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Abstract: An exact doubly dominating set (also called an efficient doubly dominat-

ing set in [F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55
(2000), 201–213]) for a graph G = (V,E) is a subset D of vertices such that each vertex

of G is dominated by exactly two vertices of D. In this paper we show that subdivision

graphs admit exact doubly dominating sets under specific conditions, while Mycielskian
and middle graphs do not. We provide some characterizations and we investigate the

existence of exact doubly dominating sets for their complements.
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1. Introduction

Let G = (V,E) be a finite and simple graph with vertex set V = V (G) and edge

set E = E(G). The set NG(u) denotes the (open) neighborhood of u ∈ V (G), which

means the set of all adjacent vertices to u in G, the closed neighborhood of u is

NG[u] = NG(u) ∪ {u} and the degree of u is degG(u) = |NG(u)|. An isolated vertex

is a vertex of degree zero. A clique C in G is a subset of vertices of G such that

every two distinct vertices in C are adjacent and hence, the induced subgraph of G

on it is a complete graph. A matching in G is a set of pairwise non-incident edges

of E and, a perfect matching is a matching in which every vertex of the graph is

incident to exactly one edge of the matching. For a subset of vertices X ⊆ V , G[X]
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2 Exact double domination in subdivision, Mycielskian and middle graphs

denotes the subgraph induced by X. Note that X is an independent set in G If

and only if G[X] contains no edge. The complement graph of G is denoted by G.

In recent years much attention drawn to the domination theory which has different

applications in diverse areas and is an interesting branch in graph theory. Each vertex

of a graph is said to dominate every vertex in its closed neighborhood. A subset S

of V (G) is a dominating set for G if each vertex in V (G) \ S is adjacent to at least

one vertex in S. The domination number of G, denoted by γ(G), is the minimum

size of a dominating set of G. In [8] Fink and Jacobson generalized the concept of

dominating sets. Let k be a positive integer. A subset D of vertices in G is a k-

dominating set if each vertex in V (G) \ D is adjacent to at least k vertices in D.

The k-domination number γk(G) is the minimum cardinality of a k-dominating set

of G. Hence, for k = 1, 1-dominating sets are the classical dominating sets. A vertex

subset D is a perfect k-dominating set if each vertex v of G, not in D, is adjacent

to exactly k vertices of D. The perfect k-domination problem is NP-complete for

general graphs, see [4]. A possible application for perfect k-domination is provided

by a specialist giving radiation (or a powerful drug) to a patient. In order to be

more effective, there must be precisely k units administered to the neighboring cells

(any more may be very dangerous). The cells where the drug is given directly are

weakened and harmed. Thus, we wish to minimize the number of spots or cells where

it is given. Hence, we would want a minimum perfect k-dominating set, see [4]. Note

that every nontrivial graph has a perfect k-dominating set, since the entire vertex

set is such a set and there are graphs whose only perfect k-dominating set is their

entire vertex set (consider the stars K1,t for 1 < k < t). A paired-dominating set is

a dominating set of vertices whose induced subgraph has a perfect matching. A set

S ⊆ V is a double dominating set for G if each vertex in V is dominated by at least

two vertices in S, note that this concept is different from 2-domination. Cockayne

et al. in [6] called a vertex subset D of V to be a perfect dominating set of G if

every vertex in V (G) \ D is adjacent to exactly one vertex of D, see also [7]. Note

that sets that are both perfect dominating and independent are called perfect codes

by Biggs in [3] or efficient dominating sets by Bange, Barkauskas and Slater in [2].

Analogously to perfect or efficient domination, Harary and Haynes in [12] defined an

efficient doubly dominating set as a subset D of vertices such that each vertex of G is

dominated by exactly two vertices of D, i.e |NG[v] ∩D| = 2 for each v ∈ V , see also

[11]. This concept generalizes efficient domination by ensuring each vertex is covered

exactly twice, unlike classical domination which allows flexibility in coverage. Chellali,

Khelladi and Maffray in [5] prefer to use the phrase exact doubly dominating set for

this concept and they show that the complexity of the problem of deciding whether

a graph admits an exact doubly dominating set is NP-complete. This concept can be

rich in applications. For instant, consider prisoners and guards where the concept of

domination indicates that each prisoner can be seen by some guard. In exact double

domination, securing of the prisoners as well as safety for the guards is considered by

providing a designated backup for each guard. This increases the security by requiring

that each prisoner is guarded by two guards. A similar argument can be investigated

for networks. Also, this concept may finds applications in diverse fields like coding
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theory, parallel computing, wireless ad hoc networks and fault-tolerant networks, see

