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Abstract: Ptolemaic graphs are precisely the graphs that are both chordal and

distance-hereditary. Markenzon et al. [L. Markenzon and C.F.E.M. Waga, New results
on ptolemaic graphs, Discrete Appl. Math. 196 (2015), 135–140] established a hierarchy

of Ptolemaic graphs comprising six subfamilies: laminar chordal graphs, block duplicate

graphs, block graphs, AC graphs, trees, and paths. In this paper, we present a new proof
of the characterization of AC graphs using forbidden induced subgraphs and identify an

additional graph class that lies between AC graphs and paths within this hierarchy. The

interval function is a well-studied tool in metric graph theory, and the characterization
of the interval function of graph families is an interesting problem in metric graph theory

having connections to first-order logic. In this paper, we propose a set of independent
betweenness axioms for an arbitrary function known as a transit function and provide

a characterization of the interval functions corresponding to graphs in the extended
hierarchy of subgraphs of Ptolemaic graphs, specifically laminar chordal graphs, block
duplicate graphs, and AC graphs.

Keywords: Ptolemaic graph, laminar chordal, block duplicate, AC graph, transit
function, interval function.
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1. Introduction

The interval function IG of a connected graph G is an important notion in metric graph

theory and an essential concept in the study of the metric properties of graphs. It is
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2 Hierarchy of subfamilies of ptolemaic graphs

defined as a function that maps for every pair of vertices u, v in G, the set IG(u, v) =

{w | w lies on a shortest u, v-path}. When no confusion arises for the graph G, we

write I instead of IG. The first extensive study of the interval function is due to

Mulder in [20], where the term interval function was coined. The axiomatic studies

in metric graph theory captured attention due to the various characterizations of the

interval function I by Nebeský [22, 24–26], Nebeský and Mulder [22]. The axiomatic

characterization of the interval function of special class of graphs also became an

interesting problem, For e.g. trees [11, 28], median graphs [20, 23, 29], geodetic

graphs [26], block graphs [2], weakly modular graphs, partial cubes, their principal

subclasses, and superclasses [7].

The interval function is generalized to the notion of a transit function R by Mulder

in [21] to various setups in discrete structures such as graphs, hypergraphs, posets,

etc. Formally, a transit function is defined on a non-empty set V . We consider only

finite non-empty set V in this paper.

A transit function on V is a function R : V × V → 2V satisfying the following three

axioms:

(t1) u ∈ R(u, v), for all u, v ∈ V ,

(t2) R(u, v) = R(v, u), for all u, v ∈ V ,

(t3) R(u, u) = {u}, for all u ∈ V .

If V is the vertex set of a graph G, then we say that R is a transit function on G. The

underlying graph GR of a transit function R is the graph with vertex set V , where

two distinct vertices u and v are joined by an edge if and only if R(u, v) = {u, v}.
Note that if R is a transit function on G, then GR does not need to be isomorphic

with G, see [21].

Another important example is the induced path function J of G, given by J(u, v) =

{w | w lies on an induced u, v-path}. Axioms, as the above three, on a function R on

the set V are called transit axioms.

For the induced path transit function, Nebeský [27] obtained a very interesting re-

sult: using first-order logic, he proved that characterization of J by transit axioms is

impossible. This was an extra motivation to characterize the induced path function

on special classes of graphs; see, for example, [8, 9, 19, 20].

The following betweenness axioms were considered by Mulder in [19].

(b1): x ∈ R(u, v), x 6= v ⇒ v /∈ R(u, x),

(b2): x ∈ R(u, v)⇒ R(u, x) ⊆ R(u, v).

In [9] it is proved that if R satisfies the axioms (b1) and (b2), then the underlying

graph GR of R is connected and both the axioms (b1) and (b2) are necessary for the

connectivity of GR. Mulder also introduced the following axioms in [20].

(c5): if x ∈ R(u, v) and y ∈ R(u, x), then x ∈ R(y, v) for all u, v, x, y.

(c4): if x ∈ R(u, v), then R(u, x) ∩R(x, v) = {x} for all u, v, x.
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The axioms (t1), (t2), (b2), (c5) and (c4) are known as five classical axioms of the

interval function IG of a connected graph, since IG satisfies these axioms. It is clear

that the axioms (t1) and (c4) imply the axiom (t3). Hence, any function R from

V × V → 2V satisfying the five classical axioms is a transit function. Furthermore, it

is easy to see that we have the following implications. The axioms (t1), (t2) and (c4)

imply (b1), see [2]. Axioms (t1), (t2), (t3) and (c5) imply axioms (c4), see [22]. Hence

if R is a transit function that satisfies the axiom (c5) then R satisfies the axioms (c4)

and (b1).

Ptolemaic graphs form an interesting subclass of chordal graphs (A graph G is chordal

if it contains no induced cycles of length more than 3). It is precisely the graphs

that are both chordal and distance-hereditary (A graph G is distance-hereditary if

every induced path is also a shortest path in G). Ptolemaic graphs possess several

characterizations based on the reduced clique graph, analyzing the behaviour of the

one-vertex extensions, etc. [3, 13]. A hierarchy of Ptolemaic graphs is developed based

on the characteristics of the minimal vertex separators in each subclass by Markenzon

et al.[18] and analyzed the Ptolemaic graphs for their properties as chordal graphs

and classified six subfamilies of Ptolemaic graphs, namely laminar chordal graphs,

block duplicate graphs, block graphs, AC graphs, trees, and paths.

The main purpose of this paper is to show that the interval function of all these

subfamilies of Ptolemaic graphs possesses an axiomatic characterization in terms of

simple first-order axioms framed on an arbitrary transit function. In other words,

these subfamilies of Ptolemaic graphs can be characterized in terms of their interval

function. All graphs that we consider in this paper, possess a forbidden subgraphs

characterizations. That is, these graphs can be characterized using a list of forbidden-

induced subgraphs. Our approach is that, when we consider a graph that has a

forbidden induced subgraph characterization, we identify axioms that correspond to

one or more of these forbidden subgraphs. In a way, the proposed axiomatization

is a reinterpretation of forbidden subgraphs for a particular graph that possesses a

forbidden induced subgraphs characterization. The paper is organized as follows.

