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Department of Mathematics and Applied Mathematics, University of the Free State,
Bloemfontein, South Africa
†swartze1@ufs.ac.za
∗vetrikt@ufs.ac.za

Received: 7 February 2025; Accepted: 11 May 2025
Published Online: 17 May 2025

Abstract: The general Randić index of a graph G is defined as Ra(G) =∑
uv∈E(G)[dG(u)dG(v)]a, where a ∈ R, E(G) is the set of edges of G, and dG(u)

and dG(v) are the degrees of vertices u and v, respectively. Among unicyclic graphs
with given number of vertices and maximum degree, we present the graph with the

largest value of Ra for a < 0, and graphs having the smallest values of Ra for a > 0.
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1. Introduction

Let us denote by V (G) and E(G) the set of vertices and edges of a graph G. The

degree dG(u) of a vertex u is the number of edges incident with u in G. The maximum

degree ∆ of G is the degree of a vertex whose degree is the largest in G. A pendant

path of G is a subgraph of G containing two end vertices, one of them has degree

at least 3 in G, the other end vertex has degree 1 in G, and all the internal vertices

(if any) of that path have degree 2 in G. A unicyclic graph is a connected graph

containing exactly one cycle. Let Ck = u1u2 . . . uku1 be the cycle with k vertices

u1, u2, . . . , uk and k edges u1u2, u2u3, . . . , uk−1uk, uku1. We denote the set of vertices

adjacent to u in G by NG(u).
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2 General Randić index of unicyclic graphs with given maximum degree

Indices of graphs are investigated because of their wide applications. The general

Randić index

Ra(G) =
∑

uv∈E(G)

[dG(u) dG(v)]a

defined for a ∈ R and a graph G was first investigated by Bollobás and Erdős [4].

Several special cases of Ra are well-known indices. From Ra, we get the Randić index

if a = − 1
2 , reciprocal Randić index if a = 1

2 , second modified Zagreb index if a = −1,

second Zagreb index if a = 1 and second hyper-Zagreb index if a = 2.

Unicyclic graphs belong to important classes of graphs. For unicyclic graphs with

given number of vertices, Chen [5] proved that the cycle has the largest Ra if −0.58 <

a < 0. For a > 0, this problem was investigated by Li, Shi and Xu [7]. The unicyclic

graph having the minimum Ra for a ≥ −1 was found by Wu and Zhang [12]. Li, Wang

and Zhang [8] solved this problem for a < −1. The unicyclic graph with given number

of vertices and diameter having the smallest Ra for −0.64 ≤ a < 0 was obtained in

[1]. Related topics were considered for example in [2], [6] and [10].

We study unicyclic graphs with prescribed maximum degree ∆ and number of vertices

n. For any unicyclic graph, we have 2 ≤ ∆ ≤ n − 1. The cycle Cn is the unique

unicyclic graph for ∆ = 2 (and n ≥ 3), and we obtain the unique unicyclic graph for

∆ = n − 1 (where n ≥ 4) by adding one edge to the star Sn. Thus, we consider ∆

such that 3 ≤ ∆ ≤ n− 2.

Altassan and Imran [3] presented unicyclic graphs with given n and ∆ having the

largest Ra for a0 ≤ a < 0, where a0 is about −0.21. In Theorem 2, we considerably

extend their results by obtaining the unicyclic graph with given n and ∆ having the

largest Ra for every a < 0, where
⌈
n+1

2

⌉
≤ ∆ ≤ n− 2. Moreover, we obtain unicyclic

graphs with given n and ∆ having the smallest Ra for a > 0 in Theorem 1.

Lemmas 1 and 2 are used in both Sections 2 and 3, therefore we include them in this

section. Lemma 1 was proved in [11].

Lemma 1. Let 1 ≤ x1 < x2 and c > 0. Then for a > 1 and a < 0,

(x1 + c)a − xa
1 < (x2 + c)a − xa

2 .

For 0 < a < 1,

(x1 + c)a − xa
1 > (x2 + c)a − xa

2 .

Lemma 2. Let x > 0, c > s > 0 and a 6= 0. Then the function

f(x) = (cx)a − (sx)a

is strictly increasing.

Proof. We get f ′(x) = (ca−sa)axa−1. Clearly xa−1 > 0. We have ca > sa for a > 0,

and ca < sa for a < 0. Thus f ′(x) > 0 if a 6= 0, so f(x) is strictly increasing.
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2. Smallest value of Ra for a > 0

Let us give a few lemmas. Lemma 3 was proved in [9].

Lemma 3. Let c, q, r, a ∈ R, where c, q, r > 0 and {q, r} 6= {1}. Then the function

fc,q,r(a) = c qa + ra

is strictly convex.

We use Lemma 3 in the proof of Lemma 4.

Lemma 4. We have

(i) 2(3a) + 1− 3(2a) > 0 for a > 0,

(ii) 6a + 3a − 2(4a) > 0 for a > 0,

(iii) 6a + 3(2a)− 4(3a) > 0 for a > 1.

Proof. By Lemma 3, the functions

f2, 32 ,
1
2
(a) = 2

(
3

2

)a
+

(
1

2

)a
and f3, 23 ,2

(a) = 3

(
2

3

)a
+ 2a

are strictly convex for a ∈ R.