[5] and [13]. Note that not all graphs admit an exact doubly dominating set (for

example consider the 4-cycle C4 or the stars). In [5] a constructive characterization of

those trees that admit an exact doubly dominating set is provided, and they establish

a necessary and sufficient condition for the existence of an exact doubly dominating

set in a connected cubic graph. Note that the following result show that an exact

doubly dominating set is a paired-dominating set but obviouslu the converse is not

true in general. Also, an exact doubly dominating set is a perfect 2-dominating set

but the converse is not true in general.

Theorem 1. [5] The vertex set of every exact doubly dominating set induces a matching.
Moreover, if G has an exact doubly dominating set, then all such sets have the same size.

Theorem 2. [5]
a) A path Pn has an exact doubly dominating set if and only if n ≡ 2 (mod 3). If this holds,

then the size of any such set is 2(n+1)
3

.
b) A cycle Cn has an exact doubly dominating set if and only if n ≡ 0 (mod 3). If this holds,
then the size of any such set is 2n

3
.

2. Subdivision graphs

The subdivision operation is an operation that replaces an edge with a path of length

at least two by inserting new vertices. If each edge is replaced by a path of order

three (i.e., 1-subdividing each edge of G), then the subdivision graph is denoted by

S(G), see S(P5) in Figure 1. Domination number and identifying code number of the

subdivision of some famous families of graphs are investigated and determined in [1].

Some upper and lower bounds for the mixed metric dimension of S(G) is provided in

[9]. The minimum number of edges that must be subdivided in order to increase the

total k-rainbow domination number of a graph is considered in [15]. Also, 2−rainbow

domination number of the subdivision graph of some famous families of graphs is

determined in [16]. Recall that an edge contraction is an operation that removes an

edge while simultaneously merging the two (end) vertices that it previously joined.

In the following, we first investigate the existence of exact doubly dominating sets in

the subdivision graph S(G) (see Theorem 3).

Lemma 1. Let G be an n-vertex graph and assume that there exists an exact doubly
dominating set D for its subdivision S(G). Then,

∣∣D ∩V (G)
∣∣ ≤ n− 1 and the equality holds

if and only if G ∈ {P3, C3}.

Proof. Assume that V (G) = {v1, v2, ..., vn} and V (S(G)) = V (G) ∪ Z in which

Z =
{
zij : vivj ∈ E(G)

}
, NS(G)(zij) = {vi, vj}.
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v1 v2 v3 v4 v5

P5

v1 v2 v3 v4 v5

z12 z23 z34 z45

S(P5)

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

w

µ(P5)

Figure 1. A path, it’s subdivision and Mycielskian

Note that V (G) induces an independent set in S(G) and for each vi ∈ V (G) we have

|NS(G)[vi] ∩ V (G)| = |{vi}| = 1 6= 2.

Hence, D 6= V (G). If V (G) $ D, then for each z
ij
∈ Z ∩D we obviously have

|NS(G)[zij ] ∩D| = |{vi, vj , zij}| = 3,

which is a contradiction. Thus,
∣∣D ∩ V (G)

∣∣ ≤ n− 1.

It is easy to check that the bound is attained for G ∈ {P3, C3}. This follows from the

fact that in P3 and C3, the placement of vertices ensures exact double domination

without surplus or deficiency. Now let G be a graph for which
∣∣D ∩ V (G)

∣∣ = n − 1.

Assume that V (G) \ D = {vi}. Since D is an exact doubly dominating set and

vi /∈ D, there exist exactly two indices j and j′ such that {zij , zij′} ⊆ D ∩ Z. Thus,

{vivj , vivj′} ⊆ E(G). If there exists an index j′′ such that vivj′′ ∈ E(G), then

zij′′ /∈ D and this implies thatNS(G)[zij′′ ]∩D = {vj′′}, which is a contradiction. Thus,

vi is a vertex of degree two in G. Since V (G) \ {vi} ⊆ D, for each zrs ∈ Z \ {zij , zij′}
we have {vr, vs} ⊆ NS(G)[zrs] ∩D. Hence, zrs /∈ D. This means that for each vertex

vr /∈ {vi, vj , vj′} (if any one exists!) we have

NS(G)[vr] ∩D = {vr},

which is a contradiction. Thus, V (G) = {vi, vj , vj′} and hence, G ∈ {P3, C3}.