In the rest of the introductory section, we fix the graph theoretical terminologies

required for the subsequent sections. In Section 2, we describe the properties and

characterizations of the subclasses of Ptolemaic graphs that we discuss in this paper.

In Section 3, the axiomatic characterizations of the interval function of the subclasses

of Ptolemaic graphs, namely laminar chordal, block duplicate graphs, AC-graphs and

Ptolemaic C-I graphs, are presented.

Now, we define certain graph-theoretic concepts that are required in this paper. Let

G = (V,E) be a connected graph, vertex set and edge set of G denoted as V (G) and

E(G), respectively. The complement of G is denoted as G. A graph H is said to be

a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). H is an induced subgraph of

G if for u, v ∈ V (H) and uv ∈ E(G) implies uv ∈ E(H). A graph G is said to be

H-free, if G has no induced subgraph isomorphic to H. A complete graph is a graph

whose vertices are pairwise adjacent, denoted as Kn. A set S ⊆ V (G) is a clique if

the subgraph of G induced by S is a complete graph, and a maximal clique is a clique

which is not contained by any other clique. A vertex v is called simplicial vertex if
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its neighborhood induces a complete subgraph. The bull, claw, dart, double-diamond,

gem and n-cycle (Cn) graphs are depicted in Fig. 1. A chordal graph is a graph that

does not contain an induced cycle of length greater than 3.

A subset S ⊆ V is a separator of G if at least two vertices in the same connected

component of G are in two distinct connected components of G[V \ S]. The set S

is a minimal separator of G if S is a separator and no proper subset of S separates

the graph. A subset S ⊂ V is a vertex separator for non adjacent vertices u and v

(a uv-separator), if the removal of S from the graph separates u and v into distinct

connected components. If no proper subset of S is a uv-separator then S is a minimal

uv-separator. If S is minimal uv-separator for some pair of vertices, it is called a

minimal vertex separator. An efficient algorithm to determine the set of minimal

vertex separators can be found in [17].

The vertices u and v are true twins in G if they have the same closed neighborhoods

and they are false twins if they have the same open neighborhoods. Let G = (V,E)

be a graph and v ∈ V , consider the set V ′ = V ∪ {v′} where {v′} ∩ V = ∅. The

graph with vertex set V ′ and edge set consisting of the edge set of G together with

edges between v′ and v and between v′ and all neighbors of v in G is called the graph

obtained by adding a true twin to G.

Figure 1. Claw, gem, n-Cycle(Cn) for n ≥ 4, bull, dart and double-diamond graph

2. Subclasses of Ptolemaic graphs

In this section, we make a short survey on the following subfamilies of Ptolemaic

graphs, namely the block duplicate graph, AC graph, laminar chordal graph, and

Ptolemaic C-I graph. Ptolemaic graphs are explored in many ways.

A connected graph G is Ptolemaic if for any four vertices u, v, w, x of V ,

d(u, v)d(w, x) ≤ d(u,w)d(v, x) + d(u, x)d(v, w).
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The following theorem by Howorka is a most celebrated characterization of Ptolemaic

graphs.

Theorem 1 ([14]). The following conditions are equivalent:

1. G is Ptolemaic.

2. G is gem-free and chordal.

3. G is distance-hereditary and chordal.

The two known subclasses of Ptolemaic graphs are reviewed in terms of minimal

vertex separators: block duplicate graphs and AC graphs. A graph G is a block graph

if every block of G is a clique. A block duplicate graph is a graph obtained by adding

zero or more true twins to each vertex of a block graph G (or equivalently to each

cut-vertex, since adding a true twin to a non-cut vertex preserves the property of

being a block graph). Block duplicate graph was introduced by Golumbic and Peled

[12]. The class was also defined as strictly chordal graphs in [15] based on hypergraph

properties. The class was proved to be gem-free and dart-free [12, 16] (see Figure 1,

for the graphs gem and dart). Block duplicate graphs also have properties in terms of

the structure of their minimal vertex separators, as proved in the following theorem.

Based on the theorem, the recognition algorithm for block duplicate graphs becomes

trivial.

Theorem 2 ([18]). Let G = (V,E) be a chordal graph and S be the set of minimal
vertex separators of G. The following statements are equivalent:

1. G is a block duplicate graph.

2. For any distinct S, S′ ∈ S, S ∩ S′ = ∅.

3. G is gem-free and dart-free.

Another subclass of Ptolemaic graphs, the AC graphs, were presented in [4]. An AC

graph is a graph whose clique intersection graph is acyclic. Their characterization is

simple and they are easy to recognize.

Theorem 3 ([5]). A graph G = (V,E) is an AC graph if and only if it is chordal and
every vertex in G belongs to at most two maximal cliques.

In the following theorem, we have provided new proof of the characterization of AC

graphs using the forbidden induced subgraphs.

Theorem 4. A graph G is an AC graph if and only if it is a (Cn, gem, claw)-free graph
for n ≥ 4.
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Proof. Let G = (V,E) be a connected graph. Suppose that G is an AC graph; then

by Theorem 3, G is chordal, and every vertex in G belongs to at most two maximal

cliques. Hence, it is clear that G is a graph free of (Cn, gem, claw) for n ≥ 4.

Conversely, if G is a graph free of (Cn, gem, claw) for n ≥ 4, then we need to prove

that G is an AC graph.

Suppose that G is not an AC graph; then by Theorem 3, G is either not chordal, or

there exists a vertex in G belonging to at least three maximal cliques.

If G is not chordal, then G contains an induced cycle Cn for some n ≥ 4, which is a

contradiction to the assumption.