(i) We have f2, 32 ,
1
2
(− 1

10 ) < 3 and f2, 32 ,
1
2
(0) = 3. Since f2, 32 ,

1
2
(a) is strictly convex,

we get f2, 32 ,
1
2
(a) > 3 for a > 0. So 2

(
3
2

)a
+
(

1
2

)a
> 3, thus 2(3a) + 1a > 3(2a)

for a > 0.

(ii) This part was proved in [9].

(iii) We have f3, 23 ,2
(0) = f3, 23 ,2

(1) = 4. Since f3, 23 ,2
(a) is strictly convex, we get

f3, 23 ,2
(a) > 4 for a > 1. So 3

(
2
3

)a
+ 2a > 4, thus 3(2a) + 6a > 4(3a) for a > 1.

Let us show that a graph U1 does not have the smallest Ra for a > 0.

Lemma 5. Let U1 be a unicyclic graph with a pendant path having one end vertex u0 such
that 3 ≤ dU1(u0) ≤ 4. Let U1 contain a vertex different from u0 which has maximum degree.
Then there exists a unicyclic graph with the same number of vertices and same maximum
degree having smaller Ra for a > 0.
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Proof. Let u0 and up be the end vertices of a pendant path of length p ≥ 1 in U1,

where 3 ≤ dU1(u0) ≤ 4 and dU1(up) = 1. Let us denote the vertices adjacent to u0

in U1 which are not on that pendant path by u′, u′′ if dU1
(u0) = 3, and u′, u′′, u′′′ if

dU1(u0) = 4. Since U1 is not a tree, we can assume that dU1(u′) ≥ 2. We remove the

edge u0u
′ from U1 and add the edge upu

′ to obtain U2 from U1. Then U2 is unicyclic,

and U1 and U2 have the same maximum degree and number of vertices. We have

dU2
(u0) = dU1

(u0)−1, dU2
(up) = 2 and dU2

(w) = dU1
(w) for w ∈ V (U1)\{u0, up}.

Let p = 1. If dU1(u0) = 3, then

Ra(U1)−Ra(U2) = [dU1
(u0)dU1

(u′)]a − [dU2
(u1)dU2

(u′)]a

+ [dU1(u0)dU1(u′′)]a − [dU2(u0)dU2(u′′)]a

+ [dU1(u0)dU1(u1)]a − [dU2(u0)dU2(u1)]a

= [3dU1
(u′)]a − [2dU1

(u′)]a + [3dU1
(u′′)]a − [2dU1

(u′′)]a

+ (3 · 1)a − (2 · 2)a

> [3dU1(u′)]a − [2dU1(u′)]a + 3a − 4a

≥ 6a − 4a + 3a − 4a

> 0,

since [3dU1(u′)]a − [2dU1(u′)]a ≥ 6a − 4a for dU1(u′) ≥ 2 by Lemma 2, and 6a − 4a +

3a − 4a > 0 by Lemma 4 (ii).

If dU1(u0) = 4, then

Ra(U1)−Ra(U2) = [dU1
(u0)dU1

(u′)]a − [dU2
(u1)dU2

(u′)]a

+ [dU1(u0)dU1(u′′)]a − [dU2(u0)dU2(u′′)]a

+ [dU1(u0)dU1(u′′′)]a − [dU2(u0)dU2(u′′′)]a

+ [dU1
(u0)dU1

(u1)]a − [dU2
(u0)dU2

(u1)]a

= [4dU1
(u′)]a − [2dU1

(u′)]a + [4dU1
(u′′)]a − [3dU1

(u′′)]a

+ [4dU1(u′′′)]a − [3dU1(u′′′)]a + (4 · 1)a − (3 · 2)a

> [4dU1(u′)]a − [2dU1(u′)]a + 4a − 6a

≥ 8a − 4a + 4a − 6a

> 0,

since from Lemma 2, we get [4dU1
(u′)]a − [2dU1

(u′)]a ≥ 8a − 4a for dU1
(u′) ≥ 2. So

Ra(U1) > Ra(U2).
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Let p ≥ 2. If dU1
(u0) = 3, then

Ra(U1)−Ra(U2) = [dU1
(u0)dU1

(u′)]a − [dU2
(up)dU2

(u′)]a

+ [dU1
(u0)dU1

(u′′)]a − [dU2
(u0)dU2

(u′′)]a

+ [2dU1(u0)]a − [2dU2(u0)]a + [2dU1(up)]
a − [2dU2(up)]

a

= [3dU1(u′)]a − [2dU1(u′)]a + [3dU1(u′′)]a − [2dU1(u′′)]a

+ (2 · 3)a − (2 · 2)a + (2 · 1)a − (2 · 2)a

> [3dU1
(u′)]a − [2dU1

(u′)]a + 6a + 2a − 2(4a)

≥ 6a − 4a + 6a + 2a − 2(4a)

= 2a[2(3a) + 1− 3(2a)]

> 0,

since [3dU1(u′)]a− [2dU1(u′)]a ≥ 6a− 4a for dU1(u′) ≥ 2 by Lemma 2, and 2(3a) + 1−
3(2a) > 0 by Lemma 4 (i).