Definition 1. Let Γ be the family of all finite graphs containing a perfect matching.
Suppose that H ∈ Γ and M ⊆ E(H) is a perfect matching for H. Define the new graph
SM (H) to be the graph obtained from H by 1-subdividing each edge of M . Note that
|V (H)| = 2|M | and

|V (SM (H))| = |V (H)|+ |M | = 3 |M | = 3 |V (H)|
2

,

which specially implies that |V (SM (H))| is a multiple of 3. Also, let

G =
{
SM (H) : H ∈ Γ and M is a perfect matching for H

}
.
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Theorem 3. Let G be a graph. Then, there exists an exact doubly dominating set D for
S(G) if and only if G ∈ G. In this case we have |D| = 4 |V (G)|

3
.

Proof. At first, assume that G ∈ G. Hence, G = SM (H) for some graph H and

some perfect matching M of H. Let Ω be the set of (new) vertices of G which are

obtained by 1-subdividing each edge of matching M in H. Hence, V (G) = V (H)∪Ω.

Assume that V (G) = {v1, v2, ..., vn} and V (S(G)) = V (G) ∪ Z in which

Z =
{
zij : vivj ∈ E(G)

}
, NS(G)(zij) = {vi, vj}.

Note that for each vi ∈ Ω we have degG(vi) = 2. Since M is a perfect matching for

H, for each pair of distinct vertices vi, vi′ in Ω we have NG(vi) ∩NG(vi′) = ∅ and

⋃
vi∈Ω

NG(vi) = V (G) \ Ω.

Specially, Ω is a dominating set for G and |V (G)| = 3|Ω| (or equivalently, |Ω| = n
3 ).

Now consider the subdivision graph S(G) and let

D =
(
V (G) \ Ω

)⋃( ⋃
vi∈Ω

NS(G)(vi)

)
.

For each vi ∈ Ω we have

∣∣D ∩NS(G)[vi]
∣∣ = |NS(G)(vi)| = degG(vi) = 2.

For each vj ∈ V (G) \Ω, there exists unique vi ∈ Ω such that vjvi ∈ E(G) and hence,

∣∣D ∩NS(G)[vj ]
∣∣ =

∣∣{vj , zij}∣∣ = 2.

For each zrs ∈ Z, if {vr, vs} ∩ Ω = ∅, then we have

∣∣D ∩NS(G)[zrs]
∣∣ =

∣∣{vr, vs}∣∣ = 2,

and otherwise, we have
∣∣{vr, vs} ∩ Ω

∣∣ = 1 and zrs ∈ D, which implies that

∣∣D ∩NS(G)[zrs]
∣∣ = 2.

Therefore, D is an exact doubly dominating set for S(G) and, we obviously have

|D| = (n− n

3
) +

n

3
× 2 =

4n

3
,
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as desired.

Now assume that G is an n-vertex graph such that there exists an exact doubly

dominating set D for S(G). We want to show that G ∈ G. As before, assume that

V (G) = {v1, v2, ..., vn} and V (S(G)) = V (G) ∪ Z in which

Z =
{
zij : vivj ∈ E(G)

}
, NS(G)(zij) = {vi, vj}.

Let Ω = V (G) \D. By Lemma 1, we have |D ∩ V (G)| ≤ n− 1. Thus, |V (G) \D| ≥ 1

and hence, Ω 6= ∅. Since D is an exact doubly dominating set for S(G), for each

zij ∈ V (S(G)) we have

2 =
∣∣D ∩NS(G)[zij ]

∣∣ =
∣∣D ∩ {vi, zij , vj}∣∣.

Thus, if vi ∈ Ω, then {vj , zij} ⊆ D for each vj ∈ NG(vi). Specially,
∣∣D∩NS(G)[vi]

∣∣ = 2

implies that degG(vi) = 2. By Theorem 1, D induces a matching in S(G). Thus, if

vj′ ∈ D, then there exists unique vi′ ∈ NG(vj′) such that zi′j′ ∈ D ∩ NS(G)(vj′).