If there is a vertex u in G that belongs to at least three maximal cliques. Without

loss of generality, u belongs to three maximal cliques, say M1,M2 and M3. Let

M = M1 ∩M2 ∩M3, Si = V (Mi) \V (M) for i = 1, 2, 3 and also clear that u ∈ V (M)

and S1 ∩S2 ∩S3 = ∅. That is, M1,M2 and M3 are maximal cliques containing u and

Si is the set of vertices in Mi by removing the common vertices in M1,M2 and M3 and

since Mi’s are maximal cliques Si 6= ∅ for i = 1, 2, 3. Then, the possible relationship

between S1, S2 and S3 are;

(i) S1 ∩ S2 = ∅, S2 ∩ S3 = ∅ and S1 ∩ S3 = ∅.
In this case, the vertices w ∈ S1, x ∈ S2, and y ∈ S3 together with the vertex u

form an induced claw in G, a contradiction to the assumption.

(ii) S1 ∩ S2 6= ∅, S2 ∩ S3 = ∅, and S1 ∩ S3 = ∅.
In this case, there exist w ∈ S1 and x ∈ S2 such that w /∈ S2 and x /∈ S1 (such x

and y exist since M1 and M2 are maximal cliques). Then, the vertices w, x and

y ∈ S3 together with the vertex u form an induced claw in G, a contradiction

to the assumption.

(iii) S1 ∩ S2 6= ∅, S2 ∩ S3 6= ∅ and S1 ∩ S3 = ∅.
In this case, if there exist w ∈ S1, x ∈ S2, and y ∈ S3 such that w /∈ S2 ∪ S3,

x /∈ S1 ∪ S3 and y /∈ S1 ∪ S2, then the vertices w, x, y together with the vertex

u form an induced claw in G, a contradiction to the assumption.

Otherwise, that is, every element in S2 is in S1 or S3. Then there exist w′ ∈ S1,

x′ ∈ S1 ∩ S2, y′ ∈ S2 ∩ S3 and z′ ∈ S3 such that w′ /∈ S2 and z′ /∈ S2 (such that

w′, x′, y′ and z′ exits because M1,M2,M3 are maximal cliques and S1 ∩ S3 = ∅
and S1 ∩S2 ∩S3 = ∅). It is clear that the vertices w′, x′, y′, z′ together with the

vertex u form an induced gem in G, a contradiction to the assumption.

(iv) S1 ∩ S2 6= ∅, S2 ∩ S3 6= ∅, and S1 ∩ S3 6= ∅.
In this case, if there exist w ∈ S1, x ∈ S2, and y ∈ S3 such that w /∈ S2 ∪ S3,

x /∈ S1 ∪ S3 and y /∈ S1 ∪ S2, then the vertices w, x, y together with the vertex

u form an induced claw in G, a contradiction to the assumption.

If such w, x, and y do not exist, then the elements of any of the sets S1, S2, and

S3 are contained in the other two sets, say S1. The elements in S1 contain in

S2 and S3. That is, S1 = (S1 ∩S2)∪ (S1 ∩S3). Then we see that S1 ∪ (S2 ∩S3)

is a clique and S1 ⊂ S1 ∪ (S2 ∩ S3), not possible. So, in this case, there exist

w ∈ S1, x ∈ S2, and y ∈ S3 such that w /∈ S2 ∪S3, x /∈ S1 ∪S3 and y /∈ S1 ∪S2.
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Thus, we have proved that in all cases, G contains either an induced claw or an

induced gem or an induced Cn, for n ≥ 4, a contradiction to the assumption, and

hence the theorem follows.

Let F = {F1, . . . , Fk}, Fi ⊆ V , 1 ≤ i ≤ k, be a family of sets. F is a laminar family if

Fi ∩ Fj 6= ∅ implies that Fi ⊆ Fj or Fj ⊆ Fi, 1 ≤ i ≤ j ≤ k. In other words, a family

of sets is called laminar if two sets are disjoint or if one of them is a subset of the

other. An empty family is a laminar family. A chordal graph G is called a laminar

chordal graph if the set S of all minimal vertex separators is laminar. The family of

laminar chordal graphs is characterized in [18] as follows.

Theorem 5 ([18]). Let G = (V,E) be a chordal graph. Then G is a laminar chordal
graph if and only if G is gem-free and double-diamond-free.

A partially ordered set or poset P = (V,≤) consists of a nonempty set V and a

reflexive, anti-symmetric, transitive relation ≤ on V . If u ≤ v or v ≤ u in a poset,

we say u and v are comparable, otherwise incomparable. If u ≤ v but u 6= v, then we

write u < v. If u and v are in V , then v covers u in P if u < v and there is no w in

V with u < w < v, denoted by u� v.

The cover-incomparability, shortly, C-I graph of a poset P = (V,≤) is defined as the

graph G with the vertex set V and two vertices u, v ∈ V are adjacent in G if u and

v are incomparable or u� v or v � u in P . The C-I graphs were introduced in [6] as

the underlying graphs of the so-called standard transit functions of a poset [6]. For

an example, see Figure 2. A graph that is both Ptolemaic and C-I graph is called

Ptolemaic C-I graph. The following theorem is proved in [1].

Figure 2. P is a poset, and GP is its corresponding C-I graph.

Theorem 6 ([1]). Let G be a C-I graph. Then, the following conditions are equivalent.

(i) G is a Ptolemaic graph.

(ii) G is a laminar chordal graph.
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(iii) G is a block duplicate graph.

(iv) G is an AC graph.

Based on the above theorem and the hierarchy of the Ptolemaic graphs established by

Markenzon et al. [18], we conclude that the Ptolemaic C-I graph is also a subclass of

the AC graph and a superclass of the path graphs. Thus, the family of Ptolemaic C-I

graphs is another family of graphs which can be included in the hierarchy of subclass

of Ptolemaic graphs, as shown in Figure 3.

Figure 3. A hierarchy of Ptolemaic graph

Also, there is a forbidden subgraph characterization for the Ptolemaic C-I graph.

Theorem 7 ([1]). A graph G is a Ptolemaic C-I graph if and only if G is a (bull, claw,
gem, Cn)- free graph, for n ≥ 4.