If dU1(u0) = 4, then

Ra(U1)−Ra(U2) = [dU1
(u0)dU1

(u′)]a − [dU2
(up)dU2

(u′)]a

+ [dU1(u0)dU1(u′′)]a − [dU2(u0)dU2(u′′)]a

+ [dU1(u0)dU1(u′′′)]a − [dU2(u0)dU2(u′′′)]a

+ [2dU1
(u0)]a − [2dU2

(u0)]a + [2dU1
(up)]

a − [2dU2
(up)]

a

= [4dU1
(u′)]a − [2dU1

(u′)]a + [4dU1
(u′′)]a − [3dU1

(u′′)]a

+ [4dU1(u′′′)]a − [3dU1(u′′′)]a + (2 · 4)a − (2 · 3)a + (2 · 1)a − (2 · 2)a

> [4dU1(u′)]a − [2dU1(u′)]a + 8a − 6a + 2a − 4a

> 8a − 6a

> 0,

since from Lemma 2, we get [4dU1
(u′)]a − [2dU1

(u′)]a > 4a − 2a for dU1
(u′) > 1. So

Ra(U1) > Ra(U2).

We prove that there is a unicyclic graph having Ra smaller than Ra(U1) for a > 0.

Lemma 6. Let U1 be a unicyclic graph having a vertex u0 which is an end vertex of p ≥ 2
pendant paths, where dU1(u0) = p + i, 1 ≤ i ≤ 3, and let U1 contain a vertex of maximum
degree other than u0. Then there exists a unicyclic graph with the same number of vertices
and same maximum degree having smaller Ra for a > 0.

Proof. Let dU1
(u0) = x. We have x ≥ 3. Let u0u1 . . . us and u0u

′
1 . . . u

′
t be two

longest pendant paths containing u0. So s, t ≥ 1 and dU1(us) = dU1(u′t) = 1. Let U2

be obtained from U1 be removing the edge u0u1 and adding the edge u′tu1. We have

dU2(u0) = x− 1, dU2(u′t) = 2 and dU1(u) = dU2(u)
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for u ∈ V (U1)\{u0, u
′
t}. Then U2 is unicyclic, and U1 and U2 have the same maximum

degree and number of vertices. We consider several cases.

Case 1. s, t ≥ 2.

We obtain

Ra(U1)−Ra(U2) = [dU1
(u0)dU1

(u′1)]a − [dU2
(u0)dU2

(u′1)]a

+ [dU1
(u′t−1)dU1

(u′t)]
a − [dU2

(u′t−1)dU2
(u′t)]

a

+ [dU1(u0)dU1(u1)]a − [dU2(u′t)dU2(u1)]a

+
∑

u∈NU1
(u0)\{u1,u′1}

([dU1
(u0)dU1

(u)]a − [dU2
(u0)dU2

(u)]a)

= (x · 2)a − [(x− 1)2]a + (2 · 1)a − (2 · 2)a + (x · 2)a − (2 · 2)a

+
∑

u∈NU1
(u0)\{u1,u′1}

([x dU1
(u)]a − [(x− 1)dU1

(u)]a)

> 2(2x)a − (2x− 2)a − 2(4a) + 2a = f(x).

Then f ′(x) = a2a[2xa−1 − (x− 1)a−1]. For a ≥ 1, we have 2xa−1 > (x− 1)a−1, thus

f ′(x) > 0. For 0 < a < 1, we have

2 >

(
1 +

1

x− 1

)1−a

=

(
x

x− 1

)1−a

=
(x− 1)a−1

xa−1
,

thus again 2xa−1 > (x− 1)a−1 and consequently f ′(x) > 0. So f(x) is increasing for

x ≥ 3, where a > 0. Thus f(x) ≥ f(3) for x ≥ 3. We have

f(3) = 2(6a)− 3(4a) + 2a = 2a[2(3a) + 1− 3(2a)] > 0

by Lemma 4 (i). Hence Ra(U1)−Ra(U2) > f(x) ≥ f(3) > 0. So U2 has smaller Ra.

Case 2. Either s = 1 or t = 1.

We can assume that s ≥ 2 and t = 1. Then

Ra(U1)−Ra(U2) = [dU1(u0)dU1(u′1)]a − [dU2(u0)dU2(u′1)]a

+ [dU1
(u0)dU1

(u1)]a − [dU2
(u′1)dU2

(u1)]a

+
∑

u∈NU1
(u0)\{u1,u′1}

([dU1
(u0)dU1

(u)]a − [dU2
(u0)dU2

(u)]a)

= (x · 1)a − [(x− 1)2]a + (x · 2)a − (2 · 2)a

+
∑

u∈NU1
(u0)\{u1,u′1}

([x dU1(u)]a − [(x− 1)dU1(u)]a)

> (2x)a + xa − (2x− 2)a − 4a = f(x).
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We obtain f ′(x) = a[(2a + 1)xa−1− 2a(x− 1)a−1]. For a ≥ 1, we have (2a + 1)xa−1 >

2a(x− 1)a−1, thus f ′(x) > 0. For 0 < a < 1, we have

2a + 1

2a
= 1 +

1

2a
>

3

2
>

(
1 +

1

x− 1

)1−a

=

(
x

x− 1

)1−a

=
(x− 1)a−1

xa−1
,

thus again (2a + 1)xa−1 > 2a(x − 1)a−1 and consequently f ′(x) > 0. So f(x) is

increasing for x ≥ 3, where a > 0. Thus f(x) ≥ f(3) for x ≥ 3. By Lemma 4 (ii),

f(3) = 6a + 3a − 2(4a) > 0,

hence Ra(U1)−Ra(U2) > f(x) ≥ f(3) > 0. So Ra is smaller for U2.

