Research Article

General Randić index of unicyclic graphs with given maximum degree

Elize Swartz[†], Tomáš Vetrík^{*}

Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa [†]swartzel@ufs.ac.za ^{*}vetrikt@ufs.ac.za

> Received: 7 February 2025; Accepted: 11 May 2025 Published Online: 17 May 2025

Abstract: The general Randić index of a graph G is defined as $R_a(G) = \sum_{uv \in E(G)} [d_G(u)d_G(v)]^a$, where $a \in \mathbb{R}$, E(G) is the set of edges of G, and $d_G(u)$ and $d_G(v)$ are the degrees of vertices u and v, respectively. Among unicyclic graphs with given number of vertices and maximum degree, we present the graph with the largest value of R_a for a < 0, and graphs having the smallest values of R_a for a > 0.

Keywords: extremal graph, topological index, cycle.

AMS Subject classification: 05C09, 05C07, 05C35

1. Introduction

Let us denote by V(G) and E(G) the set of vertices and edges of a graph G. The degree $d_G(u)$ of a vertex u is the number of edges incident with u in G. The maximum degree Δ of G is the degree of a vertex whose degree is the largest in G. A pendant path of G is a subgraph of G containing two end vertices, one of them has degree at least 3 in G, the other end vertex has degree 1 in G, and all the internal vertices (if any) of that path have degree 2 in G. A unicyclic graph is a connected graph containing exactly one cycle. Let $C_k = u_1 u_2 \dots u_k u_1$ be the cycle with k vertices u_1, u_2, \dots, u_k and k edges $u_1 u_2, u_2 u_3, \dots, u_{k-1} u_k, u_k u_1$. We denote the set of vertices adjacent to u in G by $N_G(u)$.

^{*} Corresponding Author

Indices of graphs are investigated because of their wide applications. The general Randić index

$$R_a(G) = \sum_{uv \in E(G)} [d_G(u) \, d_G(v)]^a$$

defined for $a \in \mathbb{R}$ and a graph G was first investigated by Bollobás and Erdős [4]. Several special cases of R_a are well-known indices. From R_a , we get the Randić index if $a = -\frac{1}{2}$, reciprocal Randić index if $a = \frac{1}{2}$, second modified Zagreb index if a = -1, second Zagreb index if a = 1 and second hyper-Zagreb index if a = 2.

Unicyclic graphs belong to important classes of graphs. For unicyclic graphs with given number of vertices, Chen [5] proved that the cycle has the largest R_a if -0.58 < a < 0. For a > 0, this problem was investigated by Li, Shi and Xu [7]. The unicyclic graph having the minimum R_a for $a \ge -1$ was found by Wu and Zhang [12]. Li, Wang and Zhang [8] solved this problem for a < -1. The unicyclic graph with given number of vertices and diameter having the smallest R_a for $-0.64 \le a < 0$ was obtained in [1]. Related topics were considered for example in [2], [6] and [10].

We study unicyclic graphs with prescribed maximum degree Δ and number of vertices n. For any unicyclic graph, we have $2 \leq \Delta \leq n-1$. The cycle C_n is the unique unicyclic graph for $\Delta = 2$ (and $n \geq 3$), and we obtain the unique unicyclic graph for $\Delta = n-1$ (where $n \geq 4$) by adding one edge to the star S_n . Thus, we consider Δ such that $3 \leq \Delta \leq n-2$.

Altassan and Imran [3] presented unicyclic graphs with given n and Δ having the largest R_a for $a_0 \leq a < 0$, where a_0 is about -0.21. In Theorem 2, we considerably extend their results by obtaining the unicyclic graph with given n and Δ having the largest R_a for every a < 0, where $\left\lceil \frac{n+1}{2} \right\rceil \leq \Delta \leq n-2$. Moreover, we obtain unicyclic graphs with given n and Δ having the smallest R_a for a > 0 in Theorem 1.

Lemmas 1 and 2 are used in both Sections 2 and 3, therefore we include them in this section. Lemma 1 was proved in [11].

Lemma 1. Let $1 \le x_1 < x_2$ and c > 0. Then for a > 1 and a < 0,

$$(x_1 + c)^a - x_1^a < (x_2 + c)^a - x_2^a.$$

For 0 < a < 1,

$$(x_1 + c)^a - x_1^a > (x_2 + c)^a - x_2^a.$$

Lemma 2. Let x > 0, c > s > 0 and $a \neq 0$. Then the function

$$f(x) = (cx)^a - (sx)^a$$

 $is \ strictly \ increasing.$

Proof. We get $f'(x) = (c^a - s^a)ax^{a-1}$. Clearly $x^{a-1} > 0$. We have $c^a > s^a$ for a > 0, and $c^a < s^a$ for a < 0. Thus f'(x) > 0 if $a \neq 0$, so f(x) is strictly increasing. \Box

2. Smallest value of R_a for a > 0

Let us give a few lemmas. Lemma 3 was proved in [9].

Lemma 3. Let $c, q, r, a \in \mathbb{R}$, where c, q, r > 0 and $\{q, r\} \neq \{1\}$. Then the function

$$f_{c,q,r}(a) = c q^a + r^a$$

is strictly convex.

We use Lemma 3 in the proof of Lemma 4.

Lemma 4. We have

- (i) $2(3^a) + 1 3(2^a) > 0$ for a > 0,
- (ii) $6^a + 3^a 2(4^a) > 0$ for a > 0,
- (*iii*) $6^a + 3(2^a) 4(3^a) > 0$ for a > 1.

Proof. By Lemma 3, the functions

$$f_{2,\frac{3}{2},\frac{1}{2}}(a) = 2\left(\frac{3}{2}\right)^a + \left(\frac{1}{2}\right)^a$$
 and $f_{3,\frac{2}{3},2}(a) = 3\left(\frac{2}{3}\right)^a + 2^a$

are strictly convex for $a \in \mathbb{R}$.

- (i) We have $f_{2,\frac{3}{2},\frac{1}{2}}(-\frac{1}{10}) < 3$ and $f_{2,\frac{3}{2},\frac{1}{2}}(0) = 3$. Since $f_{2,\frac{3}{2},\frac{1}{2}}(a)$ is strictly convex, we get $f_{2,\frac{3}{2},\frac{1}{2}}(a) > 3$ for a > 0. So $2\left(\frac{3}{2}\right)^a + \left(\frac{1}{2}\right)^a > 3$, thus $2(3^a) + 1^a > 3(2^a)$ for a > 0.
- (ii) This part was proved in [9].
- (iii) We have $f_{3,\frac{2}{3},2}(0) = f_{3,\frac{2}{3},2}(1) = 4$. Since $f_{3,\frac{2}{3},2}(a)$ is strictly convex, we get $f_{3,\frac{2}{3},2}(a) > 4$ for a > 1. So $3\left(\frac{2}{3}\right)^a + 2^a > 4$, thus $3(2^a) + 6^a > 4(3^a)$ for a > 1.