3. Interval function of subclasses of Ptolemaic graphs

In this section, we provide axiomatic characterizations of the remaining subfamily

of Ptolemaic graphs, namely AC -graphs, block duplicate graphs, Laminar chordal

graphs and Ptolemaic C-I graphs, other than trees and block graphs, so that all the

subfamily of Ptolemaic graphs in the hierarchy given in Figure 3 possess an axiomatic

characterization in terms of the interval function of these graphs. Finally, we provide

an axiomatic characterization of the interval function of these classes of graphs using

a set of first-order axioms on an arbitrary transit function.
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In [2], Balakrishnan et. al. provided the axiomatic characterization of the interval

function of trees and extended the characterization to block graphs by modifying the

axiom (U), which prevents cycles. The axiom (U) is the following.

(U): for all a, b, c ∈ V , R(a, b) ∩R(b, c) = {b} ⇒ R(a, b) ∪R(b, c) = R(a, c).

In [2], the interval function of a tree is characterized using the axiom (U) and the

axioms (t1), (t2), (b1) and (b2) as the following theorem.

Theorem 8 ([2]). Let R : V ×V → 2V be a function on V . Then R satisfies the axioms
(t1), (t2), (b1), (b2) and (U) if and only if GR is a tree and R = IGR .

Again in [2], the axiom (U) is modified to

(U∗): for all a, b, c ∈ V , R(a, b) ∩R(b, c) = {b} ⇒ R(a, c) ⊆ R(a, b) ∪R(b, c).

The axioms (U∗), (t1), (t2), (b1) and (b2) form the axiom set for the characterization

of the interval function of a block graph in [2], which is stated as

Theorem 9 ([2]). Let R : V ×V → 2V be a function on V . Then R satisfies the axioms
(t1), (t2), (b1), (b2), and (U∗) if and only if GR is a block graph and R = IGR .

For the axiomatic characterization of IG of a Ptolemaic graph G, the essential axiom

is (J0).

(J0): If x ∈ R(u, y) and y ∈ R(x, v), then x ∈ R(u, v), for distinct u, v, x, y ∈ V .

In [8], Changat et al. characterized the graphs for which the interval function satisfies

(J0) as follows.

Theorem 10 ([8]). Let G be a graph. The interval function IG satisfies the axiom (J0)
if and only if G is a Ptolemaic graph.

3.1. Laminar chordal graph

In this subsection, we first discuss the interval function for double diamond-free

graphs. From Theorem 5, we can deduce that Ptolemaic graphs which are double

diamond-free, are laminar chordal graphs. Using this fact, we discuss the interval

function of laminar chordal graphs. We formulate the following simple first-order

axiom for the purpose of the characterization.

(dd): For any pairwise distinct vertices a, b, c, d, e, f, g ∈ V , R(a, b) = {a, b}, R(b, c) =

{b, c}, R(b, d) = {b, d}, R(e, f) = {e, f}, R(f, g) = {f, g}, R(d, f) = {d, f}
and for every other pair u, v ∈ {a, b, c, e, f, g},u 6= v, d ∈ R(u, v) =⇒ either

b /∈ R(a, c) or f /∈ R(e, g).
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Proposition 1. The interval function I of a connected graph G satisfies the axiom (dd)
if and only if G is a double diamond-free graph.

Proof. Let I be the interval function of a connected graph G. Assume that G

contains a double diamond as an induced subgraph. It is easily seen that the vertices

a, b, c, d, e, f, g (as shown in Fig. 1), I(a, b) = {a, b}, satisfy I(b, c) = {b, c}, I(b, d) =

{b, d},I(e, f) = {e, f}, I(f, g) = {f, g}, I(d, f) = {d, f} and for every other pair

u, v ∈ {a, b, c, e, f, g}, u 6= v, d ∈ Iu, v), but b ∈ I(a, c) and f ∈ I(e, g). Therefore, if

G contains a double diamond as an induced subgraph, then axiom (dd) is violated.

Conversely, we need to prove that if G is double diamond-free, then it satisfies

(dd). Suppose that G does not satisfy (dd). That is, there exist distinct vertices

a, b, c, d, e, f, g such that I(a, b) = {a, b}, I(b, c) = {b, c}, I(b, d) = {b, d},I(e, f) =

{e, f}, I(f, g) = {f, g}, I(d, f) = {d, f} and for every other pair u, v ∈ {a, b, c, e, f, g},
u 6= v, d ∈ I(u, v) and b ∈ I(a, c) and f ∈ I(e, g). Since ab, bc ∈ E(G) and

b ∈ I(a, c) then d(a, c) = 2. Also, d ∈ I(a, c), it is clear that ad, dc ∈ E(G). Similarly,

ef, fg ∈ E(G) and f ∈ I(e, g) imply d(e, g) = 2. Also, given that d ∈ I(e, g), then

clearly ef, fg ∈ E(G). a, b, and c are not adjacent to e, f and G. bd, eg ∈ E(G) and

ac, eg /∈ E(G). Therefore, we get an induced double diamond formed by the vertices

{a, b, c, d, e, f, g}, a contradiction. Thus proved.

From Theorems 5, 10, and Proposition 1 we get the following corollary.

Corollary 1. The interval function I of a connected graph G satisfies the axioms (J0)
and (dd) if and only if G is a laminar chordal graph.

3.2. Block duplicate graph

In this subsection, we first discuss the interval function for dart-free graphs. From

Theorem 2, we can deduce that Ptolemaic graphs which are dart-free, are block

duplicate graphs. Using this fact, we can characterize the interval function for block

duplicate graphs. We formulate the following axiom for this purpose.

(dt): For any pairwise distinct vertices a, b, c, d, e ∈ V , b ∈ R(a, d)∩R(a, c)∩R(a, e)∩
R(c, d) and R(b, c) = {b, c}, R(b, d) = {b, d}, R(b, e) = {b, e} =⇒ e /∈ R(c, d).

Proposition 2. The interval function I of a connected graph G satisfies the axiom (dt)
if and only if G is a dart-free graph.