Hence, vi′ /∈ D which means that vi′ ∈ Ω. Now the previous statement implies

that degG(vi′) = 2. Therefore, for each pair of different vertices vi, vi′ in Ω we have

NG(vi) ∩NG(vi′) = ∅ and

⋃
vi∈Ω

NG(vi) = V (G) \ Ω.

Specially, we can see that

|V (G)| = |Ω|+ |V (G) \ Ω| = |Ω|+ 2|Ω| = 3|Ω|,

and

|D| = |D ∩ V (G)|+ |D ∩ Z| =
(
|V (G)| − |Ω|

)
+ 2|Ω| = 4|Ω| = 4

|V (G)|
3

.

Now consider the graph G and for each vi ∈ Ω, contract exactly one of two incident

edges of vi in G and, let H be the resulting graph. Note that |V (H)| = 2|Ω| and

|E(H)| = |E(G)|− |Ω|. Also, let M ⊆ E(H) be the set of remaining incident edges of

vi’s (the elements of Ω). Note that by the previous facts and this construction, M is

a perfect matching for H and SM (H) = G. This means that G ∈ G, as desired.

Example 1. Let G be a graph with the vertex set {a, b, c, d, e, f} and the edge set
{ab, ae, af, ef, bc, bd, cd} as depicted in Figure 2 (i). Then, there exists an exact doubly
dominating set for the subdivision graph S(G) (consider the filled green vertices in Figure
2 (ii)). Note that G = SM (H) ∈ G in which H is depicted in Figure 2 (ii) whose perfect
mathching is M consists of two edges m1 and m2.
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Figure 2. Graphs corresponding to Example 1.

Theorem 4. Let G be a graph. Then, there exists an exact doubly dominating set D for
S(G) if and only if G contains at least two isolated vertices and D consists of two isolated
vertices of G.

Proof. Obviously, each isolated vertex of G is adjacent to all other vertices of S(G)

in S(G). Hence, if G contains at least two isolated vertices, then each set D consisting

of two isolated vertices of G is an exact doubly dominating set for S(G). Note that if

we use the previous notations, then V (G) (and similarly, Z) induces an independent

set in S(G) and hence, induces a clique in its complement S(G).

Now assume that G is a graph such that there exists an exact doubly dominating set

D for S(G). Since for each vi ∈ V (G) we have
∣∣D ∩N

S(G)
[vi]
∣∣ = 2 and V (G) induces

a clique in S(G), we must have |D ∩ V (G)| ≤ 2. Similarly, we have |D ∩ Z| ≤ 2.

If |D ∩ V (G)| = 0, then by using Theorem 1, we obtain |D ∩ Z| = 2 and hence,

D = {zij , zrs} for two distinct vertices zij , zrs ∈ Z. Note that zij ∈ Z implies that

vivj ∈ E(G) and hence, vi is not adjacent to zij in S(G). Thus,
∣∣D ∩N

S(G)
[vi]
∣∣ ≤ 1,

which is a contradiction.

If |D ∩ V (G)| = 1, then D ∩ V (G) = {vi} for some vi ∈ V (G) and Theorem 1 implies

that there exists unique vertex zrs ∈ D∩Z which is adjacent to vi in S(G) and hence,

vi /∈ {vr, vs}. Since Z induces a clique, again Theorem 1 implies that D = {vi, zrs}.
Thus,

∣∣D ∩N
S(G)

[vr]
∣∣ = |{vi}| = 1, a contradiction.

Therefore, we must have |D ∩ V (G)| = 2. Assume that D ∩ V (G) = {vi, vj}. Note

that vi and vj are adjacent in S(G). By Theorem 1, for each zrs ∈ D we must have

{vr, vs}∩{vi, vj} 6= ∅ because zrs must be non-adjacent to vi and vj in S(G). If there
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exists zis ∈ D for some s 6= j, then

∣∣D ∩N
S(G)

[vj ]
∣∣ = |{vi, vj , zis}| = 3,

a contradiction. Similarly, zjs /∈ D for each s 6= i. Thus, D ⊆ {vi, vj , zij} and now

Theorem 1 implies that D = {vi, vj}. Specially, each member of Z must be adjacent

to both vi and vj in S(G), which means that each member of Z is non-adjacent to

both vi and vj in S(G). Hence, vi and vj are two isolated vertices in G and the proof

is complete.

