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Abstract: In the ever-evolving landscape of parallel computing architectures, the

demand for innovative interconnection networks is paramount. This paper introduces

Optical Transpose Interconnection System (OTIS) - Bijective connection graphs, a
subclass of interconnection network designed to address the challenges on scalability,

efficiency, and fault tolerance. By merging the strengths of networks, namely, OTIS
networks and Bijective connection graphs (BC graphs in brief), we aim to overcome the

limitations inherent in individual architectures. This paper presents a comprehensive

analysis of Optical Transpose Interconnection System - Bijective connection graphs.
We demonstrate superiority over traditional interconnection networks, showcasing their

potential to emerge as an interesting candidate for parallel computing. Precisely, in

this work, we compute few basic graph theoretical parameters, explored the embedding
properties, solved the edge isoperimetric problem, and many associated properties of

the proposed class of network.
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1. Introduction

The field of parallel computing relies on efficient interconnection networks to facilitate

seamless communication among processors, a critical aspect for achieving optimal per-

formance. The most common interconnection networks include hypercubes, meshes,

tori, and more, each with its own advantages and limitations. However, existing

networks often face challenges in scalability, adaptability, and fault tolerance. Re-

searchers delve into the development of interconnection architectures, emphasizing
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the need to strike a balance between factors such as bisection width, fault tolerance,

latency, and scalability. The pursuit of these optimized interconnection structures is

fueled by the intricate nature of contemporary computing tasks, ranging from large-

scale scientific simulations to data-intensive applications. The main disadvantages of

the hypercube network include increased complexity and high degree of network con-

nectivity, leading to higher hardware costs with logarithmic diameter. For large net-

works, the number of connections per vertex becomes large, which can be a drawback

in implementation. Hypercubes can suffer from high message latency overhead and

low channel utilization. Traditional hypercubes often use static routing algorithms,

which can limit the number of available paths and potentially lead to deadlocks. So,

many variants were proposed to nullify these disadvantages [8, 9, 11, 46] and so on.

Later in [42], Vaidya et al., proposed a class of graphs and named it Hypercube-Like

Networks which includes almost all hypercube variants. In a more general perspec-

tive, Fan et al., improvised this class of graphs and proposed a class of graphs known

as Bijective connection graphs (BC graphs in brief) denoted by Xn [13]. Bijective

connection graphs have the same vertex degree, the highest connectivity (fault toler-

ance), and diagnosability as hypercubes. Thus, researching on this family of graphs

merges the study of some properties of the hypercube and a great many intercon-

nection networks similar to it in structure. Few among the works on Xn include

edge-pancyclicity and path-embeddability [12], reliability analysis concerning extra

edge-connectivity [50], a-average degree edge-connectivity [47], the relationship be-

tween g-extra connectivity and g-extra diagnosability under the MM* model [48], and

reliability analysis for components for Bijective connection graphs [16]. These studies

provide valuable insight into the structural and reliability aspects of BC graphs.

On the other hand, in the late 90′s and early 21st century, many interconnection

networks were proposed whose building blocks were made up of hypercubes. For

example, half hypercube [24], exchanged hypercube [28], dual cube [27], and many

more. Then many authors worked on replacing the hypercube with hypercube vari-

ants [5, 26] to evaluate sustainability using different connectivity parameters and their

spectral properties. More generalized variants of the exchanged hypercube were pro-

posed in [7] and [44]. The former was to nullify the disadvantage of limiting the cross

edges between the hypercube clusters, and the latter was to enhance the possibilities

of interconnection networks.

The Optical Transpose Interconnection System put forth in [35, 49], introduces a

versatile category of scalable interconnection networks known for their high perfor-

mance. The benefits of optical and electronic technology are seamlessly integrated in

this innovative optoelectronic computer architecture [49]. One of the main benefits

of using OTIS as an optoelectronic architecture is that it can handle the trade-off

efficiently that is associated with free space optical communication [25]. This hybrid

interconnection network harnesses the strengths of both optical and electrical com-

munication links between processors. In this design, electrical links are employed for

processors in close proximity, optimizing efficiency for short-distance communication.

However, processors situated farther apart utilize optical links to leverage the higher

speed associated with this technology. This hybrid architecture is commonly referred
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to as optoelectronic architectures [49]. This scheme of architecture gives rise to vari-

ous OTIS networks, including OTIS-Hypercube [38], OTIS-Mesh [43], OTIS-Mesh-of

Trees [22], OTIS-Hyper Hexa-Cell [33], and optical chained-cubic tree [31].

Few of the early works regarding the OTIS networks are done in [25, 37, 38]. Kr-

ishnamoorthy et al., in [25], indicates that optimal bandwidth, power consumption,

minimized system area, and volume are achieved when the cardinality of processors

in a group is equal to the total number of groups. Various results on the embeddabil-

ity of cycles in OTIS networks were performed independently in [10, 20]. Chen et.

al., constructed the maximum number of vertex-disjoint paths between two distinct

vertices in swapped/OTIS networks, whose objective is to find a solution that opti-

mizes the utilization of network resources while ensuring that the paths between the

specified vertices do not share common intermediary vertices [6]. In [34], evaluation

of performance on broadcasting is researched for OTIS-Hypercube and OTIS-Mesh.