Let us show that a graph U_1 does not have the smallest R_a for a > 0.

Lemma 5. Let U_1 be a unicyclic graph with a pendant path having one end vertex u_0 such that $3 \leq d_{U_1}(u_0) \leq 4$. Let U_1 contain a vertex different from u_0 which has maximum degree. Then there exists a unicyclic graph with the same number of vertices and same maximum degree having smaller R_a for a > 0.

Proof. Let u_0 and u_p be the end vertices of a pendant path of length $p \ge 1$ in U_1 , where $3 \le d_{U_1}(u_0) \le 4$ and $d_{U_1}(u_p) = 1$. Let us denote the vertices adjacent to u_0 in U_1 which are not on that pendant path by u', u'' if $d_{U_1}(u_0) = 3$, and u', u'', u''' if $d_{U_1}(u_0) = 4$. Since U_1 is not a tree, we can assume that $d_{U_1}(u') \ge 2$. We remove the edge u_0u' from U_1 and add the edge u_pu' to obtain U_2 from U_1 . Then U_2 is unicyclic, and U_1 and U_2 have the same maximum degree and number of vertices. We have

$$d_{U_2}(u_0) = d_{U_1}(u_0) - 1, \ d_{U_2}(u_p) = 2 \text{ and } d_{U_2}(w) = d_{U_1}(w) \text{ for } w \in V(U_1) \setminus \{u_0, u_p\}.$$

Let p = 1. If $d_{U_1}(u_0) = 3$, then

$$\begin{aligned} R_a(U_1) - R_a(U_2) &= [d_{U_1}(u_0)d_{U_1}(u')]^a - [d_{U_2}(u_1)d_{U_2}(u')]^a \\ &+ [d_{U_1}(u_0)d_{U_1}(u'')]^a - [d_{U_2}(u_0)d_{U_2}(u'')]^a \\ &+ [d_{U_1}(u_0)d_{U_1}(u_1)]^a - [d_{U_2}(u_0)d_{U_2}(u_1)]^a \\ &= [3d_{U_1}(u')]^a - [2d_{U_1}(u')]^a + [3d_{U_1}(u'')]^a - [2d_{U_1}(u'')]^a \\ &+ (3\cdot 1)^a - (2\cdot 2)^a \\ &> [3d_{U_1}(u')]^a - [2d_{U_1}(u')]^a + 3^a - 4^a \\ &\geq 6^a - 4^a + 3^a - 4^a \\ &> 0, \end{aligned}$$

since $[3d_{U_1}(u')]^a - [2d_{U_1}(u')]^a \ge 6^a - 4^a$ for $d_{U_1}(u') \ge 2$ by Lemma 2, and $6^a - 4^a + 3^a - 4^a > 0$ by Lemma 4 (ii). If $d_{U_1}(u_0) = 4$, then

$$\begin{aligned} R_{a}(U_{1}) - R_{a}(U_{2}) &= [d_{U_{1}}(u_{0})d_{U_{1}}(u')]^{a} - [d_{U_{2}}(u_{1})d_{U_{2}}(u')]^{a} \\ &+ [d_{U_{1}}(u_{0})d_{U_{1}}(u'')]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u'')]^{a} \\ &+ [d_{U_{1}}(u_{0})d_{U_{1}}(u'')]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u'')]^{a} \\ &+ [d_{U_{1}}(u_{0})d_{U_{1}}(u_{1})]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u_{1})]^{a} \\ &= [4d_{U_{1}}(u')]^{a} - [2d_{U_{1}}(u')]^{a} + [4d_{U_{1}}(u'')]^{a} - [3d_{U_{1}}(u'')]^{a} \\ &+ [4d_{U_{1}}(u'')]^{a} - [2d_{U_{1}}(u')]^{a} + (4 \cdot 1)^{a} - (3 \cdot 2)^{a} \\ &> [4d_{U_{1}}(u')]^{a} - [2d_{U_{1}}(u')]^{a} + 4^{a} - 6^{a} \\ &\geq 8^{a} - 4^{a} + 4^{a} - 6^{a} \\ &> 0, \end{aligned}$$

since from Lemma 2, we get $[4d_{U_1}(u')]^a - [2d_{U_1}(u')]^a \ge 8^a - 4^a$ for $d_{U_1}(u') \ge 2$. So $R_a(U_1) > R_a(U_2)$.

Let $p \ge 2$. If $d_{U_1}(u_0) = 3$, then

$$\begin{aligned} R_a(U_1) - R_a(U_2) &= [d_{U_1}(u_0)d_{U_1}(u')]^a - [d_{U_2}(u_p)d_{U_2}(u')]^a \\ &+ [d_{U_1}(u_0)d_{U_1}(u'')]^a - [d_{U_2}(u_0)d_{U_2}(u'')]^a \\ &+ [2d_{U_1}(u_0)]^a - [2d_{U_2}(u_0)]^a + [2d_{U_1}(u_p)]^a - [2d_{U_2}(u_p)]^a \\ &= [3d_{U_1}(u')]^a - [2d_{U_1}(u')]^a + [3d_{U_1}(u'')]^a - [2d_{U_1}(u'')]^a \\ &+ (2\cdot 3)^a - (2\cdot 2)^a + (2\cdot 1)^a - (2\cdot 2)^a \\ &> [3d_{U_1}(u')]^a - [2d_{U_1}(u')]^a + 6^a + 2^a - 2(4^a) \\ &\geq 6^a - 4^a + 6^a + 2^a - 2(4^a) \\ &= 2^a [2(3^a) + 1 - 3(2^a)] \\ &> 0, \end{aligned}$$

since $[3d_{U_1}(u')]^a - [2d_{U_1}(u')]^a \ge 6^a - 4^a$ for $d_{U_1}(u') \ge 2$ by Lemma 2, and $2(3^a) + 1 - 3(2^a) > 0$ by Lemma 4 (i). If $d_{U_1}(u_0) = 4$, then