Case 3. s = t = 1 and 0 < a ≤ 1.

We obtain

Ra(U1)−Ra(U2) = [dU1(u0)dU1(u′1)]a − [dU2(u0)dU2(u′1)]a

+ [dU1
(u0)dU1

(u1)]a − [dU2
(u′1)dU2

(u1)]a

+
∑

u∈NU1
(u0)\{u1,u′1}

([dU1
(u0)dU1

(u)]a − [dU2
(u0)dU2

(u)]a)

= (x · 1)a − [(x− 1)2]a + (x · 1)a − (2 · 1)a

+
∑

u∈NU1
(u0)\{u1,u′1}

([x dU1(u)]a − [(x− 1)dU1(u)]a)

> xa − (2x− 2)a + xa − 2a

≥ 0

for 0 < a ≤ 1, since xa − (2x− 2)a + xa − 2a = 0 if a = 1, and by Lemma 1, we have

xa − 2a > (2x− 2)a − xa if 0 < a < 1. Hence Ra(U1) > Ra(U2).

Case 4. s = t = 1 and a > 1.

We have s = t = 1, so all p ≥ 2 pendant paths containing u0 are of length 1. We

replace those p pendant paths by one path of length p with an end vertex u0 to obtain

U ′2 from U1. Then U ′2 is unicyclic, and U1 and U ′2 have the same maximum degree and

number of vertices. We denote the vertices adjacent to u0 in U1 which have degree

at least 2 by wi, where 1 ≤ i ≤ 3. The proof of this case is more complicated than

the previous cases, therefore we use dU1
(u0) = p + i instead of dU1

(u0) = x. Then

dU ′2(u0) = i+ 1, where 1 ≤ i ≤ 3. We have dU1
(wi) = dU ′2(wi) ≥ 2. Thus

[dU1
(u0)dU1

(wi)]
a−[dU ′2(u0)dU ′2(wi)]

a = [(p+i)dU1
(wi)]

a−[(i+1)dU1
(wi)]

a ≥ [(p+i)2]a−[(i+1)2]a

by Lemma 2, since dU1(wi) ≥ 2. Therefore
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Ra(U1)−Ra(U ′2) = p[(p+ i)1]a − [2(i+ 1)]a − (p− 2)4a − 2a

+
i∑

j=1

([dU1
(u0)dU1

(wj)]
a − [dU ′2(u0)dU ′2(wj)]

a)

≥ p(p+ i)a − (p− 2)4a − (2i+ 2)a − 2a + i([2(p+ i)]a − [2(i+ 1)]a)

= f(p).

Let i = 1. Then

f(p) = p[(p+ 1)a − 4a] + [2(p+ 1)]a − 2a.

If p ≥ 3, clearly f(p) > 0. If p = 2, then

f(2) = [6a + 3a − 2(4a)] + (3a − 2a) > 0,

since by Lemma 4 (ii), we have 6a + 3a − 2(4a) > 0.

Let 2 ≤ i ≤ 3. Then

f ′(p) = (p+ i)a + ap(p+ i)a−1 − 4a + i2aa(p+ i)a−1 > 0,

since (p+ i)a ≥ 4a. So f(p) is increasing for p ≥ 2. Thus f(p) ≥ f(2) for p ≥ 2.

If i = 2 and p = 2, then

f(2) = [(8a − 6a)− (6a − 4a)] + (8a − 6a) + (4a − 2a) > 0,

since by Lemma 1, we have 8a − 6a > 6a − 4a for a > 1. Hence Ra(U1) − Ra(U ′2) ≥
f(p) ≥ f(2) > 0.

If i = 3 and p = 2, then

f(2) = 3(10a)−4(8a)+2(5a)−2a = 2[(10a−8a)−(8a−6a)]+[(10a−6a)−(6a−2a)]+2(5a−2a) > 0,

since by Lemma 1, we have 10a − 8a > 8a − 6a and 10a − 6a > 6a − 2a for a > 1.

Hence Ra(U1)−Ra(U ′2) ≥ f(p) ≥ f(2) > 0. So Ra(U1) > Ra(U ′2).

For ∆ ≥ 3 and 2 ≤ t ≤ n−∆− 1, we obtain the graph CPSn−∆−t+2,t,∆−1 from the

path of length t−1 by connecting one of its end vertices to ∆−1 new vertices, and by

identifying the other end vertex of that path with one vertex of the cycle Cn−∆−t+2;

see Figure 1.

