
تعداد نشریات | 5 |
تعداد شمارهها | 116 |
تعداد مقالات | 1,333 |
تعداد مشاهده مقاله | 1,336,433 |
تعداد دریافت فایل اصل مقاله | 1,268,843 |
Degree-weighted Sombor indices of trees and unicyclic graphs: An extremal approach | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 22 اردیبهشت 1404 اصل مقاله (431.28 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.30315.2413 | ||
نویسندگان | ||
Nasrin Dehgardi* 1؛ Tomislav Došlić2 | ||
1Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan, Iran | ||
2University of Zagreb, Faculty of Civil Engineering, Zagreb, Croatia | ||
چکیده | ||
We consider two generalizations of the Sombor index, obtained by weighting the standard contribution $\sqrt{d_\Omega(\eta)^2+d_\Omega(\eta')^2}$ of an edge $\eta\eta'$ of a graph $\Omega$ by the sum and by the product of degrees of its end-vertices, respectively. The first generalization has been considered under the name of the elliptic Sombor index, while the second one seems to be new. We consider trees and unicyclic graphs on a given number of vertices $n$ with a given maximum degree $\Delta $ and characterize the graphs minimizing both generalizations over those classes of graphs. | ||
کلیدواژهها | ||
Sombor index؛ degree-weighted Sombor index؛ elliptic Sombor index؛ trees؛ unicyclic graphs | ||
مراجع | ||
[1] A. Ali, S. Sekar, S. Balachandran, S. Elumalai, A.M. Alanazi, T.S. Hassan, and Y. Shang, Graphical edge-weight-function indices of trees, AIMS Math. 9 (2024), no. 11, 32552–32570. https://doi.org/10.3934/math.20241559
[2] S. Alikhani and N. Ghanbari, Sombor index of polymers, MATCH Commun. Math. Comput. Chem 86 (2021), 715–728.
[3] R. Cruz and J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem. 59 (2021), no. 4, 1098–1116. https://doi.org/10.1007/s10910-021-01232-8
[4] K.C. Das, A.S. C¸evik, I.N. Cangul, and Y. Shang, On sombor index, Symmetry 13 (2021), no. 1, Article ID: 140. https://doi.org/10.3390/sym13010140 [5] K.C. Das, A. Ghalavand, and A.R. Ashrafi, On a conjecture about the Sombor index of graphs, Symmetry 13 (2021), no. 10, Article ID: 1830. https://doi.org/10.3390/sym13101830
[6] K.C. Das and Y. Shang, Some extremal graphs with respect to Sombor index, Mathematics 9 (2021), no. 11, Article ID: 1202. https://doi.org/10.3390/math9111202
[7] N. Dehgardi, Lower bounds on the entire Sombor index, Iranian J. Math. Chem. 14 (2023), no. 4, 195–205. https://doi.org/10.22052/IJMC.2023.253281.1739
[8] N. Dehgardi and M. Azari, Trees, unicyclic graphs and their geometric Sombor index: an extremal approach, J. Comput. Appl. Math. 43 (2024), no. 5, Article ID: 271. https://doi.org/10.1007/s40314-024-02793-5
[9] N. Dehgardi and Y. Shang, First irregularity Sombor index of trees with fixed maximum degree, Res. Math. 11 (2024), no. 1, Article ID: 2291933. https://doi.org/10.1080/27684830.2023.2291933
[10] T. Došlić, T. Réti, and A. Ali, On the structure of graphs with integer Sombor indices, Discrete Math. Lett. 7 (2021), 1–4. https://doi.org/10.47443/dml.2021.0012
[11] C. Espinal, I. Gutman, and J. Rada, Elliptic Sombor index of chemical graphs, Commun. Comb. Optim. 10 (2025), no. 4, 989–999. https://doi.org/10.22049/cco.2024.29404.1977
[12] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), no. 1, 11–16.
[13] I. Gutman, Some basic properties of Sombor indices, Open J. Discrete Appl. Math. 4 (2021), no. 1, 1–3. https://doi.org/10.30538/psrp-odam2021.0047
[14] I. Gutman, B. Furtula, and M.S. Oz, Geometric approach to vertex-degree-based topological indices–Elliptic Sombor index, theory and application, Int. J. Quantum Chem. 124 (2024), no. 2, e27346. https://doi.org/10.1002/qua.27346
[15] I. Gutman, N.K. Gürsoy, A. Gürsoy, and A. Ülker, New bounds on Sombor index, Commun. Comb. Optim. 8 (2023), no. 2, 305–311. https://doi.org/10.22049/cco.2022.27600.1296
[16] S. Kosari, N. Dehgardi, and A. Khan, Lower bound on the KG-Sombor index, Commun. Comb. Optim. 8 (2023), no. 4, 751–757. https://doi.org/10.22049/cco.2023.28666.1662
[17] I. Milovanović, E. Milovanović, A. Ali, and M. Matejić, Some results on the Sombor indices of graphs, Contrib. Math 3 (2021), 59–67. https://doi.org/10.47443/cm.2021.0024
[18] W. Ning, Y. Song, and K. Wang, More on Sombor index of graphs, Mathematics 10 (2022), no. 3, Article ID: 301. https://doi.org/10.3390/math10030301
[19] C. Phanjoubam, S.M. Mawiong, and A.M. Buhphang, On Sombor coindex of graphs, Commun. Comb. Optim. 8 (2023), no. 3, 513–529. https://doi.org/10.22049/cco.2022.27751.1343
[20] J. Rada, J.M. Rodríguez, and J.M. Sigarreta, Sombor index and elliptic Sombor index of benzenoid systems, Appl. Math. Comput. 475 (2024), Article ID: 128756. https://doi.org/10.1016/j.amc.2024.128756
[21] H.S. Ramane, I. Gutman, K. Bhajantri, and D.V. Kitturmath, Sombor index of some graph transformations, Commun. Comb. Optim. 8 (2023), no. 1, 193–205. https://doi.org/10.22049/cco.2021.27484.1272
[22] T. Réti, T. Došlić, and A. Ali, On the Sombor index of graphs, Contrib. Math 3 (2021), 11–18. https://doi.org/10.47443/cm.2021.0006
[23] Z. Tang, Y. Li, and H. Deng, Elliptic Sombor index of trees and unicyclic graphs, Electron J. Math 7 (2024), 19–34. https://doi.org/10.47443/ejm.2024.009
[24] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, John Wiley & Sons, 2009.
[25] Z. Wang, Y. Mao, Y. Li, and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput. 68 (2022), no. 1, 1–17. https://doi.org/10.1007/s12190-021-01516-x | ||
آمار تعداد مشاهده مقاله: 50 تعداد دریافت فایل اصل مقاله: 38 |