$$\begin{aligned} R_{a}(U_{1}) - R_{a}(U_{2}) &= [d_{U_{1}}(u_{0})d_{U_{1}}(u')]^{a} - [d_{U_{2}}(u_{p})d_{U_{2}}(u')]^{a} \\ &+ [d_{U_{1}}(u_{0})d_{U_{1}}(u'')]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u'')]^{a} \\ &+ [d_{U_{1}}(u_{0})d_{U_{1}}(u'')]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u''')]^{a} \\ &+ [2d_{U_{1}}(u_{0})]^{a} - [2d_{U_{2}}(u_{0})]^{a} + [2d_{U_{1}}(u_{p})]^{a} - [2d_{U_{2}}(u_{p})]^{a} \\ &= [4d_{U_{1}}(u')]^{a} - [2d_{U_{1}}(u')]^{a} + [4d_{U_{1}}(u'')]^{a} - [3d_{U_{1}}(u'')]^{a} \\ &+ [4d_{U_{1}}(u''')]^{a} - [3d_{U_{1}}(u''')]^{a} + (2 \cdot 4)^{a} - (2 \cdot 3)^{a} + (2 \cdot 1)^{a} - (2 \cdot 2)^{a} \\ &> [4d_{U_{1}}(u')]^{a} - [2d_{U_{1}}(u')]^{a} + 8^{a} - 6^{a} + 2^{a} - 4^{a} \\ &> 8^{a} - 6^{a} \\ &> 0, \end{aligned}$$

since from Lemma 2, we get $[4d_{U_1}(u')]^a - [2d_{U_1}(u')]^a > 4^a - 2^a$ for $d_{U_1}(u') > 1$. So $R_a(U_1) > R_a(U_2)$.

We prove that there is a unicyclic graph having R_a smaller than $R_a(U_1)$ for a > 0.

Lemma 6. Let U_1 be a unicyclic graph having a vertex u_0 which is an end vertex of $p \ge 2$ pendant paths, where $d_{U_1}(u_0) = p + i$, $1 \le i \le 3$, and let U_1 contain a vertex of maximum degree other than u_0 . Then there exists a unicyclic graph with the same number of vertices and same maximum degree having smaller R_a for a > 0.

Proof. Let $d_{U_1}(u_0) = x$. We have $x \ge 3$. Let $u_0u_1 \ldots u_s$ and $u_0u'_1 \ldots u'_t$ be two longest pendant paths containing u_0 . So $s, t \ge 1$ and $d_{U_1}(u_s) = d_{U_1}(u'_t) = 1$. Let U_2 be obtained from U_1 be removing the edge u_0u_1 and adding the edge u'_tu_1 . We have

$$d_{U_2}(u_0) = x - 1$$
, $d_{U_2}(u'_t) = 2$ and $d_{U_1}(u) = d_{U_2}(u)$

for $u \in V(U_1) \setminus \{u_0, u'_t\}$. Then U_2 is unicyclic, and U_1 and U_2 have the same maximum degree and number of vertices. We consider several cases.

Case 1. $s, t \ge 2$.

We obtain

$$\begin{aligned} R_{a}(U_{1}) - R_{a}(U_{2}) &= [d_{U_{1}}(u_{0})d_{U_{1}}(u_{1}')]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u_{1}')]^{a} \\ &+ [d_{U_{1}}(u_{t-1}')d_{U_{1}}(u_{t}')]^{a} - [d_{U_{2}}(u_{t-1}')d_{U_{2}}(u_{t}')]^{a} \\ &+ [d_{U_{1}}(u_{0})d_{U_{1}}(u_{1})]^{a} - [d_{U_{2}}(u_{t}')d_{U_{2}}(u_{1})]^{a} \\ &+ \sum_{u \in N_{U_{1}}(u_{0}) \setminus \{u_{1}, u_{1}'\}} ([d_{U_{1}}(u_{0})d_{U_{1}}(u)]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u)]^{a}) \\ &= (x \cdot 2)^{a} - [(x - 1)2]^{a} + (2 \cdot 1)^{a} - (2 \cdot 2)^{a} + (x \cdot 2)^{a} - (2 \cdot 2)^{a} \\ &+ \sum_{u \in N_{U_{1}}(u_{0}) \setminus \{u_{1}, u_{1}'\}} ([x d_{U_{1}}(u)]^{a} - [(x - 1)d_{U_{1}}(u)]^{a}) \\ &> 2(2x)^{a} - (2x - 2)^{a} - 2(4^{a}) + 2^{a} = f(x). \end{aligned}$$

Then $f'(x) = a2^{a}[2x^{a-1} - (x-1)^{a-1}]$. For $a \ge 1$, we have $2x^{a-1} > (x-1)^{a-1}$, thus f'(x) > 0. For 0 < a < 1, we have

$$2 > \left(1 + \frac{1}{x - 1}\right)^{1 - a} = \left(\frac{x}{x - 1}\right)^{1 - a} = \frac{(x - 1)^{a - 1}}{x^{a - 1}},$$

thus again $2x^{a-1} > (x-1)^{a-1}$ and consequently f'(x) > 0. So f(x) is increasing for $x \ge 3$, where a > 0. Thus $f(x) \ge f(3)$ for $x \ge 3$. We have

$$f(3) = 2(6^{a}) - 3(4^{a}) + 2^{a} = 2^{a}[2(3^{a}) + 1 - 3(2^{a})] > 0$$

by Lemma 4 (i). Hence $R_a(U_1) - R_a(U_2) > f(x) \ge f(3) > 0$. So U_2 has smaller R_a . Case 2. Either s = 1 or t = 1.

We can assume that $s \ge 2$ and t = 1. Then

$$\begin{aligned} R_{a}(U_{1}) - R_{a}(U_{2}) &= [d_{U_{1}}(u_{0})d_{U_{1}}(u_{1}')]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u_{1}')]^{a} \\ &+ [d_{U_{1}}(u_{0})d_{U_{1}}(u_{1})]^{a} - [d_{U_{2}}(u_{1}')d_{U_{2}}(u_{1})]^{a} \\ &+ \sum_{u \in N_{U_{1}}(u_{0}) \setminus \{u_{1}, u_{1}'\}} ([d_{U_{1}}(u_{0})d_{U_{1}}(u)]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u)]^{a}) \\ &= (x \cdot 1)^{a} - [(x - 1)2]^{a} + (x \cdot 2)^{a} - (2 \cdot 2)^{a} \\ &+ \sum_{u \in N_{U_{1}}(u_{0}) \setminus \{u_{1}, u_{1}'\}} ([x \, d_{U_{1}}(u)]^{a} - [(x - 1)d_{U_{1}}(u)]^{a}) \\ &> (2x)^{a} + x^{a} - (2x - 2)^{a} - 4^{a} = f(x). \end{aligned}$$

We obtain $f'(x) = a[(2^a+1)x^{a-1}-2^a(x-1)^{a-1}]$. For $a \ge 1$, we have $(2^a+1)x^{a-1} > 2^a(x-1)^{a-1}$, thus f'(x) > 0. For 0 < a < 1, we have

$$\frac{2^a+1}{2^a} = 1 + \frac{1}{2^a} > \frac{3}{2} > \left(1 + \frac{1}{x-1}\right)^{1-a} = \left(\frac{x}{x-1}\right)^{1-a} = \frac{(x-1)^{a-1}}{x^{a-1}}$$

thus again $(2^a + 1)x^{a-1} > 2^a(x-1)^{a-1}$ and consequently f'(x) > 0. So f(x) is increasing for $x \ge 3$, where a > 0. Thus $f(x) \ge f(3)$ for $x \ge 3$. By Lemma 4 (ii),

$$f(3) = 6^a + 3^a - 2(4^a) > 0,$$

hence $R_a(U_1) - R_a(U_2) > f(x) \ge f(3) > 0$. So R_a is smaller for U_2 .