3. Mycielski graphs

Let G be graph with vertex set V (G) = {v1, v2, ..., vn}. The Mycielski graph µ(G) of

G is a graph of order 2n + 1 with the vertex set V (G) ∪ {w, u1, u2, ..., un} and with

the edge set E(G)∪{viuj : vivj ∈ E(G)}∪ {wui : 1 ≤ i ≤ n}, see µ(P5) in Figure 1.

Theorem 5. Let G be an arbitrary graph. Then, the Mycielskian graph µ(G) does not
admit any exact doubly dominating set.

Proof. Suppose on the contrary that D ⊆ V (µ(G)) is an exact doubly dominating

set for µ(G). Note that Nµ(G)(w) = {u1, u2, ..., un}. Since w dominates each ui,

selecting w in D forces a unique second vertex in D, contracting the requirement

that all vertices be covered exactly twice. More precisely, if w ∈ D, then Theorem

1 implies that there exists unique vertex ui, 1 ≤ i ≤ n, such that ui ∈ D. Hence,

D ∩ {u1, u2, ..., un} = {ui}. Since {w, ui} ⊆ D ∩ Nµ(G)[ui] and
∣∣D ∩ Nµ(G)[ui]

∣∣ = 2,

for each vj ∈ NG(vi) ⊆ Nµ(G)(ui) we have vj /∈ D. Thus, Nµ(G)[vi] ∩D ⊆ {vi} and

hence, |Nµ(G)[vi] ∩D| 6= 2, which is a contradiction. This contradiction implies that

w /∈ D. Since |Nµ(G)[w] ∩ D| = 2, we must have D ∩ {u1, u2, ..., un} = {ui, uj} for

some i 6= j. By Theorem 1, ui is adjacent to a (unique) vertex of D. Hence, there

exists unique vertex vr ∈ NG(vi) =
(
Nµ(G)(ui) ∩ V (G)

)
such that vr ∈ D. If vi ∈ D,

then {vi, vr, ui} ⊆
(
Nµ(G)[vr] ∩D

)
, which is a contradiction. Thus, vi /∈ D and this

implies that Nµ(G)[vi]∩D = {vr}. This also leads to another contradiction and hence,

the proof is complete.

Theorem 6. The complement of the Mycielskian graph µ(G) (i.e., µ(G)) has an exact
doubly dominating set D if and only if D consists of exactly two isolated vertices of G.

Proof. Let D ⊆ V (µ(G)) = V (µ(G)) be an exact doubly dominating set for µ(G).

Note that the set {u1, u2, ..., un} induces a clique in µ(G) and we have N
µ(G)

(w) =

{v1, v2, ..., vn}.
If w ∈ D, then Theorem 1 implies that there exists unique vertex vi, 1 ≤ i ≤ n,

such that D ∩ {v1, v2, ..., vn} = {vi}. Since viui ∈ E(µ(G)) and wui /∈ E(µ(G)),
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the condition |N
µ(G)

[ui] ∩D| = 2 implies that |D ∩ {u1, u2, ..., un}| = 1. This means

that |D| = 3 which contradicts Theorem 1. Thus, w /∈ D. Since |N
µ(G)

[w] ∩D| = 2,

there exist i 6= j such that D∩{v1, v2, ..., vn} = {vi, vj}. Since the set {u1, u2, ..., un}
induces a clique in µ(G), viui ∈ E(µ(G)) and |N

µ(G)
[ui] ∩ D| = 2, we must have

|D ∩ {u1, u2, ..., un}| ≤ 1. Thus,

|D| =
∣∣D ∩ {v1, v2, ..., vn}

∣∣+
∣∣D ∩ {u1, u2, ..., un}

∣∣ ≤ 2 + 1.

Now Theorem 1 implies that |D| = 2. Hence, D = {vi, vj} and again Theorem

1 implies that vivj ∈ E(µ(G)). This means that vivj /∈ E(µ(G)). Also, for each

vr ∈ V (G) \ {vi, vj} the condition |N
µ(G)

[vr] ∩ D| = 2 implies that {vrvi, vrvj} ⊆
E(µ(G)), which equivalently means that vrvi, vrvj /∈ E(G). Therefore, D consists

of two isolated vertices vi and vj of G. The converse is obvious, and the proof is

complete.