Parallel heuristic local search algorithm was given for two OTIS networks: OTIS

Hyper Hexa-cell and OTIS Mesh in [1]. The assessment of topological properties of

optoelectronic architectures was computed in [30]. Also, parallel quicksort algorithm

for OTIS hyper hexa-cell architecture is given in [2]. Operations such as sorting,

routing, data accumulation, prefix sum, consecutive sum, and matrix multiplications

have been successfully implemented on OTIS-Mesh [34]. Additionally, load balancing

operations were carried out in OTIS-Hypercube [32] and fault-tolerant resolvability of

Swapped Optical Transpose Interconnection System is done in [21]. Recently, many

novel OTIS architectures such as bi-swapped torus network [17], BSN MOT [18] and

petersen-star network [39] have been proposed. Given the extensive research on the

OTIS networks and Bijective connection graphs, in this work we aim to combine

these concepts by constructing OTIS Bijective connection graphs with the help of

both electronic and optic edges where the Bijective connection graphs are made up

of electronic edges while these independent graphs are connected by optic edges.

In this paper, we introduce a novel family of graphs called the Optical Transpose

Interconnection System - Bijective connection graphs OTIS −Xn, which makes use

of the advantages of OTIS and Bijective connection graphs Xn. In exploring the

properties of Bijective connection graphs, we introduce a class of hybrid networks

whose building blocks are Bijective connection graphs. Hypercubes, Mobius cubes,

crossed cubes, twisted cubes, locally twisted cubes, spined cubes and Z-cubes are few

of the sub classes of Bijective connection graphs. Though there have been few studies

on the topological and embeddability properties of different OTIS networks including

OTIS-Hypercube [38], we have considered the Bijective connection graphs in which

the hypercube itself is one of the basis graphs. In this work, by doing so, we obtain

various results for a family of graphs and not an individual graph. Few features and

advantages of the considered family of graphs over the other existing OTIS networks

are portrayed later in this work later on in tabular form.

The paper is divided into five sections: The next section presents the notation and def-

initions related to BC graphs, OTIS network, and other graph theoretical parameters.

In the third section, we study the basic graph theoretical properties of the proposed

network. In the fourth section, we concentrate on embedding path and cycles into
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OTIS Bijective connection graphs, and also study an edge isoperimetric problem of

OTIS Bijective connection graphs. In the fifth section, we solve many problems as

applications of the problem solved in the previous section.

2. Preliminaries

In this section, the necessary notation, definitions related to BC graphs, OTIS net-

work, and other graph theoretical parameters are presented.

2.1. Notation

Let G = (VG, EG) be an undirected simple graph. The following notations will be

used throughout the paper. A path from a vertex g to a vertex h is denoted by

Pl : g → i→ . . .→ h, where any two vertices in the above sequence are distinct. The

vertices g and h are called the end vertices. The length of the path Pl, denoted by

|Pl| = l−1 is the cardinality of edges in the sequence. If the end vertices are the same,

then Pl is called a cycle Cl. The length of the cycle is the cardinality of the edges in

the sequence. A graph G has a Hamiltonian path (resp. cycle), if |Pl| = |VG|−1 (resp.

|VG|). A graph G is Hamiltonian if there exists a spanning cycle with length |VG|. A

graph G is said to be edge pancyclic if there exist cycles of length 3 ≤ l ≤ |VG|. So,

if a graph G is edge pancyclic, then G must be Hamiltonian.

Let |VG| and |EG| denote the order and size of the graph G, respectively, and

distG(g, h) denote the length of the shortest path between the distinct vertices g and

h in G. The diameter of a graph G denotes the maximum of distG(g, h) of all pairs of

vertices, denoted by D(G). If the shortest path between two vertices is equal to the

diameter, then those vertices are said to be antipodal to each other. Two vertices g

and h are said to be adjacent if (g, h) ∈ EG. The neighborhood set of a vertex g is the

set of all vertices adjacent to g in G, represented by NG(g) = {g ∈ VG | (g, h) ∈ EG}.
The degree of a vertex g in G is denoted by degG(g) which is equal to |NG(g)|.
Let ∆(G) = max{degG(g) | g ∈ VG} denote the maximum degree of a vertex and

δ(G) = min{degG(g) | g ∈ VG} denote the minimum degree of a vertex in the graph G.

If S ⊆ VG, let G[S] be the subgraph of G induced by the vertex subset S in G. The

neighborhood set of S is defined as NG(S) = (
⋃

g∈S NG(g)) − S. A vertex cut is

a subset of vertices of a connected graph, if deleted disconnects the graph G. The

connectivity κ(G) of G is defined as the minimum cardinality in all vertex cuts of

G. If there exists a subset F , such that G − F is disconnected where the remaining

components are not trivial, then F is called a supercut. The super connectivity

denoted by κ′(G), is the minimum cardinality over all such supercuts of G. If S =

{0, 1} in Figure 1, then NG(S) = {2, 3, 4, 5}. One of the vertex cuts and supercuts of

the given graph is {2, 3, 4} and {1, 3, 4, 7}, respectively.
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Figure 1. A BC graph

2.2. The class of OTIS BC-graph

Definition 1. [12] Let G be a graph. If VG = VG1 ∪ VG2 , VG1 6= ∅, VG2 6= ∅, and
VG1 ∪VG2 = ∅. We say that there exists a bijective connection between the subsets VG1 and

VG2 in G, denoted by VG1

G←→ VG2 , if G satisfies the two conditions:

1. For every h1 ∈ VG1 , there exists an unique h2 ∈ VG2 such that (h1, h2) ∈ E(G); and

2. For every h1 ∈ VG2 , there exists an unique h2 ∈ VG1 such that (h1, h2) ∈ E(G).

An n−dimensional Bijective connection graph (BC graph), denoted by Xn, is an

n− regular graph with 2n vertices and n(2n−1) edges. The set of all n−dimensional

BC graphs is called the family of n−dimensional BC graphs, denoted by Ln. The

recursive definitions of Xn and Ln are as follows:

Definition 2. [12] The 1−dimensional BC graph X1 is a complete graph on two vertices.
The family of the 1−dimensional BC graph is defined as L1 = {X1}. Let G be a graph. G
is an n−dimensional BC graph, denoted by Xn if there exists VG0 , VG1 ⊂ VG such that the
following two conditions hold:

1. VG = VG0 ∪ VG1 , VG0 6= ∅, VG1 6= ∅, and VG0 ∩ VG1 = ∅; and

2. VG0

G←→ VG1 , G[VG0 ] ∈ Ln−1, and G[VG1 ] ∈ Ln−1.

The family of the n−dimensional BC graphs is defined as Ln = {G | G is an

n−dimensional BC graph}. A pictorial representation of recursive nature of a BC

graph of dimensions 1, 2 and 3 is given in Figure 2. Figure 3 presents few networks

from the family of Bijective connection graphs L3.

Definition 3. Let OTIS − G denote the OTIS network. Then OTIS − G = (VG, EG)
network is an undirected graph given by:

1. VOTIS−G = {〈g, h〉 | g, h ∈ VG} and

2. EOTIS−G = {(〈g, h1〉, 〈g, h2〉) | g ∈ VG and (h1, h2) ∈ EG} ∪ {(〈g, h〉 ∼ 〈h, g〉) | g, h ∈
VG and g 6= h}.
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(a) (b)

(c)

Figure 2. Recursive construction of a BC graph: (a) Complete graph on 2 vertices which is a X1 (b) A
cycle on 4 vertices which is a X2 (c) X3 with two X2s where the dashed lines represent the
edges between two Xn−1s

Here, G is the basis graph of OTIS − G. If G has n vertices, then OTIS − G is

generated by n vertex disjoint sub networks G1, G2, . . . , Gn, called clusters. Each

of these clusters is isomorphic to the basis graph G. A vertex 〈g, h〉 in OTIS − G
corresponds to the vertex with address h in the cluster g. So, g refers to the group

address while h refers to the processor address in a vertex 〈g, h〉. An intragroup edge

of the form (〈g, h1〉, 〈g, h2〉) corresponds to an electronic edge, which means that an

intragroup edge is an edge that is present in the considered basis graph.

An intergroup edge of the form (〈g, h〉 ∼ 〈h, g〉) corresponds to an optic edge, which

means that an optic edge acts as the bridge between any two basis graph copies. This

definition characterizes a wide class of networks, and for any known basis graph G, a

corresponding OTIS −G can be constructed.

In Figures 4, 5, the basis graphs are hypercube and crossed cube of dimension 3,

respectively. Similarly, for any Bijective connection graph, OTIS network can be

constructed. Hence, the proposed novel network is the class of OTIS representation

of every BC graph. Let OTIS−Xn denote the OTIS network whose basis graph can

be any BC graph.

3. Basic graph theoretical properties of OTIS BC-graph

In this section, we examine several graph theoretical properties of the proposed class

of OTIS networks.

Remark 1. The number of vertices in OTIS −Xn is given by, |VOTIS−Xn | = 22n.

Proposition 1. The number of edges in OTIS − Xn is given by, |EOTIS−Xn | =
2n(n2n−1) + 22n−1 − 2n−1.

Proof. By definition of OTIS −Xn, the edges can be separated into two types E1
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(a) Hypercube
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(b) Crossed cube
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(c) 0-Mobius cube
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(d) 1-Mobius cube

Figure 3. Few examples of Bijective connection graphs
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0,0 0,1

0,2 0,3

0,4 0,5

0,6 0,7

2,0 2,1

2,2 2,3

2,4 2,5

2,6 2,7

4,0 4,1

4,3

4,4 4,5

4,6 4,7

6,0 6,1

6,2 6,3

6,4 6,5

6,6 6,7

1,0 1,1

1,2 1,3
1,4 1,5

1,6 1,7

3,0 3,1

3,2 3,3

3,4 3,5

3,6 3,7

5,0 5,1

5,3

5,4 5,5

5,6 5,7

7,0 7,1

7,2 7,3
7,4 7,5

7,6 7,7

4,2

5,2

Figure 4. (a) Hypercube of dimension 3 (b) The OTIS network of dimension 3 whose basis graph is hyper-
cube where normal and dash edges represent the electronic (Bijective connection, intragroup)
edges and optic (OTIS, intergroup) edges, respectively
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7,0 7,1

7,2

7,3
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7,6 7,7
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Figure 5. (a) Crossed cube of dimension 3 (b) The OTIS network of dimension 3 whose basis graph
is crossed cube where normal and dash edges represent the electronic (Bijective connection,
intragroup) edges and optic (OTIS, intergroup) edges, respectively

Table 1. The difference between the cardinality of electronic and optic edges of the OTIS −Xn

Dimension |V (OTIS −Xn)| Edges

n Electronic Optical Total

3 64 96 28 124

4 256 512 120 632

5 1024 2560 496 3056

6 4096 12288 2016 14304

and E2: The edge sets E1 and E2 correspond to the edges in the basis graph G and

the OTIS edges, respectively. In otherwords, the edges in E1 are the electronic edges

and the edges in E2 are the optic edges. There exists |VXn
| disjoint Xns. So, we have

|E1| = number of clusters × number of edges in the basis BC graph of dimension n

= 2n(n2n−1). OTIS edges are the edges that connect a cluster to a different cluster.