Case 3. s = t = 1 and $0 < a \le 1$.

We obtain

$$\begin{aligned} R_{a}(U_{1}) - R_{a}(U_{2}) &= [d_{U_{1}}(u_{0})d_{U_{1}}(u_{1}')]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u_{1}')]^{a} \\ &+ [d_{U_{1}}(u_{0})d_{U_{1}}(u_{1})]^{a} - [d_{U_{2}}(u_{1}')d_{U_{2}}(u_{1})]^{a} \\ &+ \sum_{u \in N_{U_{1}}(u_{0}) \setminus \{u_{1}, u_{1}'\}} ([d_{U_{1}}(u_{0})d_{U_{1}}(u)]^{a} - [d_{U_{2}}(u_{0})d_{U_{2}}(u)]^{a}) \\ &= (x \cdot 1)^{a} - [(x - 1)2]^{a} + (x \cdot 1)^{a} - (2 \cdot 1)^{a} \\ &+ \sum_{u \in N_{U_{1}}(u_{0}) \setminus \{u_{1}, u_{1}'\}} ([x \, d_{U_{1}}(u)]^{a} - [(x - 1)d_{U_{1}}(u)]^{a}) \\ &> x^{a} - (2x - 2)^{a} + x^{a} - 2^{a} \\ &\geq 0 \end{aligned}$$

for $0 < a \le 1$, since $x^a - (2x - 2)^a + x^a - 2^a = 0$ if a = 1, and by Lemma 1, we have $x^a - 2^a > (2x - 2)^a - x^a$ if 0 < a < 1. Hence $R_a(U_1) > R_a(U_2)$.

Case 4. s = t = 1 and a > 1.

We have s = t = 1, so all $p \ge 2$ pendant paths containing u_0 are of length 1. We replace those p pendant paths by one path of length p with an end vertex u_0 to obtain U'_2 from U_1 . Then U'_2 is unicyclic, and U_1 and U'_2 have the same maximum degree and number of vertices. We denote the vertices adjacent to u_0 in U_1 which have degree at least 2 by w_i , where $1 \le i \le 3$. The proof of this case is more complicated than the previous cases, therefore we use $d_{U_1}(u_0) = p + i$ instead of $d_{U_1}(u_0) = x$. Then $d_{U'_2}(u_0) = i + 1$, where $1 \le i \le 3$. We have $d_{U_1}(w_i) = d_{U'_2}(w_i) \ge 2$. Thus

$$[d_{U_1}(u_0)d_{U_1}(w_i)]^a - [d_{U'_2}(u_0)d_{U'_2}(w_i)]^a = [(p+i)d_{U_1}(w_i)]^a - [(i+1)d_{U_1}(w_i)]^a \ge [(p+i)2]^a - [(i+1)2]^a - [(i+1)2]$$

by Lemma 2, since $d_{U_1}(w_i) \ge 2$. Therefore

$$\begin{aligned} R_a(U_1) - R_a(U_2') &= p[(p+i)1]^a - [2(i+1)]^a - (p-2)4^a - 2^a \\ &+ \sum_{j=1}^i ([d_{U_1}(u_0)d_{U_1}(w_j)]^a - [d_{U_2'}(u_0)d_{U_2'}(w_j)]^a) \\ &\geq p(p+i)^a - (p-2)4^a - (2i+2)^a - 2^a + i([2(p+i)]^a - [2(i+1)]^a) \\ &= f(p). \end{aligned}$$

Let i = 1. Then

 $f(p) = p[(p+1)^a - 4^a] + [2(p+1)]^a - 2^a.$

If $p \ge 3$, clearly f(p) > 0. If p = 2, then

$$f(2) = [6^a + 3^a - 2(4^a)] + (3^a - 2^a) > 0,$$

since by Lemma 4 (ii), we have $6^a + 3^a - 2(4^a) > 0$. Let $2 \le i \le 3$. Then

$$f'(p) = (p+i)^a + ap(p+i)^{a-1} - 4^a + i2^a a(p+i)^{a-1} > 0,$$

since $(p+i)^a \ge 4^a$. So f(p) is increasing for $p \ge 2$. Thus $f(p) \ge f(2)$ for $p \ge 2$. If i = 2 and p = 2, then

$$f(2) = [(8^a - 6^a) - (6^a - 4^a)] + (8^a - 6^a) + (4^a - 2^a) > 0,$$

since by Lemma 1, we have $8^a - 6^a > 6^a - 4^a$ for a > 1. Hence $R_a(U_1) - R_a(U'_2) \ge f(p) \ge f(2) > 0$. If i = 3 and p = 2, then

$$f(2) = 3(10^{a}) - 4(8^{a}) + 2(5^{a}) - 2^{a} = 2[(10^{a} - 8^{a}) - (8^{a} - 6^{a})] + [(10^{a} - 6^{a}) - (6^{a} - 2^{a})] + 2(5^{a} - 2^{a}) > 0,$$

since by Lemma 1, we have $10^a - 8^a > 8^a - 6^a$ and $10^a - 6^a > 6^a - 2^a$ for a > 1. Hence $R_a(U_1) - R_a(U'_2) \ge f(p) \ge f(2) > 0$. So $R_a(U_1) > R_a(U'_2)$.

For $\Delta \geq 3$ and $2 \leq t \leq n - \Delta - 1$, we obtain the graph $CPS_{n-\Delta-t+2,t,\Delta-1}$ from the path of length t-1 by connecting one of its end vertices to $\Delta - 1$ new vertices, and by identifying the other end vertex of that path with one vertex of the cycle $C_{n-\Delta-t+2}$; see Figure 1.

Figure 1. Graph $CPS_{n-\Delta-t+2,t,\Delta-1}$

For $3 \leq \Delta \leq n-1$, we obtain the graph $CS_{n-\Delta+2,\Delta-2}$ by joining one vertex of the cycle $C_{n-\Delta+2}$ to $\Delta - 2$ new vertices; see Figure 2.

