, a33, . . . , a3n}) = (0, 1, 2, . . . , n− 1),

r(a21 | {a11, a12, a33, . . . , a3n}) = (1, 1, 2, . . . , n− 1),

r(a31 | {a11, a12, a33, . . . , a3n}) = (1, 2, 2, . . . , n− 1),

r(a12 | {a11, a12, a33, . . . , a3n}) = (1, 0, 1, . . . , n− 2),

r(a22 | {a11, a12, a33, . . . , a3n}) = (2, 1, 2, . . . , n− 2),

r(a32 | {a11, a12, a33, . . . , a3n}) = (1, 1, 1, . . . , n− 2),

r(a13 | {a11, a12, a33, . . . , a3n}) = (2, 2, 1, . . . , n− 3),

r(a23 | {a11, a12, a33, . . . , a3n}) = (2, 1, 1, . . . , n− 2),

r(a33 | {a11, a12, a33, . . . , a3n}) = (2, 1, 0, . . . , n− 3),
...

r(a1n | {a11, a12, a33, . . . , a3n}) = (n− 1, n− 2, . . . , 2, 2, 1),

r(a2n | {a11, a12, a33, . . . , a3n}) = (n− 1, n− 2, . . . , 2, 1, 1),

r(a3n | {a11, a12, a33, . . . , a3n}) = (n− 1, . . . , 2, 1, 0).

Because of all the representation are different, thus Sk is a basis of An3 and dim(An3 ) ≤
n.

In this section, these experiments have been run using Matlab R2023b installed on

Windows 10 Pro, which runs on a Core i5 and 16 GB RAM. The BGWO Algorithm for

the metric dimension of generalized antiprism graphs is given in Table 2. This table

shows that the BGWO Algorithm gives better results than the upper bound from

Theorem 1. From the simulation result, the dim(A10
3 ) = 9 is less than that upper

bound (=10). To solve the detour metric dimension, we apply the hybrid ACO-

BGWO, namely algorithm 2 and algorithm 3. The hybrid ACO-BGWO is simulated

for several family graphs: cycle, Jahangir, and friendship. The results are presented

in tables 3, 4, and 5. This simulation shows that the hybrid ACO-BGWO algorithm

gives the same result as in the literature. To solve the bi-metric dimension, we apply

the hybrid ACO-BGWO, namely Algorithm 2 and Algorithm 4. The hybrid ACO-

BGWO is simulated for several family graphs: complete and generalized antiprism

graphs. The results are presented in tables 6. This simulation results show that, for

some complete graphs, the hybrid algorithm gives the same result as in the literature.

For the generalized antiprism graphs, the bi-metric dimension is the same as its metric

dimension.

6. Conclusion

In this work, we apply the BGWO algorithm in generalized antiprism graphs to find

the metric dimension. The results are better than the upper bound of its metric

dimension. Also, we construct a hybrid algorithm of ACO-BGWO for detour metric

dimension, as shown by Algorithm 2 and Algorithm 3. The results on the graph are

shown in Table 3, 4, and 5. This hybrid algorithm gives the same result as in the

literature. In addition, we construct a hybrid algorithm of ACO-BGWO for bi-metric

dimension, as shown by Algorithm 2 and Algorithm 4. This hybrid algorithm gives

the same result as in the literature and shows that the bi-metric dimension of the
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generalized antiprism graph is the same as its metric dimension. This result confirms

the capabilities of the hybrid ACO-BGWO algorithm in solving the problems.
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