Note that E2 = {(〈g, h〉, 〈h, g〉)| only when g 6= h}. Therefore, no optic edge is incident

on the vertex of the form 〈g, h〉 where g = h and the cardinality of these vertices is

2n. Then, the cardinality of such non existing edges is 2n−1. So, |E2| = 22n−1−2n−1.

Hence, |EOTIS−Xn
| = |E1| + |E2| = 2n(n2n−1) + 22n−1 − 2n−1. See Table 1 for the

cardinality of both electronic and optic edges in OTIS −Xn.

Proposition 2. The degree of a vertex 〈g, h〉 in OTIS −Xn is given by,

degOTIS−Xn〈g, h〉 =

{
n when g = h

n+ 1 when g 6= h
.

Proof. The OTIS − Xn is composed of disjoint clusters of Xn connected by the

OTIS edges. According to the definition of OTIS − Xn, the vertex 〈g, h〉 ∈ VXn
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does not have an OTIS edge incident on it when g = h. Hence, the number of edges

incident on the vertex 〈g, h〉 is the number of edges incident on a vertex in a Xn which

is n and the number of edges incident on the vertex 〈g, h〉 with g 6= h is n+ 1, since

there exists exactly an OTIS edge of the form (〈g, h〉 ∼ 〈h, g〉).

Lemma 1. The connectivity, edge connectivity and minimum degree of OTIS − Xn is
given by, κ(OTIS −Xn) = λ(OTIS −Xn) = δ(OTIS −Xn) = n.

Proof. For a vertex 〈g, h〉 with g = h to be disconnected from the rest of the graph,

the cardinality of vertices that should be deleted equals the cardinality of edges in-

cident on the vertex, i.e., |NOTIS−Xn
(〈g, h〉)|. As degOTIS−Xn

〈g, h〉 = n for the

considered vertex, |NOTIS−Xn(〈g, h〉)| = n is the vertex connectivity of OTIS −Xn.

Clearly, κ(OTIS − Xn) ≤ λ(OTIS − Xn). If F is a set with the least number of

edges whose deletion leaves the graph disconnected, then δ(OTIS −Xn) = |F |, but

according to the definition of edge connectivity, λ(OTIS−Xn) = |F |. From Menger’s

theorem [45], there exist at least k parallel paths between any two distinct vertices

in a graph with connectivity k. Hence, there should exist at least δ(OTIS − Xn)

disjoint paths. The theorem suffices if λ(OTIS − Xn) ≤ κ(OTIS − Xn) is proved.

From Menger’s theorem, κ(OTIS − Xn) ≥ δ(OTIS − Xn). As δ(OTIS − Xn) =

|F | = λ(OTIS −Xn), we have, κ(OTIS −Xn) ≥ δ(OTIS −Xn) = λ(OTIS −Xn),

which implies κ(OTIS −Xn) ≥ λ(OTIS −Xn). Hence, the statement holds.

Lemma 2. The diameter of OTIS −Xn is given by, D(OTIS −Xn) = 2D(Xn) + 1.

Proof. The proof suffices if we prove that there exists a path of length at least 2D+1

and a path of length at most 2D+ 1 between the antipodal vertices. Let 〈g1, h1〉 and

〈g2, h2〉 be antipodal vertices. If they are antipodal then g1 6= g2, i.e., there should

exist an OTIS edge in the path and that h1 and h2 should lie in different clusters.

The path then has to traverse from some h1 to h3 in the cluster g1 of length equal to

diameter of the considered basis graph which is a BC graph. Let (〈g1, h1〉, 〈g2, h4〉) be

the OTIS edge and from 〈g2, h4〉 the path has to traverse from h4 to h2 in the cluster

g2 of length equal to diameter of the considered basis graph which is a BC graph. So,

the length of the path between the antipodal vertices 〈g1, h1〉 and 〈g2, h2〉 must be at

least 2D + 1.

Now, assume 2D + 2 to be the length of the path between two antipodal vertices.

If the length of the path between two antipodal vertices must be 2D + 2 then the

two edges must be OTIS edges which is not the case because any cluster in an OTIS

network is connected to any other cluster. Thus, there is no need for 2 or more OTIS

edges. Therefore, the shortest path between two antipodal vertices is at most 2D+ 1.

Hence, the proof.
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An illustration of the shortest path between two antipodal vertices in OTIS −X2 is

illustrated in Figure 6.

0,0 0,1

0,2 0,3

1,0 1,1

1,2 1,3

2,0 2,1

2,2 2,3

3,0 3,1

3,2 3,3

Figure 6. Illustration of calculation of diameter on OTIS −X2

Remark 2. OTIS −Xn is not Eulerian.

As OTIS −Xn is biregular, any vertex 〈gi, hi〉 is of degree n or n+ 1.

4. Topological properties of OTIS BC graphs

In this section we explore the graph embeddability and examine the possibilities and

constraints of embedding literaturely rich graphs. The purpose of this investigation is

to identify the underlying structures and characteristics that determine whether the

paths and cycles can be embedded into the OTIS BC graphs.