Figure 2. Graph $CS_{n-\Delta+2,\Delta-2}$

We show that graphs presented in Figures 1 and 2 are extremal graphs for Theorem 1.

Theorem 1. Among unicyclic graphs containing n vertices and maximum degree $\Delta \geq 3$, the following graphs have the smallest values of R_a :

- (i) $CS_{4,\Delta-2}$ for $\Delta = n-2$ and a > 0,
- (ii) $CS_{5,\Delta-2}$ for $\Delta = n-3$ and $a \ge 1$,

(iii) For $\Delta = n - 3$ and 0 < a < 1:

- $CS_{5,\Delta-2}$ if $(3\Delta)^a 2(2\Delta)^a + \Delta^a + 2(6^a 4^a) > 0$,
- $CPS_{3,2,\Delta-1}$ if $(3\Delta)^a 2(2\Delta)^a + \Delta^a + 2(6^a 4^a) < 0$,
- both $CS_{5,\Delta-2}$ and $CPS_{3,2,\Delta-1}$ if $(3\Delta)^a 2(2\Delta)^a + \Delta^a + 2(6^a 4^a) = 0.$

(iv) For $3 \le \Delta \le n - 4$ and a > 0:

- $CPS_{n-\Delta-t+2,t,\Delta-1}$ for any $3 \le t \le n-\Delta-1$ if $(2\Delta)^a \Delta^a + 3(4^a 6^a) > 0$
- $CS_{n-\Delta+2,\Delta-2}$ if $(2\Delta)^a \Delta^a + 3(4^a 6^a) < 0$
- $CS_{n-\Delta+2,\Delta-2}$ and $CPS_{n-\Delta-t+2,t,\Delta-1}$ for any $3 \le t \le n-\Delta-1$ if $(2\Delta)^a \Delta^a + 3(4^a 6^a) = 0$.

Proof. For $3 \leq \Delta \leq n-2$, let us denote by U' a unicyclic graph with n vertices and maximum degree Δ having the smallest R_a . We denote the cycle in U' by $C_k = v_1 v_2 \dots v_k v_1$ and a vertex of degree Δ by w. We can suppose that among vertices in C_k , v_1 is closest to w (possibly $w = v_1$). We denote a path between w and v_1 by P (its length is 0 if $w = v_1$). Let $S = V(P) \cup V(C_k)$.

Claim 1. The degree of every vertex not in S is at most 2.

To the contrary, suppose that there is a vertex not in S having degree greater than 2. Let v be a vertex of degree at least 3 furthest from S. It follows that v belongs to (at least) 2 pendant paths, hence from Lemma 6, U' is not a graph having the smallest R_a , a contradiction.

Claim 2. Every neighbour of a vertex from $S \setminus \{w\}$ is in S.

To the contrary, suppose that there exists $v \in S \setminus \{w\}$, having r neighbours not from S such that $r \geq 1$. By Claim 1, v belongs to r pendant paths. However, v cannot belong to two or more pendant paths, since from Lemma 6, U' would not have the minimum R_a . Thus r = 1. We have $3 \leq d_{U'}(v) \leq 4$ and from Lemma 5, U' is not a graph having the smallest R_a , a contradiction.

Claim 3. Every pendant path containing w has length 1.

To the contrary, suppose that U' contains a pendant path ending with w having length $p \ge 2$. We replace it with a path having length 1, and C_k is replaced with the cycle having length p + k - 1 to get U_1 from U'. We have

$$R_a(U') - R_a(U_1) = (2\Delta)^a - \Delta^a + 2^a - 4^a > 0$$

since by Lemma 2, we have $(2\Delta)^a - \Delta^a > (2 \cdot 2)^a - (1 \cdot 2)^a$. So $R_a(U') > R_a(U_1)$, a contradiction.

By Claims 1, 2 and 3, U' is $CS_{n-\Delta+2,\Delta-2}$ or $CPS_{n-\Delta-t+2,t,\Delta-1}$, where $2 \leq t \leq n-\Delta-1$. Then $2 \leq n-\Delta-1$ gives $\Delta \leq n-3$, so $CPS_{n-\Delta-t+2,t,\Delta-1}$ does not exist for $\Delta = n-2$.

(i) Let $\Delta = n - 2$. From the previous paragraph, clearly U' is $CS_{4,\Delta-2}$.

(ii) Let $\Delta = n - 3$. Then U' is $CS_{5,\Delta-2}$ or $CPS_{3,2,\Delta-1}$. Let us compare their R_a . We get

$$R_a(CPS_{3,2,\Delta-1}) = (\Delta - 1)\Delta^a + (3\Delta)^a + 4^a + 2(6^a)$$

and

$$R_a(CS_{5,\Delta-2}) = (\Delta - 2)\Delta^a + 2(2\Delta)^a + 3(4^a).$$

Thus

$$R_a(CPS_{3,2,\Delta-1}) - R_a(CS_{5,\Delta-2}) = (3\Delta)^a - 2(2\Delta)^a + \Delta^a + 2(6^a - 4^a).$$
(2.1)

For a > 1, we have $(3\Delta)^a - (2\Delta)^a > (2\Delta)^a - \Delta^a$ by Lemma 1, so $CS_{5,\Delta-2}$ has the smallest R_a .

For a = 1, we have $R_1(CPS_{3,2,\Delta-1}) - R_1(CS_{5,\Delta-2}) = 3\Delta - 2(2\Delta) + \Delta + 2(6-4) > 0$, so again $CS_{5,\Delta-2}$ has the smallest R_a .

(iii) For 0 < a < 1 and $\Delta = n - 3$, by (2.1), $CS_{5,\Delta-2}$ has the smallest R_a if $(3\Delta)^a - 2(2\Delta)^a + \Delta^a + 2(6^a - 4^a) > 0$, $CPS_{3,2,\Delta-1}$ has the smallest R_a if $(3\Delta)^a - 2(2\Delta)^a + (\Delta)^a + 2(6^a - 4^a) < 0$, and both $CS_{5,\Delta-2}$ and $CPS_{3,2,\Delta-1}$ have the smallest R_a if $(3\Delta)^a - 2(2\Delta)^a + (\Delta)^a + 2(6^a - 4^a) = 0$. (iv) Let $3 \leq \Delta \leq n - 4$.

Claim 4. P does not have length 1.