Proof. Let I be the interval function of a connected graph G. Assume that G

contains a dart as an induced subgraph. It is easily seen that the vertices a, b, c, d, e

(as shown in Figure 1), b ∈ I(a, d) ∩ I(a, c) ∩ I(a, e) ∩ I(c, d) and I(b, c) = {b, c},
I(b, d) = {b, d} and I(b, e) = {b, e} but e ∈ I(c, d). Hence, if G contains a dart as an

induced subgraph, then the axiom (dt) is violated.
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Conversely, we need to prove that if G is dart-free, then it satisfies (dt). Suppose

that G does not satisfy (dt). That is, there exist distinct vertices a, b, c, d, e such that

b ∈ I(a, d)∩I(a, c)∩I(a, e)∩I(c, d) and I(b, c) = {b, c}, I(b, d) = {b, d}, I(b, e) = {b, e}
and e ∈ I(c, d). Let P be a shortest ae-path through b. Since e ∈ I(c, d) and

ce, de ∈ E(G) implies d(c, d) = 2. Also, b ∈ I(c, d), which implies that cb, bd ∈ E(G).

Hence, the vertices {a, b, c, d, e} form an induced dart, a contradiction. Hence the

result.

The following corollary is an immediate consequence of Theorems 2 and 10, together

with Proposition 2.

Corollary 2. The interval function I of a connected graph G satisfies axiom (J0) and
(dt) if and only if G is a block duplicate graph.

Let x be a vertex of a graph G. Then we denote the set consisting of x and its true

twins by Wx. Note that if x does not have true twins, then Wx = {x}. Consider the

following axioms for R defined on the vertex set V (G) of a connected graph G.

(E): uv ∈ E(G) if and only if R(u, v) = {u, v}.

(T ): x ∈ R(u, v), x 6= u, v ⇐⇒ x′ ∈ R(u, v), where x and x′ are true twins.

(U ′′): R(a, b) ∩ R(b, c) = {b} =⇒ R(a, c) ⊆ R(a, b) ∪ R(b, c) or R(a, b) = R(a, b) ∪
R(b, c) ∪Wb, where Wb is the set of true twins of b, if there exists a true twin

for b, for all a, b, c ∈ V

Note that, due to the axiom (U ′′), it follows that if R(a, b) ∩ R(b, c) = {b}, then

b ∈ R(a, b) ⊆ R(a, b) ∪R(b, c) ∪Wb, for any three vertices a, b, c.

Theorem 11. Let G = (V,E) be a connected graph and let R : V × V → 2V be a transit
function on V . Then R satisfies the axioms (b1), (b2), (E), (T ) and (U ′′) if and only if G is
a block duplicate graph and R = IG.

Proof. First, let us assume that R is the interval function of the block duplicate

graph G. Then R being the interval function, it satisfies (b1) and (b2). Now assume

that R(u, x) ∩R(x, v) = {x}. Then there are three possibilities:

Case (i). x lies on a shortest u, v-path and does not has a true twin.

Then R(u, v) = R(u, x) ∪R(x, v).

Case (ii). x lies on a shortest u, v-path and has a true twin.

Now R(u, v) = R(u, x) ∪Wx ∪R(x, v)

Case (iii). x does not belong to any shortest path.

Then x is adjacent to two consecutive vertices y and z on a shortest u, v-path P .

Therefore, R(u, v) = R(u, x)∪R(x, v)−{x}. In this case, we have R(u, v) ⊂ R(u, x)∪
R(x, v).
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Conversely, let R : V × V → 2V be a transit function on G satisfying the axioms

(b1), (b2), (E), (T ) and (U ′′). We have to prove that G is a block duplicate graph and

that R = IG. We will use the axiom (E) without mention.

In order to prove that G is a block duplicate graph, by Theorem 2 it is proved that

G is chordal and (gem, dart)-free.

Claim 1. G is chordal.

Assume to the contrary that there is an induced cycle C of length n ≥ 4. Let

x1, x2, . . . , xn be the consecutive vertices of C, so that the edges are edges x1x2,

x2x3, . . . , xn−1xn, xnx1. Note that we have R(xi, xi+1) = {xi, xi+1} modulo n,

for i = 1, 2, . . . , n. Then R(x1, x2) ∩ R(x2, x3) = {x2}, so that, by (U ′′), we

have R(x1, x3) ⊆ {x1, x3} ∪ Wx2 . Since x1 and x3 are not adjacent, it follows

that x2 ∈ R(x1, x3). Similarly, we have R(x1, xn−1) ⊆ {x1, xn−1} ∪ Wxn
. Hence

R(x1, xn−1) ∩ R(xn−1, xn−2) = {xn−1}, and so, by (U ′′), we get R(x1, xn−2) ⊆
{x1, xn−2} ∪ Wxn

∪ Wxn−1
. Continuing in this way along C via xn−2, . . . , x3, we

deduce that R(x1, x3) = R(x3, x1) ⊆ {x1, x3}∪Wxn
∪ . . . ∪Wx3

, but this contradicts

that we had x2 ∈ R(x1, x3). This settles Claim 1.

Claim 2. G does not contain an induced gem.

Let x be the vertex of degree 4, and let u → z → v → y be the induced path of

length 3, so that u and y have degree 2, and z and v have degree 3. Note that, since

y is adjacent to x but not to z, it follows that z is not a twin of x. So z /∈ Wx and

x /∈Wz. Since R(u, x)∩R(x, v) = {x}, we have x ∈ R(u, v) ⊆ {u, v}∪Wx. Similarly,

R(u, z)∩R(z, v) = {z} implies that z ∈ R(u, v) ⊆ {u, v}∪Wz. But this is impossible,

which settles Claim 2.

Claim 3. G does not contain an induced dart.

Let x be the vertex of degree 3, let u and v be vertices of degree 2, and let z be the

vertex of degree 4. Now, due to the existence of the vertex of degree 1 in the dart, x

and z are not twins. The same argument as in the proof of Claim 2 now settles Claim

3, and we have proved that G is a block duplicate graph.