∆− 1Cn−∆−t+2

t

Figure 1. Graph CPSn−∆−t+2,t,∆−1
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For 3 ≤ ∆ ≤ n − 1, we obtain the graph CSn−∆+2,∆−2 by joining one vertex of the

cycle Cn−∆+2 to ∆− 2 new vertices; see Figure 2.

∆− 2Cn−∆+2

Figure 2. Graph CSn−∆+2,∆−2

We show that graphs presented in Figures 1 and 2 are extremal graphs for Theorem

1.

Theorem 1. Among unicyclic graphs containing n vertices and maximum degree ∆ ≥ 3,
the following graphs have the smallest values of Ra:

(i) CS4,∆−2 for ∆ = n− 2 and a > 0,

(ii) CS5,∆−2 for ∆ = n− 3 and a ≥ 1,

(iii) For ∆ = n− 3 and 0 < a < 1:

• CS5,∆−2 if (3∆)a − 2(2∆)a + ∆a + 2(6a − 4a) > 0,

• CPS3,2,∆−1 if (3∆)a − 2(2∆)a + ∆a + 2(6a − 4a) < 0,

• both CS5,∆−2 and CPS3,2,∆−1 if (3∆)a − 2(2∆)a + ∆a + 2(6a − 4a) = 0.

(iv) For 3 ≤ ∆ ≤ n− 4 and a > 0:

• CPSn−∆−t+2,t,∆−1 for any 3 ≤ t ≤ n−∆− 1 if (2∆)a −∆a + 3(4a − 6a) > 0

• CSn−∆+2,∆−2 if (2∆)a −∆a + 3(4a − 6a) < 0

• CSn−∆+2,∆−2 and CPSn−∆−t+2,t,∆−1 for any 3 ≤ t ≤ n −∆ − 1 if (2∆)a −∆a +
3(4a − 6a) = 0.

Proof. For 3 ≤ ∆ ≤ n − 2, let us denote by U ′ a unicyclic graph with n vertices

and maximum degree ∆ having the smallest Ra. We denote the cycle in U ′ by

Ck = v1v2 . . . vkv1 and a vertex of degree ∆ by w. We can suppose that among

vertices in Ck, v1 is closest to w (possibly w = v1). We denote a path between w and

v1 by P (its length is 0 if w = v1). Let S = V (P ) ∪ V (Ck).

Claim 1. The degree of every vertex not in S is at most 2.

To the contrary, suppose that there is a vertex not in S having degree greater than 2.

Let v be a vertex of degree at least 3 furthest from S. It follows that v belongs to (at

least) 2 pendant paths, hence from Lemma 6, U ′ is not a graph having the smallest

Ra, a contradiction.

Claim 2. Every neighbour of a vertex from S \ {w} is in S.
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To the contrary, suppose that there exists v ∈ S \ {w}, having r neighbours not from

S such that r ≥ 1. By Claim 1, v belongs to r pendant paths. However, v cannot

belong to two or more pendant paths, since from Lemma 6, U ′ would not have the

minimum Ra. Thus r = 1. We have 3 ≤ dU ′(v) ≤ 4 and from Lemma 5, U ′ is not a

graph having the smallest Ra, a contradiction.

Claim 3. Every pendant path containing w has length 1.

To the contrary, suppose that U ′ contains a pendant path ending with w having length

p ≥ 2. We replace it with a path having length 1, and Ck is replaced with the cycle

having length p+ k − 1 to get U1 from U ′. We have

Ra(U ′)−Ra(U1) = (2∆)a −∆a + 2a − 4a > 0

since by Lemma 2, we have (2∆)a −∆a > (2 · 2)a − (1 · 2)a. So Ra(U ′) > Ra(U1), a

contradiction.

By Claims 1, 2 and 3, U ′ is CSn−∆+2,∆−2 or CPSn−∆−t+2,t,∆−1, where 2 ≤ t ≤
n−∆− 1. Then 2 ≤ n−∆− 1 gives ∆ ≤ n− 3, so CPSn−∆−t+2,t,∆−1 does not exist

for ∆ = n− 2.

(i) Let ∆ = n− 2. From the previous paragraph, clearly U ′ is CS4,∆−2.

(ii) Let ∆ = n − 3. Then U ′ is CS5,∆−2 or CPS3,2,∆−1. Let us compare their Ra.

We get

Ra(CPS3,2,∆−1) = (∆− 1)∆a + (3∆)a + 4a + 2(6a)

and

Ra(CS5,∆−2) = (∆− 2)∆a + 2(2∆)a + 3(4a).

Thus

Ra(CPS3,2,∆−1)−Ra(CS5,∆−2) = (3∆)a − 2(2∆)a + ∆a + 2(6a − 4a). (2.1)

For a > 1, we have (3∆)a − (2∆)a > (2∆)a −∆a by Lemma 1, so CS5,∆−2 has the

smallest Ra.

For a = 1, we have R1(CPS3,2,∆−1)−R1(CS5,∆−2) = 3∆−2(2∆)+∆+2(6−4) > 0,

so again CS5,∆−2 has the smallest Ra.