To the contrary, suppose that P is of length 1. So U' consists of C_k whose one vertex v_1 is adjacent to w, and w is a neighbour of $\Delta - 1$ vertices of degree 1 in U' (by Claim 3). So $n = \Delta + k$. Since $n \ge \Delta + 4$, we have $k \ge 4$. We replace C_k by the cycle

having length k - 1 and we replace P by the path having length 2 to obtain U_2 from U'. Then

$$R_a(U') - R_a(U_2) = (3\Delta)^a - (2\Delta)^a + 4^a - 6^a > 0,$$

since by Lemma 2, we have $(3\Delta)^a - (2\Delta)^a > (3 \cdot 2)^a - (2 \cdot 2)^a$. So $R_a(U') > R_a(U_2)$ which is a contradiction.

By Claims 1, 2, 3 and 4, P has length at least 2 or 0, so U' is $CS_{n-\Delta+2,\Delta-2}$ or any of the graphs $CPS_{n-\Delta-t+2,t,\Delta-1}$, where $3 \le t \le n-\Delta-1$. Let us compare their R_a . We get

$$R_a(CPS_{n-\Delta-t+2,t,\Delta-1}) = (2\Delta)^a + (\Delta-1)\Delta^a + 3(6^a) + (n-\Delta-3)4^a$$

and

$$R_a(CS_{n-\Delta+2,\Delta-2}) = 2(2\Delta)^a + (\Delta-2)\Delta^a + (n-\Delta)4^a.$$

Thus

$$R_a(CS_{n-\Delta+2,\Delta-2}) - R_a(CPS_{n-\Delta-t+2,t,\Delta-1}) = (2\Delta)^a - \Delta^a + 3(4^a - 6^a).$$

Hence, $CPS_{n-\Delta-t+2,t,\Delta-1}$ for $3 \le t \le n-\Delta-1$ has the smallest R_a if $(2\Delta)^a - \Delta^a + 3(4^a - 6^a) > 0$, $CS_{n-\Delta+2,\Delta-2}$ has the smallest R_a if $(2\Delta)^a - \Delta^a + 3(4^a - 6^a) < 0$, and $CS_{n-\Delta+2,\Delta-2}$ and $CPS_{n-\Delta-t+2,t,\Delta-1}$ for $3 \le t \le n-\Delta-1$ have the smallest R_a if $(2\Delta)^a - \Delta^a + 3(4^a - 6^a) = 0$.

In Remark 1, we consider some special cases of Theorem 1 (iv).

Remark 1. Among unicyclic graphs containing *n* vertices and maximum degree Δ ,

- (i) $CS_{n-\Delta+2,\Delta-2}$ has the smallest R_a if $a > 0, \Delta = 3$ and $n \ge 7$,
- (ii) $CPS_{n-\Delta-t+2,t,\Delta-1}$ for $3 \le t \le n-\Delta-1$ are the only graphs with the smallest R_a for $a \ge 1$ and $6 \le \Delta \le n-4$, except for the case when a = 1 and $\Delta = 6$. In that case, $CS_{n-\Delta+2,\Delta-2}$ also has the smallest R_a .

Proof. From the proof of Theorem 1, we know that for a > 0 and $3 \le \Delta \le n - 4$, a graph with the smallest R_a is $CS_{n-\Delta+2,\Delta-2}$ or any of the graphs $CPS_{n-\Delta-t+2,t,\Delta-1}$, where $3 \le t \le n - \Delta - 1$.

(i) Let a > 0 and $3 = \Delta \le n - 4$. Then

since $4^a - 6^a < 0$ and $6^a - 2(4^a) + 3^a > 0$ by Lemma 4 (ii). Hence $CS_{n-\Delta+2,\Delta-2}$ has the smallest R_a if $\Delta = 3$,

(ii) Let $a \ge 1$ and $6 \le \Delta \le n - 4$. For

$$R_a(CS_{n-\Delta+2,\Delta-2}) - R_a(CPS_{n-\Delta-t+2,t,\Delta-1}) = (2\Delta)^a - \Delta^a + 3(4^a - 6^a) = f(\Delta),$$

the derivative $f'(\Delta) = (2^a - 1)a\Delta^{a-1} > 0$, so the function $f(\Delta)$ is strictly increasing. Thus for $\Delta \ge 6$,

$$f(\Delta) \ge f(6) = 12^a - 6^a + 3(4^a - 6^a) = 2^a[6^a + 3(2^a) - 4(3^a)] > 0$$

if a > 1 by Lemma 4 (iii). If a = 1, then for $\Delta \ge 7$, we have and $f(\Delta) > f(6) = 0$. Remark 1 (ii) follows.

3. Largest value of R_a for a < 0

For $\lceil \frac{n+1}{2} \rceil \leq \Delta \leq n-1$, we attach $n-\Delta-1$ pendant paths of length 2 and $2\Delta-n-1$ pendant paths of length 1 to one vertex of C_3 to obtain $CSI_{3,2\Delta-n-1,n-\Delta-1}$; see Figure 3.

Figure 3. Graph $CSI_{3,2\Delta-n-1,n-\Delta-1}$

Let us show that $CSI_{3,2\Delta-n-1,n-\Delta-1}$ is the extremal graph for Theorem 2.

Theorem 2. Among unicyclic graphs with n vertices and maximum degree Δ such that $\left\lceil \frac{n+1}{2} \right\rceil \leq \Delta \leq n-2$, the graph $CSI_{3,2\Delta-n-1,n-\Delta-1}$ has the largest value of R_a for a < 0.

Proof. From $\left\lceil \frac{n+1}{2} \right\rceil \leq \Delta \leq n-2$ we get $n \geq 5$, so $\Delta \geq 3$. Note that $n \leq 2\Delta - 1$. Among unicyclic graphs with n vertices and maximum degree Δ , we denote a unicyclic graph with the largest R_a by U'. A vertex having degree Δ is denoted by w. If w is not a neighbour of a vertex of degree 1, then every component of U' - w has two or more vertices. There are $\Delta - 1$ or more components, thus $n \geq 1+2(\Delta-1)=2\Delta-1$. So $n = 2\Delta - 1$, therefore U' - w has exactly $\Delta - 1$ components, where every component contains 2 vertices. Thus U' is $CSI_{3,0,\Delta-2}$ which is $CSI_{3,2\Delta-n-1,n-\Delta-1}$ if $n = 2\Delta - 1$. In the rest of this proof, we can assume that w has a neighbour of degree 1, say w_0 .

Claim 1. The vertex w belongs to the cycle of U'.

We denote the cycle of U' by $C_k = v_1 v_2 \dots v_k v_1$, where $k \ge 3$. To the contrary, suppose that $w \notin V(C_k)$. Thus, we can suppose that $d_{U'}(v_i) < \Delta$ for every $i = 1, 2, \dots, k$.