4.1. Embeddability of OTIS BC graphs

The OTIS BC graphs contain both odd and even cycles without depending on the

basis graph with no odd or even cycles.

Remark 3. There exists only one OTIS edge (〈g1, h1〉 ∼ 〈g2, h2〉) where g1 6= g2 such
that no other OTIS edge of form (〈g1, h3〉 ∼ 〈g2, h4〉) where h1 6= h3 and h2 6= h4 is possible.
Moreover, the OTIS edges act as a bridge between independent clusters of basis graphs.
Hence, the maximum number of edges induced for any l vertices for 2 ≤ l ≤ 22n should be
along the basis graph in any OTIS −G.

Lemma 3. There exists a path Pl on l vertices for 2 ≤ l ≤ 3 · 2n in an OTIS −Xn.

Proof. To prove the statement, it will suffice to prove the presence of a path of

length 3 · 2n − 1. Let (〈g1, h1〉 ∼ 〈g2, h2〉) denote the OTIS edge between the vertices

〈g1, h1〉 and 〈g2, h2〉. If 〈g1, h1〉 is a vertex in the cluster g1 with processor address
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h1, then there exists a path on 2n − 1 vertices in the cluster g1, between the vertices,

〈g1, h1〉 and 〈g1, h2〉 (say). So the traversal will be of the form,

〈g1, h1〉 → . . .→︸ ︷︷ ︸
path of length 2n−1

〈g1, h2〉

Let g1 6= h2. Then, from 〈g1, h2〉 there obviously exists an OTIS edge to some 〈g2, h3〉.
Then traversal including the traversal inside the g2 cluster will be of form

〈g1, h1〉 → . . .→︸ ︷︷ ︸
path of length 2n−1

〈g1, h2〉 ∼ 〈g2, h3〉 → . . .→︸ ︷︷ ︸
path of length 2n−1

〈g2, h4〉

From Remark 3, there can exist only one OTIS edge between any two clusters. So,

the edge 〈g1, h2〉 ∼ 〈g2, h3〉 is unique and there cannot be another edge from cluster g1

to cluster g2. Let g2 6= h4. Then, there should exist an OTIS edge 〈g2, h4〉 ∼ 〈g3, h5〉.
Then the traversal including the traversal inside the cluster g3 will have the form,

〈g1, h1〉 → . . .→︸ ︷︷ ︸
path of length 2n−1

〈g1, h2〉 ∼ 〈g2, h3〉 → . . .→︸ ︷︷ ︸
path of length 2n−1

〈g2, h4〉 ∼ 〈g3, h5〉 → . . .→︸ ︷︷ ︸
path of length 2n−1

〈g3, h6〉.

Hence, there exists a path of length 3 · 2n − 1 in OTIS −Xn.

Figure 7. Presence of the path of length 3 · 2n − 1

See Figure 7 for an illustration of the presence of such a path of above said length in

OTIS−X3. Although the Lemma 3 seems trivial, it might not be so when the length of

path, |Pl| > 3·2n−1, as there might exist an OTIS edge, 〈g1, h1〉 ∼ 〈g3, h6〉. Theorems

1 and 3 are useful in proving the presence of a Hamiltonian cycle in OTIS −Xn in

the upcoming results. Now, we move on to prove the presence of a cycle of length

(2n)2. Then automatically, the above result can be extended in the sense that a path

Pl on l vertices for 1 ≤ l ≤ (2n)2 − 1 is present in OTIS −Xn.
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Theorem 1. [12] For every integer n ≥ 4, and any Xn ∈ Ln with VG0

G←→ VG1 , suppose
that the following three conditions are satisfied:

1. For every {h1, h2} ∈ EXn with h1 ∈ VG0 and h2 ∈ VG1 , there is a cycle Cl of length l
such that {h1, h2} is in Cl in Xn for every integer l ∈ {4, 5};

2. For every integer i ∈ {0, 1} and h1, h2 ∈ VGi with h1 6= h2, dist(Xn[VGi ], h1, h2) =
dist(Xn, h1, h2);

3. For h1, h2 ∈ VGi with h1 6= h2 and two integers l′ and i with dist(Xn[VGi ], h1, h2) +
2 ≤ l′ ≤ 2n−1 − 1 and i ∈ {0, 1}, there exists a path of length l′ between h1 and
h2 ∈ Xn[VGi ].

Then, there exists a path of length l between h1 and h2 in Xn for h1, h2 ∈ VXn with h1 6= h2

and every integer l with dist(Xn, h1, h2) + 2 ≤ 2n − 1.

Theorem 2. [12] For every integer n ≥ 4, and every Xn ∈ Ln with VG0

G←→ VG1 , if the
three conditions in Theorem 1 hold, then Xn is edge pancyclic.

Figure 8. Hamiltonicity of OTIS −Xn is illustrated using dashed lines which forms a cycle of length 64
in OTIS −X3

Figure 9. An illustration of presence of odd cycles in OTIS − Xn even when the basis graph does not
contain any odd cycle
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Theorem 3. [10, 36] If G is Hamiltonian, then OTIS −G is Hamiltonian.

Theorem 4. The OTIS −Xn graph is Hamiltonian if Xn satisfies all three conditions
of Theorem 1.

Proof. The proof is straightforward by Theorems 1 and 3. An illustration of Hamil-

tonicity of OTIS −Xn is shown in Figure 8.