(iii) For 0 < a < 1 and ∆ = n− 3, by (2.1), CS5,∆−2 has the smallest Ra if (3∆)a −
2(2∆)a + ∆a + 2(6a − 4a) > 0, CPS3,2,∆−1 has the smallest Ra if (3∆)a − 2(2∆)a +

(∆)a + 2(6a − 4a) < 0, and both CS5,∆−2 and CPS3,2,∆−1 have the smallest Ra if

(3∆)a − 2(2∆)a + (∆)a + 2(6a − 4a) = 0.

(iv) Let 3 ≤ ∆ ≤ n− 4.

Claim 4. P does not have length 1.

To the contrary, suppose that P is of length 1. So U ′ consists of Ck whose one vertex

v1 is adjacent to w, and w is a neighbour of ∆−1 vertices of degree 1 in U ′ (by Claim

3). So n = ∆ + k. Since n ≥ ∆ + 4, we have k ≥ 4. We replace Ck by the cycle
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having length k − 1 and we replace P by the path having length 2 to obtain U2 from

U ′. Then

Ra(U ′)−Ra(U2) = (3∆)a − (2∆)a + 4a − 6a > 0,

since by Lemma 2, we have (3∆)a − (2∆)a > (3 · 2)a − (2 · 2)a. So Ra(U ′) > Ra(U2)

which is a contradiction.

By Claims 1, 2, 3 and 4, P has length at least 2 or 0, so U ′ is CSn−∆+2,∆−2 or any

of the graphs CPSn−∆−t+2,t,∆−1, where 3 ≤ t ≤ n−∆−1. Let us compare their Ra.

We get

Ra(CPSn−∆−t+2,t,∆−1) = (2∆)a + (∆− 1)∆a + 3(6a) + (n−∆− 3)4a

and

Ra(CSn−∆+2,∆−2) = 2(2∆)a + (∆− 2)∆a + (n−∆)4a.

Thus

Ra(CSn−∆+2,∆−2)−Ra(CPSn−∆−t+2,t,∆−1) = (2∆)a −∆a + 3(4a − 6a).

Hence, CPSn−∆−t+2,t,∆−1 for 3 ≤ t ≤ n−∆− 1 has the smallest Ra if (2∆)a−∆a +

3(4a − 6a) > 0, CSn−∆+2,∆−2 has the smallest Ra if (2∆)a − ∆a + 3(4a − 6a) < 0,

and CSn−∆+2,∆−2 and CPSn−∆−t+2,t,∆−1 for 3 ≤ t ≤ n −∆ − 1 have the smallest

Ra if (2∆)a −∆a + 3(4a − 6a) = 0.

In Remark 1, we consider some special cases of Theorem 1 (iv).

Remark 1. Among unicyclic graphs containing n vertices and maximum degree ∆,

(i) CSn−∆+2,∆−2 has the smallest Ra if a > 0, ∆ = 3 and n ≥ 7,

(ii) CPSn−∆−t+2,t,∆−1 for 3 ≤ t ≤ n − ∆ − 1 are the only graphs with the smallest Ra

for a ≥ 1 and 6 ≤ ∆ ≤ n− 4, except for the case when a = 1 and ∆ = 6. In that case,
CSn−∆+2,∆−2 also has the smallest Ra.

Proof. From the proof of Theorem 1, we know that for a > 0 and 3 ≤ ∆ ≤ n− 4, a

graph with the smallest Ra is CSn−∆+2,∆−2 or any of the graphs CPSn−∆−t+2,t,∆−1,

where 3 ≤ t ≤ n−∆− 1.

(i) Let a > 0 and 3 = ∆ ≤ n− 4. Then

Ra(CSn−∆+2,∆−2)−Ra(CPSn−∆−t+2,t,∆−1) = 6a−3a+3(4a−6a) = (4a−6a)−[6a+3a−2(4a)] < 0,

since 4a − 6a < 0 and 6a − 2(4a) + 3a > 0 by Lemma 4 (ii). Hence CSn−∆+2,∆−2 has

the smallest Ra if ∆ = 3,
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(ii) Let a ≥ 1 and 6 ≤ ∆ ≤ n− 4. For

Ra(CSn−∆+2,∆−2)−Ra(CPSn−∆−t+2,t,∆−1) = (2∆)a −∆a + 3(4a − 6a) = f(∆),

the derivative f ′(∆) = (2a− 1)a∆a−1 > 0, so the function f(∆) is strictly increasing.

Thus for ∆ ≥ 6,

f(∆) ≥ f(6) = 12a − 6a + 3(4a − 6a) = 2a[6a + 3(2a)− 4(3a)] > 0

if a > 1 by Lemma 4 (iii). If a = 1, then for ∆ ≥ 7, we have and f(∆) > f(6) = 0.

Remark 1 (ii) follows.

3. Largest value of Ra for a < 0

For dn+1
2 e ≤ ∆ ≤ n−1, we attach n−∆−1 pendant paths of length 2 and 2∆−n−1

pendant paths of length 1 to one vertex of C3 to obtain CSI3,2∆−n−1,n−∆−1; see

Figure 3.

2∆− n− 1 n−∆− 1

Figure 3. Graph CSI3,2∆−n−1,n−∆−1

Let us show that CSI3,2∆−n−1,n−∆−1 is the extremal graph for Theorem 2.