We can also suppose that a vertex of C_k closest to w is v_1 . Let u_1, u_2, \ldots, u_s , where $s \ge 0$, be the neighbours of v_2 in U' not in $V(C_k)$. Let U_1 have the same vertices as U' and $E(U_1) = \{w_0v_3, w_0u_1, \ldots, w_0u_s\} \cup E(U') \setminus \{v_2v_3, v_2u_1, \ldots, v_2u_s\}$. So U_1 is unicyclic and

$$R_a(U') - R_a(U_1) = (1 \cdot \Delta)^a - [d_{U'}(v_2) \cdot \Delta]^a + [d_{U'}(v_2)d_{U'}(v_1)]^a - [1 \cdot d_{U'}(v_1)]^a < 0,$$

since by Lemma 2, for a < 0,

$$[d_{U'}(v_2)d_{U'}(v_1)]^a - [1 \cdot d_{U'}(v_1)]^a < [d_{U'}(v_2) \cdot \Delta]^a - (1 \cdot \Delta)^a.$$

Thus $R_a(U') < R_a(U_1)$, a contradiction.

Claim 2. Every vertex of U' not on the cycle has degree at most 2.

We prove Claim 2 by contradiction. Among vertices not on the cycle having degree at least 3, let u be a vertex furthest from w. We have $d_{U'}(u) = s$, where $3 \le s \le \Delta$. So, there is a pendant path $uu_1 \ldots u_p$, where $p \ge 1$ in U'. Let U_2 have the same vertices as U' and $E(U_2) = \{w_0u_1\} \cup E(U') \setminus \{uu_1\}$. We consider the cases $s \ge 4$ and s = 3 separately.

Case 1. $s \ge 4$.

Note that $\Delta \geq s \geq 4$. We have

$$\begin{aligned} R_{a}(U') - R_{a}(U_{2}) &= \sum_{v \in N_{U'}(u) \setminus \{u_{1}\}} \left([d_{U'}(u)d_{U'}(v)]^{a} - [d_{U_{2}}(u)d_{U_{2}}(v)]^{a} \right) \\ &+ [d_{U'}(u)d_{U'}(u_{1})]^{a} - [d_{U_{2}}(w_{0})d_{U_{2}}(u_{1})]^{a} \\ &+ [d_{U'}(w)d_{U'}(w_{0})]^{a} - [d_{U_{2}}(w)d_{U_{2}}(w_{0})]^{a} \\ &= \sum_{v \in N_{U'}(u) \setminus \{u_{1}\}} \left([s \, d_{U'}(v)]^{a} - [(s - 1)d_{U'}(v)]^{a} \right) \\ &+ [s \, d_{U'}(u_{1})]^{a} - [2 \, d_{U'}(u_{1})]^{a} + (\Delta \cdot 1)^{a} - (\Delta \cdot 2)^{a} \\ &< [s \, d_{U'}(u_{1})]^{a} - [2 \, d_{U'}(u_{1})]^{a} + \Delta^{a} - (2\Delta)^{a}, \end{aligned}$$

since $[s \, d_{U'}(v)]^a < [(s-1)d_{U'}(v)]^a$. If $p \ge 2$, then $d_{U'}(u_1) = 2$. We obtain

$$R_{a}(U') - R_{a}(U_{2}) < (2s)^{a} - 4^{a} + \Delta^{a} - (2\Delta)^{a}$$
$$\leq 8^{a} - 4^{a} + \Delta^{a} - (2\Delta)^{a}$$
$$\leq 0,$$

since $(2s)^a \leq 8^a$, and by Lemma 2, we get $(2 \cdot 4)^a - 4^a \leq (2\Delta)^a - \Delta^a$ for a < 0 and $\Delta \geq 4$.

If p = 1, then $d_{U'}(u_1) = 1$. We get

$$R_{a}(U') - R_{a}(U_{2}) < s^{a} - 2^{a} + \Delta^{a} - (2\Delta)^{a}$$

$$\leq 4^{a} - 2^{a} + \Delta^{a} - (2\Delta)^{a}$$

$$< 0.$$

since $s^a \leq 4^a$, and by Lemma 2, we get $(2 \cdot 2)^a - 2^a < (2\Delta)^a - \Delta^a$ for a < 0 and $\Delta \geq 4$. Thus $R_a(U') < R_a(U_2)$ which is a contradiction.

Case 2. s = 3.

Let us denote the vertex adjacent to u in U' which is on a shortest path between u and w by u' (possibly u' = w). We denote the vertex adjacent to u in U' other than u' and u_1 by v. Since v is on a pendant path, we have $d_{U'}(v) \leq 2$, but we only use $d_{U'}(v) \leq 3$.

Clearly, in this case n > 5, thus $\Delta \ge 4$, since $\Delta \ge \left\lceil \frac{n+1}{2} \right\rceil$. We obtain

$$\begin{aligned} R_{a}(U') - R_{a}(U_{2}) &= [d_{U'}(u)d_{U'}(u')]^{a} - [d_{U_{2}}(u)d_{U_{2}}(u')]^{a} \\ &+ [d_{U'}(u)d_{U'}(v)]^{a} - [d_{U_{2}}(u)d_{U_{2}}(v)]^{a} \\ &+ [d_{U'}(u)d_{U'}(u_{1})]^{a} - [d_{U_{2}}(w_{0})d_{U_{2}}(u_{1})]^{a} \\ &+ [d_{U'}(w)d_{U'}(w_{0})]^{a} - [d_{U_{2}}(w)d_{U_{2}}(w_{0})]^{a} \\ &= [3d_{U'}(u')]^{a} - [2d_{U'}(u')]^{a} + [3d_{U'}(v)]^{a} - [2d_{U'}(v)]^{a} \\ &+ [3 d_{U'}(u_{1})]^{a} - [2 d_{U'}(u_{1})]^{a} + (\Delta \cdot 1)^{a} - (\Delta \cdot 2)^{a} \\ &< 9^{a} - 6^{a} + [3 d_{U'}(u_{1})]^{a} - [2 d_{U'}(u_{1})]^{a} + \Delta^{a} - (2\Delta)^{a}, \end{aligned}$$

since $[3 d_{U'}(u')]^a < [2 d_{U'}(u')]^a$, and by Lemma 2, for $d_{U'}(v) \le 3$, we have $[3 d_{U'}(v)]^a - [2 d_{U'}(v)]^a \le (3 \cdot 3)^a - (2 \cdot 3)^a$. If p = 1, then $d_{U'}(u_1) = 1$. We obtain

$$R_a(U') - R_a(U_2) < 9^a - 6^a + 3^a - 2^a + 4^a - 8^a$$

= 9^a - 8^a + 3^a - 2^a - (6^a - 4^a)
< 0,

since $9^a < 8^a$ for a < 0, and by Lemma 2, we get $3^a - 2^a < (2 \cdot 3)^a - (2 \cdot 2)^a = 6^a - 4^a$. If $p \ge 2$, then $d_{U'}(u_1) = 2$. We get

$$R_a(U') - R_a(U_2) < 9^a - 6^a + 6^a - 4^a + 4^a - 8^a$$

= 9^a - 8^a
< 0,

since $9^a < 8^a$ for a < 0. So $R_a(U') < R_a(U_2)$ which is a contradiction. We have Claim 2. Claim 3. The only vertex on the cycle having degree at least 3 in U' is w.