4. Middle graphs

Recall that the line graph L(G) of G is the graph with vertex set E(G) in which e

and e′ are adjacent in L(G) if and only if the corresponding edges share a common

vertex in G. The concept of middle graph M(G) of G was introduced by Hamada and

Yoshimura in [10] as an intersection graph on the vertex set of G, whose vertex set is

V (G)∪E(G) and two vertices a, b in its vertex set are adjacent whenever a, b ∈ E(G)

and a, b are adjacent in L(G), or a ∈ V (G), b ∈ E(G) and a, b are incident in G.

When V (G) = {v1, v2, ..., vn}, then for convenient we can set V
(
M(G)

)
= V (G)∪Z,

where Z = {zij : vivj ∈ E(G)} and

E
(
M(G)

)
= {vizij , vjzij : vivj ∈ E(G)} ∪ E

(
L(G)

)
.

Thus, M(G) is a graph of order |V (G)| + |E(G)| and size 2|E(G)| + |E(L(G))| and

it contains the line graph L(G) as an induced subgraph, see M(C4) in Figure 3.

The domination number of the middle of some famous families of graphs such as

star graphs, double stars, paths, cycles, wheels, complete graphs, complete bipartite

graphs and friendship graphs is considered and determined in [14].

Theorem 7. Let G be an arbitrary graph. Then, the middle graph M(G) does not admit
any exact doubly dominating set.

Proof. Note that if E(G) = ∅, then E(M(G)) = ∅ and hence, M(G) does not admit

any exact doubly dominating set. Thus, let E(G) 6= ∅ and assume (on the contrary)

that there exists an exact doubly dominating set D ⊆ V (M(G)) for M(G). Choose

an arbitrary vertex vi ∈ V (G) with degG(vi) ≥ 1. Since |NM(G)[vi] ∩ D| = 2 and

NM(G)[vi] ∩ V (G) = {vi}, there exists at least one vertex zij ∈ NM(G)[vi] ∩ D, see
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v1 v2

v3v4

C4

v1 v2

v3v4

z12

z23

z34

z41

M(C4)

v1 v2

v3v4

z12

z23

z34

z41

M(C4)

Figure 3. The cycle C4, it’s middle graph and the complement of it’s middle graph.

vj′ vi

vjvs

G

vj′ zij′ vi

zij

vj

zjs

vs

M(G)

Figure 4. A part of the middle graph of G.

Figure 4. Hence, we have vj ∈ NG(vi).

Since NM(G)[vi] ⊆ NM(G)[zij ] and

∣∣NM(G)[zij ] ∩D
∣∣ = 2 =

∣∣NM(G)[vi] ∩D
∣∣,

we must have vj /∈ D and zjs /∈ D for each vs ∈ NG(vj) \ {vi} (otherwise, vi /∈ D
and zij′ /∈ D for each vj′ ∈ NG(vi), which contradicts the fact |NM(G)[vi] ∩D| = 2).

These facts imply that NM(G)[vj ] ∩D = {zij}, which is a contradiction. Therefore,

M(G) has not any exact doubly dominating set.

Theorem 8. The complement of the middle graphM(G) (i.e., M(G)) has an exact doubly
dominating set D if and only if G contains at least two isolated vertices and D consists of
two isolated vertices of G or, G is (isomorphic to) the cycle C4 and D = E(C4).

Proof. For convenience, let M = M(G) and M̄ = M(G). If G contains at least two

isolated vertices, say x and y, then it is easy to see that D = {x, y} is an exact doubly

dominating set for M̄ . Also, if G = C4, then it is easy to check that D = E(C4) is
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an exact doubly dominating set for M(C4), see Figure 3 in which the green vertices

are the elements of D.

Now assume that G is a graph such that M̄ has an exact doubly dominating set

D. Note that V (G) ⊆ V (M ) induces an independent set in M and hence, it

induces a clique in M̄ . Since |NM̄ [vi] ∩ D| = 2 for each vi ∈ V (G), we must have

|D ∩ V (G)| ≤ 2. Hence, we consider the following three cases.

Case 1. |D ∩ V (G)| = 2.