Theorem 2. Among unicyclic graphs with n vertices and maximum degree ∆ such that⌈
n+1

2

⌉
≤ ∆ ≤ n− 2, the graph CSI3,2∆−n−1,n−∆−1 has the largest value of Ra for a < 0.

Proof. From
⌈
n+1

2

⌉
≤ ∆ ≤ n− 2 we get n ≥ 5, so ∆ ≥ 3. Note that n ≤ 2∆− 1.

Among unicyclic graphs with n vertices and maximum degree ∆, we denote a unicyclic

graph with the largest Ra by U ′. A vertex having degree ∆ is denoted by w.

If w is not a neighbour of a vertex of degree 1, then every component of U ′−w has two

or more vertices. There are ∆−1 or more components, thus n ≥ 1+2(∆−1) = 2∆−1.

So n = 2∆−1, therefore U ′−w has exactly ∆−1 components, where every component

contains 2 vertices. Thus U ′ is CSI3,0,∆−2 which is CSI3,2∆−n−1,n−∆−1 if n = 2∆−1.

In the rest of this proof, we can assume that w has a neighbour of degree 1, say w0.

Claim 1. The vertex w belongs to the cycle of U ′.

We denote the cycle of U ′ by Ck = v1v2 . . . vkv1, where k ≥ 3. To the contrary, sup-

pose that w 6∈ V (Ck). Thus, we can suppose that dU ′(vi) < ∆ for every i = 1, 2, . . . , k.
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We can also suppose that a vertex of Ck closest to w is v1. Let u1, u2, . . . , us, where

s ≥ 0, be the neighbours of v2 in U ′ not in V (Ck). Let U1 have the same vertices

as U ′ and E(U1) = {w0v3, w0u1, . . . , w0us} ∪E(U ′) \ {v2v3, v2u1, . . . , v2us}. So U1 is

unicyclic and

Ra(U ′)−Ra(U1) = (1 ·∆)a − [dU ′(v2) ·∆]a + [dU ′(v2)dU ′(v1)]a − [1 · dU ′(v1)]a < 0,

since by Lemma 2, for a < 0,

[dU ′(v2)dU ′(v1)]a − [1 · dU ′(v1)]a < [dU ′(v2) ·∆]a − (1 ·∆)a.

Thus Ra(U ′) < Ra(U1), a contradiction.

Claim 2. Every vertex of U ′ not on the cycle has degree at most 2.

We prove Claim 2 by contradiction. Among vertices not on the cycle having degree at

least 3, let u be a vertex furthest from w. We have dU ′(u) = s, where 3 ≤ s ≤ ∆. So,

there is a pendant path uu1 . . . up, where p ≥ 1 in U ′. Let U2 have the same vertices

as U ′ and E(U2) = {w0u1} ∪ E(U ′) \ {uu1}. We consider the cases s ≥ 4 and s = 3

separately.

Case 1. s ≥ 4.

Note that ∆ ≥ s ≥ 4. We have

Ra(U ′)−Ra(U2) =
∑

v∈NU′ (u)\{u1}

([dU ′(u)dU ′(v)]a − [dU2
(u)dU2

(v)]a)

+ [dU ′(u)dU ′(u1)]a − [dU2
(w0)dU2

(u1)]a

+ [dU ′(w)dU ′(w0)]a − [dU2
(w)dU2

(w0)]a

=
∑

v∈NU′ (u)\{u1}

([s dU ′(v)]a − [(s− 1)dU ′(v)]a)

+ [s dU ′(u1)]a − [2 dU ′(u1)]a + (∆ · 1)a − (∆ · 2)a

< [s dU ′(u1)]a − [2 dU ′(u1)]a + ∆a − (2∆)a,

since [s dU ′(v)]a < [(s− 1)dU ′(v)]a.

If p ≥ 2, then dU ′(u1) = 2. We obtain

Ra(U ′)−Ra(U2) < (2s)a − 4a + ∆a − (2∆)a

≤ 8a − 4a + ∆a − (2∆)a

≤ 0,

since (2s)a ≤ 8a, and by Lemma 2, we get (2 · 4)a − 4a ≤ (2∆)a −∆a for a < 0 and

∆ ≥ 4.
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If p = 1, then dU ′(u1) = 1. We get

Ra(U ′)−Ra(U2) < sa − 2a + ∆a − (2∆)a

≤ 4a − 2a + ∆a − (2∆)a

< 0,

since sa ≤ 4a, and by Lemma 2, we get (2 · 2)a − 2a < (2∆)a − ∆a for a < 0 and

∆ ≥ 4. Thus Ra(U ′) < Ra(U2) which is a contradiction.

Case 2. s = 3.

Let us denote the vertex adjacent to u in U ′ which is on a shortest path between u

and w by u′ (possibly u′ = w). We denote the vertex adjacent to u in U ′ other than

u′ and u1 by v. Since v is on a pendant path, we have dU ′(v) ≤ 2, but we only use

dU ′(v) ≤ 3.