Assume to the contrary that C_k contain a vertex of degree at least 3 different from w. Let u have the largest degree among vertices in $V(C_k) \setminus \{w\}$. We have $d_{U'}(u) = s$, where $3 \leq s \leq \Delta$. From Claim 2 we also know that u is the end vertex of s - 2 pendant paths. We denote a neighbour of u on one of those pendant paths by u_1 . If $s \geq 4$, then calculations given in Case 1 of Claim 2 can be used to show that U' does not have the largest R_a .

So s = 3. We denote the neighbours of u on C_k by u' and v (where possibly u' = w). We have $d_{U'}(v) \leq d_{U'}(u) = 3$.

If n > 5, then calculations given in Case 2 of Claim 2 can be used to show that U' does not have the largest R_a .

If n = 5, then u' = w, $C_k = C_3$ contains u, v and w. We have $d_{U'}(v) = 2$, u is adjacent to one vertex of degree 1 (which is u_1), and w is adjacent to one vertex of degree 1 (which is w_0). Then

$$R_a(U') - R_a(U_2) = 9^a - 6^a + 3^a - 2^a - (4^a - 3^a) < 0,$$

since $9^a < 6^a$ for a < 0, and by Lemma 1, we get $3^a - 2^a < 4^a - 3^a$. Thus $R_a(U') < R_a(U_2)$ which is a contradiction. So, we have Claim 3.

Thus U' contains a cycle with the vertex w which is the end vertex of $\Delta - 2$ pendant paths.

If U' would contain a pendant path of length greater than 2 or if the length of the cycle is greater than 3, then we can get a unicyclic graph U_3 from U' by replacing that path/cycle by a path/cycle having one less edge, and by joining a new vertex to w_0 . We get

$$R_a(U') - R_a(U_3) = 4^a - 2^a + \Delta^a - (2\Delta)^a < 0,$$

since by Lemma 2, we have $4^a - 2^a < (2\Delta)^a - \Delta^a$ for a < 0. So we would have $R_a(U') < R_a(U_3)$.

Therefore the length of the cycle in U' is 3 and the length of each pendant path is 1 or 2. This implies that U' contains $n - \Delta - 1$ vertices at distance 2 from w, so w is contained in $n - \Delta - 1$ pendant paths of length 2 and $2\Delta - n - 1$ pendant paths of length 1. Thus U' is $CSI_{3,2\Delta-n-1,n-\Delta-1}$.

4. Open problems

In this paper, unicyclic graphs having the smallest R_a for a > 0 and largest R_a for a < 0 are investigated. So, we state the following open problem.

Problem 1. Among unicyclic graphs with given number of vertices and maximum degree, find graphs with the smallest values of R_a for a < 0, and graphs having the largest R_a for a > 0.

Altassan and Imran [3] presented unicyclic graphs containing n vertices and maximum degree $\Delta \geq 3$ with the largest R_a for $a_0 \leq a < 0$, where a_0 is the negative solution of the equation $9^a + 2^a - 2(4^a) = 0$ which is about -0.21. Their result is extended in our Theorem 2 for $\left\lceil \frac{n+1}{2} \right\rceil \leq \Delta \leq n-2$ and every a < 0. Thus we state Problem 2.

Problem 2. Among unicyclic graphs containing *n* vertices and maximum degree Δ , find graphs with the largest values of R_a for $a < a_0$, where $3 \le \Delta < \lfloor \frac{n+1}{2} \rfloor$.

Acknowledgements: The work of T. Vetrík is based on the research supported by the National Research Foundation of South Africa (Grant Number CPRR230530111607).

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

 M.R. Alfuraidan, K.C. Das, T. Vetrík, and S. Balachandran, General Randić index of unicyclic graphs with given diameter, Discrete Appl. Math. 306 (2022), 7–16.

https://doi.org/10.1016/j.dam.2021.09.016.

- [2] A. Ali and T. Idrees, A note on polyomino chains with extremum general sumconnectivity index, Commun. Comb. Optim. 6 (2021), no. 1, 81–91. https://doi.org/10.22049/cco.2020.26866.1153.
- [3] A. Altassan and M. Imran, General Randić index of unicyclic graphs and its applications to drugs, Symmetry 16 (2024), no. 1, Article ID: 113. https://doi.org/10.3390/sym16010113.
- [4] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998), 225–233.
- [5] D. Chen, Study of unicyclic graph with maximal general Randić index R_{α} for $\alpha < 0$, Intelligent Computing and Information Science (Berlin, Heidelberg) (R. Chen, ed.), Springer Berlin Heidelberg, 2011, pp. 136–141.
- [6] R. Hasni, N.H. Md Husin, and Z. Du, Unicyclic graphs with maximum Randić indices, Commun. Comb. Optim. 8 (2023), no. 1, 161–172. https://doi.org/10.22049/cco.2021.27230.1216.
- [7] X. Li, Y. Shi, and T. Xu, Unicyclic graphs with maximum general Randić index for α_φ 0, MATCH Commun. Math. Comput. Chem. 56 (2006), no. 3, 557–570.
- [8] X. Li, L. Wang, and Y. Zhang, Complete solution for unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 55 (2006), no. 2, 391–408.

[9] E. Swartz and T. Vetrík, General sum-connectivity index and general Randić index of trees with given maximum degree, Discret. Math. Lett. 12 (2023), 181– 188.

https://doi.org/10.47443/dml.2023.140.

- [10] _____, General sum-connectivity index of unicyclic graphs with given maximum degree, Discrete Appl. Math. 366 (2025), 238-249. https://doi.org/10.1016/j.dam.2025.01.033.
- [11] T. Vetrík and M. Masre, General eccentric connectivity index of trees and unicyclic graphs, Discrete Appl. Math. 284 (2020), 301–315. https://doi.org/10.1016/j.dam.2020.03.051.
- [12] B. Wu and L. Zhang, Unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005), no. 2, 455–464.