Lemma 4. The OTIS − Xn consists of odd cycles irrespective of the presence of odd
cycles in the basis graph.

Proof. According to the definition of BC graphs, X2 is a cycle on four vertices. As

BC graphs are recursive in nature, Xn should contain 2n−1 disjoint cycles of length

four. Let 〈g1, h1〉 and 〈g1, h2〉 be two vertices in a cycle C4 at distance two. Then,

there should exist two vertices of the form 〈h1, g1〉 and 〈h2, g1〉 in the clusters h1 and

h2, respectively. As the cycle should traverse at least three OTIS edges to form a cycle

with OTIS edges by Remark 3, there should exist exactly three clusters. It is easy to

find an edge independently in both clusters h1 and h2 of form (〈h1, g1〉, 〈h1, h2〉) and

(〈h2, g1〉, 〈h2, h1〉). Notice that 〈h1, h2〉 and 〈h2, h1〉 should be connected by an OTIS

edge. Hence, OTIS − Xn has cycles of odd lengths, even when the basis graph Xn

does not contain an odd cycle.

For illustration, we have considered the hypercube as the basis graph, which does

not contain odd cycles of any length; however, there exists a cycle of odd length

in OTIS − Xn, with the help of OTIS edges (at least three edges), in Figure 9.

The normal mini-dashed edges and dark dashed edges in the Figure 9 showcase the

presence of odd cycles of length 7 and 11, respectively.

Remark 4. OTIS −Xn is not bipartite.

From Lemma 4, cycles of odd length exists, even when the basis graph does not

contain cycles of odd lengths in OTIS −Xn. So, OTIS −Xn cannot be bipartite.

4.2. Induced subgraph problem on OTIS BC graphs

Theorem 5. [41] For any n−dimensional BC graph Xn, the maximum number of edges
joining vertices from a set of m vertices is given by |E(Xn[m])| =

∑r−1
i=0 ( li

2
+ i)2li where

m =
∑r−1

i=0 2li for some non negative integers r and l0 > l1 > . . . > lr−1 where n ≥ 1 and
1 ≤ m ≤ 2n.

Theorem 6. The maximum number of edges induced by m vertices of an OTIS − Xn

where m = a · 2n + b for 0 ≤ a ≤ 2n, 0 ≤ b ≤ 2n − 1 is given by,
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|E(OTIS−Xn[m])| =

{
a× |E(Xn[2n])|+ |E(Xn[b])|+ a(a− 1)/2 when a = 0 or b = 0

a× |E(Xn[2n])|+ |E(Xn[b])|+ x+ a(a− 1)/2 when a, b ≥ 1

where x = min{a, b}.

Proof. The proof is divided into two cases.

Case 1. When a or b = 0.

Case 1.1. When a = 0, there does not exist a complete Xn and hence |E(OTIS −
Xn[m])| = |E(Xn[b])|.
Case 1.2. When b = 0, there exist exactly a complete copies of Xn in m. In addition,

the term a(a − 1)/2, denotes the number of OTIS edges between complete copies of

Xn. We prove this by induction on a. Assume it to be true for 1 ≤ a ≤ 2n−1. When

a = 2n, we have 2n(2n−1)
2 edges between disjoint copies of Xn, which is exactly the

number of OTIS edges present in an OTIS − Xn, as |E2| = 22n−1 − 2n−1. Hence,

|E(OTIS −Xn)[m])| = a|E(Xn[2n])|+ a(a− 1)/2.

Case 2. When 1 ≤ a, b ≤ 2n − 1.

From the above case, the expression a|E(Xn[2n])|+ |E(Xn[b])|+a(a−1)/2 is justified.

Consider ith cluster, a BC graph, it can have x OTIS edges if and only if the traversing

on m vertices is done on exactly x disjoint clusters before the ith cluster. As a and b

represent the complete BC graphs in m and the vertices present in the incomplete BC

graph, respectively, x should be the minimum between a and b. Thus, |E(OTIS −
Xn[m])| = a|E(Xn[2n])|+ |E(Xn[b])|+ x+ a(a− 1)/2 where x = min{a, b}.

See Figure 10 which depicts the pattern of ordering the vertices which yields induced

subgraph of OTIS − Xn. In addition, the specific ordering that solves the induced

subgraph problem is obtained by a simple function, f〈g, h〉 = 2ng + h.

5. Applications

In this section, we compute the minimum linear arrangement, bisection width, and

super (edge) connectivity of OTIS − Xn, as an application of finding the induced

subgraph of OTIS −Xn.

5.1. Minimum linear arrangement of OTIS BC graphs

Harper’s work in [19] initially introduced the assignment of vertices with specific

numerical patterns to minimize the average absolute error in transmission, leading to

the formulation of what is now known as the minimum linear arrangement problem

(MinLA) and is NP−Complete [14]. A minimum linear arrangement of a graph refers

to a linear ordering of its vertices in such a way that the sum of the lengths of the

edges is minimized. In other words, it is a way of arranging the vertices along a line

such that the total distance between adjacent vertices (corresponding to edge lengths)

is minimized. In tasks that involve sequential processing of vertices, the process of

linear ordering may simplify the implementation. This is why we use specific ordering
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0,0 0,1