Claim 4. R = IG.

First we prove that R(u, v) ⊆ I(u, v). In order to prove this, we use induction on

d(u, v). If d(u, v) = 0, then u = v and R(u, u) = {u} = I(u, u). Let d(u, v) = 1. Here

u and v are adjacent and so we have R(u, v) = {u, v} = I(u, v). Now let d(u, v) = 2

and let x be a common neighbor of u and v. Then R(u, x)∩R(x, v) = {x} and so by

(U ′′), we have R(u, v) ⊆ {u, v} ∪Wx = I(u, v). Assume that R(y, z) ⊆ I(y, z), for all

y, z with d(y, z) ≤ k, where k ≥ 2. Let d(u, v) = k + 1. Let x be a neighbor of v with

d(u, x) = k. By induction, we have R(u, x) ⊆ I(u, x). By (b1), we have v /∈ R(u, x).

Hence R(u, x)∩R(x, v) = {x}. So by (U ′′), we have R(u, v) ⊆ R(u, x)∪R(x, v)∪Wx.

Hence R(u, v) ⊆ I(u, x) ∪ {x, v} ∪Wx = I(u, v).

Now we prove that I(u, v) = R(u, v). Again we use induction on d(u, v). For d(u, v) ≤
1, we have R(u, v) = I(u, v). Let d(u, v) = 2, and let x be a common neighbor of u and

v. So (u, x)∩R(x, v) = {x}. Then, by (U ′′), we have R(u, v) = {u, v}∪Wx = I(u, v).
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Let d(u, v) ≥ 3. Since u and v are not adjacent, there is a vertex z distinct from u and

v in R(u, v). We already proved that R(u, v) ⊆ I(u, v), so z lies in I(u, v). Assume

that I(u, v) * R(u, v). Then, there must exist a vertex y in I(u, v)−R(u, v). By (T ),

the vertices y and z cannot be true twins. Since G is a block duplicate graph, there

exists a shortest u, v-path P containing both y and z. Now P starts in u ∈ R(u, v)

and ends in v ∈ R(u, v), but along the way, it gets out of R(u, v), since it passes

through y /∈ R(u, v). This means that we choose y and z to be adjacent on P with

y between u and z on P . By (b2), we have R(u, z) ⊆ R(u, v). Since y /∈ R(u, v),

it follows that y /∈ R(u, z) as well. Now z being an internal vertex of the shortest

u, v-path P , we have d(u, z) < d(u, v). Hence, by induction, R(u, z) = I(u, z). But

as y is on a shortest path between u and z, we have y ∈ I(u, z). Hence y ∈ R(u, v), a

contradiction. This completes the proof.

3.3. AC graph

In this subsection, we first characterize the interval function of claw-free graphs. From

Theorem 4, we can deduce that Ptolemaic graphs which are claw-free, are AC graphs.

Using this fact, we characterize the interval function of AC graphs. We require the

following axiom for this purpose.

(cw): For any pairwise distinct vertices a, b, c, d ∈ V , b ∈ R(a, c) and b ∈ R(a, d) ⇒
b /∈ R(c, d).

Proposition 3. The interval function I of a connected graph G satisfies the axiom (cw)
if and only if G is a claw-free graph.

Proof. Let I be the interval function of a connected graph G. Assume that G

contains a claw as an induced subgraph. It is easily seen that the vertices a, b, c, d

(as shown in Figure 1), b ∈ I(a, c) and b ∈ I(a, d) but b ∈ I(c, d). Therefore, if G

contains claw as an induced subgraph, then the axiom (cw) violates.

Conversely, we need to prove that if G is claw-free, then it satisfies (cw). Suppose

that G does not satisfy (cw). That is, there exist distinct vertices a, b, c, d ∈ V , with

b ∈ I(a, c), b ∈ I(a, d), and b ∈ I(c, d). That is, b ∈ I(a, c) ∩ I(a, d) ∩ I(c, d). This

implies that there is a shortest a−c path P , shortest a−d path Q, shortest c−d path

R, and P and Q branch out from b. Therefore, b has a degree of at least three. Let

x, y, z be three neighbours of b, where x is on a− b subpath of P or Q, y is on b− c

subpath of Q or R, and z is on b−d subpath of P and R. Therefore, we get an induced

claw formed by the vertices {b, x, y, z}, a contradiction. Hence, the theorem.

From Theorems 4, 10 and Proposition 3 we get the following corollary

Corollary 3. The interval function I of a connected graph G satisfies axiom (J0) and
(cw) if and only if G is an AC graph.
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It follows from Theorem 8 that the interval function of a connected graph G satisfies

axiom (U) if and only if G is a tree. Again, it follows easily that, a tree graph G is

a path if and only if G is claw-free. So, by Theorem 8 and axiom (cw), we have the

following remark.

Remark 1. Let R : V × V → 2V be a function on V . Then R satisfies the axioms (t1),
(t2), (b1), (b2) and (U) and (cw) if and only if GR is a path and R = IGR .

3.4. Ptolemaic C-I graph

In this subsection, we first characterize the interval function for (claw, bull)-free

graphs. From Theorem 7, we can deduce that Ptolemaic graphs which are (claw,

bull)-free, are Ptolemaic C-I graphs. Using this, we have the required characterization

of the interval function for Ptolemaic C-I graphs. The following axiom is formulated

for this purpose.

(cb): For elements a, b, c, d, e ∈ V , pairwise distinct, except b and e, b ∈ R(a, c),

e ∈ R(c, d) and b, e ∈ R(a, d) ⇒ c ∈ R(a, d).

Proposition 4. The interval function I of a connected graph G satisfies the axiom (cb)
if and only if G is a (claw, bull)- free graph.