Clearly, in this case n > 5, thus ∆ ≥ 4, since ∆ ≥
⌈
n+1

2

⌉
. We obtain

Ra(U ′)−Ra(U2) = [dU ′(u)dU ′(u
′)]a − [dU2

(u)dU2
(u′)]a

+ [dU ′(u)dU ′(v)]a − [dU2
(u)dU2

(v)]a

+ [dU ′(u)dU ′(u1)]a − [dU2
(w0)dU2

(u1)]a

+ [dU ′(w)dU ′(w0)]a − [dU2(w)dU2(w0)]a

= [3dU ′(u
′)]a − [2dU ′(u

′)]a + [3dU ′(v)]a − [2dU ′(v)]a

+ [3 dU ′(u1)]a − [2 dU ′(u1)]a + (∆ · 1)a − (∆ · 2)a

< 9a − 6a + [3 dU ′(u1)]a − [2 dU ′(u1)]a + ∆a − (2∆)a,

since [3 dU ′(u
′)]a < [2 dU ′(u

′)]a, and by Lemma 2, for dU ′(v) ≤ 3, we have [3 dU ′(v)]a−
[2 dU ′(v)]a ≤ (3 · 3)a − (2 · 3)a.

If p = 1, then dU ′(u1) = 1. We obtain

Ra(U ′)−Ra(U2) < 9a − 6a + 3a − 2a + 4a − 8a

= 9a − 8a + 3a − 2a − (6a − 4a)

< 0,

since 9a < 8a for a < 0, and by Lemma 2, we get 3a−2a < (2 ·3)a− (2 ·2)a = 6a−4a.

If p ≥ 2, then dU ′(u1) = 2. We get

Ra(U ′)−Ra(U2) < 9a − 6a + 6a − 4a + 4a − 8a

= 9a − 8a

< 0,

since 9a < 8a for a < 0. So Ra(U ′) < Ra(U2) which is a contradiction. We have

Claim 2.
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Claim 3. The only vertex on the cycle having degree at least 3 in U ′ is w.

Assume to the contrary that Ck contain a vertex of degree at least 3 different from

w. Let u have the largest degree among vertices in V (Ck)\{w}. We have dU ′(u) = s,

where 3 ≤ s ≤ ∆. From Claim 2 we also know that u is the end vertex of s − 2

pendant paths. We denote a neighbour of u on one of those pendant paths by u1.

If s ≥ 4, then calculations given in Case 1 of Claim 2 can be used to show that U ′

does not have the largest Ra.

So s = 3. We denote the neighbours of u on Ck by u′ and v (where possibly u′ = w).

We have dU ′(v) ≤ dU ′(u) = 3.

If n > 5, then calculations given in Case 2 of Claim 2 can be used to show that U ′

does not have the largest Ra.

If n = 5, then u′ = w, Ck = C3 contains u, v and w. We have dU ′(v) = 2, u is

adjacent to one vertex of degree 1 (which is u1), and w is adjacent to one vertex of

degree 1 (which is w0). Then

Ra(U ′)−Ra(U2) = 9a − 6a + 3a − 2a − (4a − 3a) < 0,

since 9a < 6a for a < 0, and by Lemma 1, we get 3a − 2a < 4a − 3a. Thus Ra(U ′) <

Ra(U2) which is a contradiction. So, we have Claim 3.

Thus U ′ contains a cycle with the vertex w which is the end vertex of ∆− 2 pendant

paths.

If U ′ would contain a pendant path of length greater than 2 or if the length of the

cycle is greater than 3, then we can get a unicyclic graph U3 from U ′ by replacing

that path/cycle by a path/cycle having one less edge, and by joining a new vertex to

w0. We get

Ra(U ′)−Ra(U3) = 4a − 2a + ∆a − (2∆)a < 0,

since by Lemma 2, we have 4a − 2a < (2∆)a − ∆a for a < 0. So we would have

Ra(U ′) < Ra(U3).

Therefore the length of the cycle in U ′ is 3 and the length of each pendant path is 1

or 2. This implies that U ′ contains n −∆ − 1 vertices at distance 2 from w, so w is

contained in n −∆ − 1 pendant paths of length 2 and 2∆ − n − 1 pendant paths of

length 1. Thus U ′ is CSI3,2∆−n−1,n−∆−1.

4. Open problems

In this paper, unicyclic graphs having the smallest Ra for a > 0 and largest Ra for

a < 0 are investigated. So, we state the following open problem.

Problem 1. Among unicyclic graphs with given number of vertices and maximum degree,
find graphs with the smallest values of Ra for a < 0, and graphs having the largest Ra for
a > 0.
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Altassan and Imran [3] presented unicyclic graphs containing n vertices and maximum

degree ∆ ≥ 3 with the largest Ra for a0 ≤ a < 0, where a0 is the negative solution of

the equation 9a + 2a − 2(4a) = 0 which is about −0.21. Their result is extended in

our Theorem 2 for
⌈
n+1

2

⌉
≤ ∆ ≤ n− 2 and every a < 0. Thus we state Problem 2.

Problem 2. Among unicyclic graphs containing n vertices and maximum degree ∆, find
graphs with the largest values of Ra for a < a0, where 3 ≤ ∆ <

⌈
n+1

2

⌉
.
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