0,2 0,3

0,4 0,5

0,6 0,7

2,0 2,1

2,2 2,3

2,4 2,5

2,6 2,7

4,0 4,1

4,3

4,4 4,5

4,6 4,7

6,0 6,1

6,2 6,3

6,4 6,5

6,6 6,7

1,0 1,1

1,2 1,3
1,4 1,5

1,6 1,7

3,0 3,1

3,2 3,3

3,4 3,5

3,6 3,7

5,0 5,1

5,3

5,4 5,5

5,6 5,7

7,0 7,1

7,2 7,3
7,4 7,5

7,6 7,7

4,2

5,2

0 1

2 3

4 5

6 7

16 17

18 19

20 21

22 23

32 33

35

36 37

38 39

48 49

50 51

52 53

54 55

8 9

10 11

12 13

14 15

24 25

26 27

28 29

30 31

40 41

43

44 45

46 47

58 59

60 61

56 57

62 63

34

42

Figure 10. OTIS − X3 with the ordering in bold italics represents the ordering of vertices which yield
induced subgraph while the normal font represents the generic ordering of vertices

on the vertices of the graph which yields the maximum subgraph and then proceed

with that particular ordering to achieve the optimal linear arrangement. Readers are

referred to [15, 40] for works related to minimum linear arrangement.

Theorem 7. [23] The minimum linear arrangement of BC graph Xn is given by,
MinLA(Xn) = 2n−1(2n − 1).

0,0 0,1

0,2 0,3

1,0 1,1

1,2 1,3

2,0 2,1

2,2 2,3

3,0 3,1

3,2 3,3

f(g,h) = 

2
n
g+h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 11. Minimum linear arrangement of OTIS −X2 where dashed lines and bold lines represent the
linear arrangement yielded by intra edges inside X2 and inter edges connecting disjoint copies
of X2, respectively

Theorem 8. The minimum linear arrangement of OTIS − Xn is given by,
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MinLA(OTIS −Xn) = (22n−1 − 2n−1)(2n) + (2n − 1)
( (2n−1)(2n)

2
+ (2n−2)(2n−1)

2
+ . . .+ 1

)
.

Proof. The minimum linear arrangement of Xn graphs was studied and proved

to be 22n−1 − 2n−1. As the clusters of OTIS − Xn are all Xn graphs and there

exists 2n disjoint clusters, the minimum linear arrangement of these clusters add up

to (22n−1 − 2n−1)(2n). As mentioned earlier, we use the ordering which yields the

maximum subgraph and thus the linear arrangement imposed by the OTIS edges

should also be minimum. Then, every OTIS edge from the 1st cluster to all other

clusters will yield, (2n−1)1+(2n−1)2+. . .+(2n−1)2n−1. Recursively concatenating

the linear arrangement imposed by every cluster until (2n−1)th cluster,
(
((2n−1)1+

(2n− 1)2 + . . .+ (2n− 1)(2n− 1)) + ((2n− 1)1 + (2n− 1)2 + . . .+ (2n− 1)(2n− 2)) +

. . . + (2n − 1)
)

is the minimum linear arrangement imposed by all the OTIS edges.

Therefore, the minimum linear arrangement of OTIS −Xn is minimum and is given

by, (22n−1 − 2n−1)(2n) + (2n − 1)
( (2n−1)(2n)

2 + (2n−2)(2n−1)
2 + . . .+ 1

)
.

A pictorial representation of minimum linear arrangement of OTIS−X2 is presented

in Figure 11.

5.2. Bisection width of OTIS BC graphs

There are many results concerning the bisection width of regular graphs. In [4], a

straightforward technique for finding bisection width is given for any regular graph G,

by bw(G) = θG(bVG

2 c), where θG(m) stands for the minimum number of edges leaving

the m vertices of a graph G. As OTIS −Xn is biregular, finding the bisection width

is not straightforward.

Remark 5. The bisection width of Xn is given by, bw(Xn) = 2n−1 for n ≥ 1.

The statement is true from the relation given above.

Theorem 9. The bisection width of an OTIS−Xn graph is given by, bw(OTIS−Xn) =
22n−2 for n ≥ 2.

Proof. When n = 2, it is evident from Figure 11 which has OTIS −X2, that four

OTIS edges need to be deleted to obtain two disconnected components with equal

size, which is the minimum. When n ≥ 3. Every cluster in OTIS − Xn is a Xn

that is n-regular and has 2n vertices and n2n−1 edges. In order to find the bisection

width, the graph OTIS −Xn should become two equal sized components with 22n−1

vertices each. Intuitively, there can be three cases in this regard. Deleting only Xn

edges: But doing so will never give two equal sized components as every disjoint Xn

is connected to each other by 2n− 1 OTIS edges. Deleting a few Xn edges and OTIS

edges: Although there may a possibility of obtaining two equal sized components, the

number of edges deleted will be very large as it includes Xn edges (by Remark 5),
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which leaves us with the last case. Deleting only OTIS edges: As we only concentrate

on deleting OTIS edges, the two equal sized components which has 22n−1 vertices

each, will contain 2n−1 disjoint Xns connected by 2n−1 − 1 + 2n−1 − 2 + . . . + 1

OTIS edges. By Proposition 1, we know that the cardinality of OTIS −Xn edges is

22n−1 − 2n−1. So, subtracting 2n−1 − 1 + 2n−1 − 2 + . . .+ 1 OTIS edges in both the

equal sized components, we arrive at 22n−1 − 2n−1 − 2(2n−1 − 1 + 2n−1 − 2 + . . .+ 1)

which is equal to 22n−2.

In Figure 12, 16 edges has to deleted for the graph OTIS − X3 to be disconnected

into equal halves.