Proof. Let I be the interval function of a connected graph G. Assume that G

contains a claw or bull as an induced subgraph. First, let G contain a claw as an

induced subgraph (as shown in Figure 1) b ∈ R(a, c), b ∈ I(c, d) and b ∈ I(a, d) but

c /∈ I(a, d), this violates the axiom (cb) when e = b. If G contains the bull as an

induced subgraph, then b ∈ I(a, c), e ∈ I(c, d) and b, e ∈ I(a, d), but c /∈ I(a, d).

Hence, if G contains claw or bull as an induced subgraph, then the axiom (cb) is

violated.

Conversely, we need to prove that if G is a graph free of (claw,bull), then it satisfies

the axiom (cb).

Case 1. For e = b; the axiom (cb) becomes, for any pairwise distinct vertices

a, b, c, d ∈ V , b ∈ I(a, c), b ∈ I(c, d) and b ∈ I(a, d) ⇒ c ∈ I(a, d). Suppose that

G does not satisfy (cb). That is, there exist distinct vertices a, b, c, d ∈ V , with

b ∈ I(a, c), b ∈ I(a, d), b ∈ I(c, d). That is, b ∈ I(a, c)∩I(a, d)∩I(c, d) and c /∈ I(a, d).

This implies that there is a shortest a − c path P , shortest a − d path Q, shortest

c − d path R, and P and Q branch out from b. Therefore, b has a degree of at least

three. Let x, y, z be three neighbours of b, where x is on a− b subpath of P or Q, y

is on b− c subpath of Q or R, and z is on b− d subpath of P and R. Hence, we get

an induced claw formed by the vertices {b, x, y, z}.
Case 2. For e 6= b; suppose G does not satisfy (cb). That is, for any pairwise distinct

vertices a, b, c, d, e ∈ V , b ∈ I(a, c), e ∈ I(c, d) and b, e ∈ I(a, d) and c /∈ I(a, d).

This implies that there is a shortest a − c path P through b, shortest c − d path Q

through e and shortest a− d path R through b and e. Let P and R branch out from
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b′. Therefore, b has a degree of at least three in G. Let a′, c′, e′ be three neighbours

of b′, where a′ is on the b′ − a subpath of P , c′ is on the b′ − c subpath of P and e′ is

on the b′ − d subpath of R. Since a′, b′ and c′ are on the shortest path R, it is clear

that ae′ /∈ E(G). Now, if c′e′ /∈ E(G), the vertices {a′, b′, c′, e′} induce a claw in G.

If ae′ ∈ E(G), then find the neighbour of e′ in e′ − d subpath of R, and let d′ be the

neighbour. Hence, the vertices {a′, b′, c′, e′, d′} induce a bull in G.

That is, if G does not satisfy the axiom (cb), then G contains a claw or a bull as an

induced subgraph. Hence the Theorem.

From Theorems 7, 10 and Proposition 4 we get the following corollary.

Corollary 4. The interval function I of a connected graph G satisfies the axiom (J0)
and (cb) if and only if G is a Ptolemaic C-I graph.

For the following discussions, we require the following axioms:

(b3): If x ∈ R(u, v) and y ∈ R(u, x), then x ∈ R(y, v), for all u, v, x, y ∈ V .

(J2): If R(u, x) = {u, x}, R(x, v) = {x, v} and R(u, v) 6= {u, v}, then x ∈ R(u, v), for

distinct u, x, v ∈ V .

The following theorem is proved in [10], which provides a characterization of the

interval function of a Ptolemaic graph using a set of first-order axioms on an arbitrary

transit function R.

Theorem 12 ([10]). Let R be an arbitrary transit function defined on a non-empty set
V . Then the underlying graph GR is a Ptolemaic graph if and only if R satisfies the axioms
(b3), (J0) and (J2), and R(u, v) = IGR(u, v).

Now, using this theorem and the axiom corresponding to the particular subgraph of

the Ptolemaic graph in the hierarchy of Ptolemaic graphs, we have the corresponding

results of the characterization of the interval function of the particular subgraph. We

summarize these results as the following theorem.

Theorem 13. Let R be an arbitrary transit function defined on a non-empty set V .
Then, the following holds.

(a) The underlying graph GR is a laminar chordal graph if and only if R satisfies the
axioms (b3), (J0), (J2), (dd), and R(u, v) = IGR(u, v).

(b) The underlying graph GR is a block duplicate graph if and only if R satisfies the axioms
(b3), (J0), (J2), (dt), and R(u, v) = IGR(u, v).

(c) The underlying graph GR is an AC graph if and only if R satisfies the axioms (b3), (J0),
(J2), (cw), and R(u, v) = IGR(u, v).

(d) The underlying graph GR is a (claw, bull)-graph if and only if R satisfies the axioms
(b3), (J0), (J2), (cb), and R(u, v) = IGR(u, v).
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Example 1. (Described in Figure 4(i)) Let V = {a, b, c, d, e} and define a
transit function R on V as follows: R(a, b) = {a, b}, R(a, c) = {a, c}, R(a, d) =
{a, b, c, d}, R(a, e) = V,R(b, c) = {b, c}, R(b, d) = {b, d}, R(b, e) = {b, e}, R(c, d) =
{c, d}, R(c, e) = {b, c, d, e}, R(d, e) = {d, e}, R(x, x) = {x} and R(x, y) = R(y, x) for all
x, y ∈ V .
(Since d ∈ R(a, e), b ∈ R(a, d), but d /∈ R(b, e), this implies that R does not satisfy the (b3)
axiom).

Example 2. (Described in Figure 4(ii)) Let V = {a, b, c, d, e} and define a transit func-
tion R on V as follows: R(a, b) = {a, b}, R(a, c) = {a, c}, R(a, d) = {a, b, c, d}, R(a, e) =
{a, b, e}, R(b, c) = {b, c}, R(b, d) = {b, d}, R(b, e) = {b, e}, R(c, d) = {c, d}, R(c, e) =
{b, c, d, e}, R(d, e) = {d, e}, R(x, x) = {x} and R(x, y) = R(y, x) for all x, y ∈ V .
(Since c ∈ R(a, d), d ∈ R(c, e) but c /∈ R(a, e), so R does not satisfy (J0)).