Suppose that D ∩ V (G) = {vi, vj}. For each vi′ ∈ V (G) we have {vi, vj} ⊆ NM̄ [vi′ ]

and hence, NM̄ [vi′ ] ∩D = {vi, vj} because D is an exact doubly dominating set. If

there exists zrs ∈ D ∩ Z, then the fact

NM̄ [vi] ∩D = {vi, vj} = NM̄ [vj ] ∩D

implies that zrs is non-adjacent to vi and vj in M̄ and hence, in G two vertices

vi and vj are incident to the edge vrvs. This means that vrvs = vivj . Therefore,

D = {vi, vj , zij} which contradicts Theorem 1. This contradiction shows that

D∩Z = ∅ and hence, D = {vi, vj}. If there exists an edge vivr in G which is incident

to the vertex vi in G, then we obtain NM̄ [zir] ∩ D ⊆ {vj}, a contradiction. Thus,

vi (and similarly vj) is an isolated vertex in G. This means that D consists of two

isolated vertices of G and hence, the proof is complete in this case.

Case 2. |D ∩ V (G)| = 1.

Assume that D ∩ V (G) = {vi}. Since |NM̄ [vi] ∩ D| = 2, there exists a (unique)

vertex zrs ∈ D ∩ Z which is adjacent to vi in M̄ . This implies that vrvs ∈ E(G)

and vi /∈ {vr, vs}. Since |NM̄ [vr] ∩ D| = 2 and vi ∈ NM̄ [vr], there exists a

vertex zr′s′ ∈ D ∩ Z which is adjacent to vr in M̄ . Thus, vr′vs′ ∈ E(G) and

vr /∈ {vr′ , vs′}. Note that by Theorem 1, vi and zrs are not adjacent to zr′s′ in

M̄ . Hence, we must have vi ∈ {vr′ , vs′} and vs ∈ {vr′ , vs′}. These facts imply that

zr′s′ = zis. Specially, we have vivs ∈ E(G). By Theorem 1, D induces a matching

in M̄ and hence, there exists zr′′s′′ ∈ D ∩ Z which is adjacent to zis. Similarly,

Since vi and zrs are not adjacent to zr′′s′′ in M̄ , we must have vi ∈ {vr′′ , vs′′}
and vr ∈ {vr′′ , vs′′}. Thus, zr′′s′′ = zir and hence, vivr ∈ E(G). Since two

edges vivr and vivs in G share the common endpoint vi, two vertices zir and zis
are not adjacent in M̄ , which means zis is not adjacent to zr′′s′′ in M̄ . This is

a contradiction. Therefore, this case leads to a contradiction and hence, is impossible.

Case 3. |D ∩ V (G)| = 0.

In this case, me must have D ∩ Z 6= ∅. Assume that zij ∈ D ∩ Z. Since zij ∈ Z, we

have vivj ∈ E(G). By Theorem 1, there exists zi′j′ ∈ D which is adjacent to zij in

M̄ . Therefore, vi′vj′ ∈ E(G) and {vi, vj}∩{vi′ , vj′} = ∅. Note that zij /∈ NM̄ [vi] and

hence, {zij , zi′j′} is a proper subset of D. For each zi′′j′′ ∈ D \ {zij , zi′j′}, Theorem

1 implies that zi′′j′′ is not adjacent to zij and zi′j′ in M̄ , and hence, we must have

{i′′, j′′} ∩ {i, j} 6= ∅ 6= {i′′, j′′} ∩ {i′, j′}.



12 Exact double domination in subdivision, Mycielskian and middle graphs

Thus, we have D = {zij , zi′j′ , zii′ , zjj′} or D = {zij , zi′j′ , zij′ , zji′}. In each of these

two cases, the four elements of D provides a cycle C4 in G and D corresponds to

the four edges of this 4-cycle. Since |D| = 4 and each vertex in M(C4) is dominated

exactly twice, G can not have extra vertices nor extra edges. This means that G = C4

as desired. Now the proof is complete.

5. Conclusion

In this paper we study investigate the existence of exact doubly dominating sets for

some famous graph operations and we show that subdivision graphs admit exact

doubly dominating sets under specific conditions, while Mycielskian and middle

graphs do not. We provide some characterizations and we investigate the existence

of exact doubly dominating sets for their complements. Future work could explore

exact double domination in Cartesian and lexicographic graph products or analyze

its computational complexity in specific graph families.
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