Figure 12. Bisection width of OTIS − X3 where the dashed edges are the minimum number of OTIS
edges that needs to be deleted in order for the OTIS −X3 to be cut into two equal halves

5.3. Super connectivity of OTIS BC graphs

An edge should be selected as one of the components in order to obtain the least

cardinality of the vertices to be deleted, because the expression in Theorem 6 is strictly

increasing as m increases. Also, according to the definition of super connectivity of a

graph, there can exist components that are only non trivial.

Lemma 5. The super connectivity of OTIS −Xn graph is given by, κ′(OTIS −Xn) =
2n− 1 for n ≥ 2.

Proof. If F is the set of vertices whose removal leaves the graph disconnected

with no components having size one, then |F | which has the least number of

vertices out of all possibilities is the super connectivity of a graph G. Let
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Table 2. A comprehensive comparative analysis of the OTIS −Xn with other OTIS networks

Interconnection
networks

|VG| Diameter
Bisection

width
{min,max}

degree

OTIS −Xn (2n)2 2D + 1 22n−2 {n, n + 1}
OTIS − Sn [3] (|n!|)2 2b1.5(n− 1)c+ 1

(M2−M)
2

+ N2 {n− 1, n}
OTIS −Mn×n [43] n2 4

√
(n)− 3 Refer [29] {2, 5}

OTIS −HHCn [33] 6× (2d−1
h ) 2× dh + 3 (

6×2d−1
h
2

)2 {dh + 2, dh + 3}

OCCT (h, d, lv) [31] g × 2d Refer [31]
2d × (H + 1.5)+

((2lv/2)2 − 1)× 2d)
Refer [31]

(〈g1, h1〉, 〈g2, h2〉) edge be a component after deleting |F | vertices. Now, choosing

an edge whose |NG(〈g1, h1〉, 〈g2, h2〉)| is minimum will give the super connectivity

of OTIS − Xn graph. From Proposition 2, there exist only two types of edges:

(〈g1, h1〉, 〈g2, h2〉) with degOTIS−Xn
〈g1, h1〉 = n and degOTIS−Xn

〈g2, h2〉 = n + 1, or

with degOTIS−Xn〈g1, h1〉 = degOTIS−Xn〈g2, h2〉 = n+ 1. Obviously choosing an edge

inside any cluster with one vertex having degree n and other vertex having degree n+1

will have the least number of neighbors. Then, |NG(〈g1, h1〉, 〈g2, h2〉)| = n− 1 + n =

2n − 1. Choosing any other edge to be a component will yield more or exactly the

same number of neighbor vertices adjacent to the vertices in the considered edge.

Hence, the proof.

Lemma 6. The super edge connectivity of OTIS−Xn graph is given by λ′(OTIS−Xn) =
2n− 1 for n ≥ 2.

Proof. From Remark 3 and Definition 3, there exists no 3 cycle, meaning, every

2n − 1 edges incident on 2n − 1 vertices are distinct. Hence κ′(OTIS − Xn) =

λ′(OTIS −Xn) = 2n− 1.

To illustrate the superiority of OTIS −Xn over other OTIS networks and compare

with other OTIS networks we have provided two tables Table 2 and Table 3. In

Table 3 we have demonstrated the diameter in numerical ranges of several OTIS

networks by considering their dimensions. OTIS −Xn outperforms the other OTIS

networks in terms of diameter, although the cardinality of edge set of OTIS − Xn

increases exponentially. OTIS −Xn is the only network that relies on the diameter

of the Bijective connection graph used as the basis graph. With correspondence to

the bisection width, OTIS−Xn performs reasonably well when the cardinality of the

edge set of the other OTIS networks are taken into account.

6. Concluding remarks

In this study, we introduce a novel class of graphs called OTIS BC graphs in which we

have utilized the Bijective connection networks as the basis graph for OTIS network.
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This variation improves the fault tolerance, latency, and scalability of the considered

basis graphs, which was evident through the following studies: First, we examined

the fundamental graph theoretical characteristics of OTIS−Xn. Next, we investigate

the problem of embedding paths and cycles into OTIS −Xn of different lengths. In

addition, we solved the induced subgraph problem, which helped us to compute the

minimum linear arrangement, bisection width, and the super (edge) connectivity of

OTIS −Xn. It would be worth studying the fault tolerant measures of the OTIS −
Xn which includes a variety of connectivity parameters. In our research, we have

considered OTIS−Xn to be our host graph and embedded path and cycle into them.

It would be an interesting problem to solve the embedding problem by considering

OTIS −Xn as the guest graph.

Table 3. A comprehensive comparative analysis of the diameter of OTIS−Xn with other OTIS networks

OTIS −Xn OTIS − Sn OTIS −Mn×n OTIS −HHCn OCCT (h, d, lv)

n |VG| Diameter n |VG| Diameter n |VG| Diameter n |VG| Diameter (h, d, lv) |VG| Diameter

1 4 3 1 1 1 1 1 1 1 36 5 (1, 2, 3) 8 3

2 16 5 2 4 3 4 16 5 2 144 7 (1, 3, 3) 16 4

3 64 5 3 36 7 9 81 9 3 576 9 (2, 2, 3) 8 5

4 256 7 4 576 9 16 256 13 4 2304 11 (2, 3, 3) 16 6

5 1024 7 5 14400 13 25 625 17 5 9216 13 (2, 4, 3) 32 7
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