Example 3. (Described in Figure 4(iii)) Let V = {a, b, c, d, e} and define a transit function
R on V as follows: R(a, e) = {a, e}, R(b, e) = {b, e}, R(a, b) = {a, b, c} and for all other pair
u, v ∈ V , R(u, v) = {u, v} and R(x, x) = {x}, R(x, y) = R(y, x) for all x, y ∈ V .
(Since R(a, e) = {a, e}, R(b, e) = {b, e} and R(a, b) 6= {a, b} but e /∈ R(a, b), so we can see
that R fails to satisfy (J2)).

Example 4. (Described in Figure 4(iv)) Let V = {a, b, c, d, e, f, g} and define a
transit function R on V as follows: R(a, c) = {a, b, c, d}, R(a, e) = {a, d, e}, R(a, f) =
{a, d, f}, R(a, g) = {a, d, g}, R(b, e) = {b, d, e}, R(b, f) = {b, d, f}, R(b, g) =
{b, d, g}, R(c, e) = {c, d, e}, R(c, f) = {c, d, f}, R(c, g) = {c, d, g}, R(e, g) = {d, e, f, g}, and
for all other pair u, v ∈ V , R(u, v) = {u, v} and R(x, x) = {x}, R(x, y) = R(y, x) for all
x, y ∈ V .
(Since R(a, b) = {a, b}, R(b, c) = {b, c}, R(b, d) = {b, d}, R(e, f) = {e, f}, R(f, g) = {f, g},
R(d, f) = {d, f} and for every other pair u, v ∈ {a, b, c, e, f, g},u 6= v, d ∈ R(u, v) but
b ∈ R(a, c) and f ∈ R(e, g), fails to satisfy (dd)).

Example 5. (Described in Figure 4(v)) Let V = {a, b, c, d, e} and define a transit func-
tion R on V as follows: R(a, c) = {a, b, c}, R(a, d) = {a, b, d}, R(a, e) = {a, b, e}, R(c, d) =
{c, b, d, e}, and for all other pair u, v ∈ V , R(u, v) = {u, v} and R(x, x) = {x}, R(x, y) =
R(y, x) for all x, y ∈ V .
(Since b ∈ R(a, d) ∩ R(a, c) ∩ R(a, e) ∩ R(c, d) and R(b, c) = {b, c}, R(b, d) = {b, d} and
R(b, e) = {b, e} but e ∈ R(c, d), this implies that R fails to satisfy (dt)).

Example 6. (Described in Figure 4(vi)) Let V = {a, b, c, d} and define a transit
function R on V as follows: R(a, b) = {a, b}, R(b, c) = {b, c}, R(b, d) = {b, d}, R(a, c) =
{a, b, c}, R(a, d) = {a, b, d}, R(c, d) = {c, b, d}, and R(x, x) = {x}, R(x, y) = R(y, x) for all
x, y ∈ V .
(Since b ∈ R(a, c) and b ∈ R(a, d) but b ∈ R(c, d) implies R fails to satisfy (cw). Also
b ∈ R(a, c), b ∈ R(c, d) and b ∈ R(a, d) but c /∈ R(a, d) implies R fails to satisfy (cb)).

The Examples 6, 2, 3 and 4 show that the axioms (b3), (J0), (J2), and (dd) are

independent.

• Example 6 serves as an example for (J0), (J2), (dd) but not (b3).
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Figure 4. Illustration of Examples 1-6 (R(u, v) = {u, v} denoted as the edge uv)

• Example 2 serves as an example for (b3), (J2), (dd) but not (J0).

• If we define R as in Example 3, then R satisfy (b3), (J0), (dd) but not (J2).

• If we define R as in Example 4, then R satisfy (b3), (J0), (J2) but not (dd).

Examples 6, 2, 3, and 5 demonstrate the independence of the axioms (b3), (J0), (J2),

and (dt).

• Example 6 illustrates (J0), (J2), and (dt) but not (b3).
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• Example 2 exemplifies (b3), (J2), and (dt) but not (J0).

• In Example 3, if we define R as shown, it satisfies (b3), (J0), and (dt) but not

(J2).

• In Example 5, if we define R as shown, it satisfies (b3), (J0), and (J2) but not

(dt).

The examples presented in Examples 6, 2, 3, and 6 demonstrate the independence of

the axioms (b3), (J0), (J2), and (cw).

• Example 6 forms an example for (J0), (J2), (cw) but not (b3).

• Example 2 form an example for (b3), (J2), (cw) but not (J0).

• If we define R as in Example 3, then R satisfy (b3), (J0), (cw) but not (J2).

• If we define R as in Example 6, then R satisfy (b3), (J0), (J2) but not (cw).

The same examples, Examples 6, 2, 3, and 6, show that the axioms (b3), (J0), (J2),

and (cb) are also independent.

• Example 6 forms an example for (J0), (J2), (cb) but not (b3).

• Example 2 form an example for (b3), (J2), (cb) but not (J0).

• If we define R as in Example 3, then R satisfy (b3), (J0), (cb) but not (J2).

• If we define R as in Example 6, then R satisfy (b3), (J0), (J2) but not (cb).

4. Concluding Remarks

In this paper, by way of axiomatic characterization of the interval function of the

hierarchies of subclasses of Ptolemaic graphs, namely the laminar chordal graphs,

block duplicate graphs, AC graphs, Ptolemaic C-I graphs, blocks, trees and paths,

we have provided another characterization of these graph families using the interval

function as the main tool. It may be noted that the interval function of chordal

graphs doesn’t possess a first-order axiomatic characterization and is proved in [7].

The family of Ptolemaic graphs is a subclass of chordal graphs which possess a nice

first-order axiomatic characterization of its interval function [9]. We have proved that

similar is the case of all the graphs in the hierarchies of the subclass of Ptolemaic

graphs considered in this paper. It would be an interesting problem to check whether

there is any family of graphs between chordal graphs and Ptolemaic graphs which

doesn’t have a first-order definable interval function.
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