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Abstract: A signed graph Σ is an ordered pair (Σu,σ), where Σu=(V,E) is the

underlying graph and σ is sign mapping called signature, which assigns each edge in

E a sign from the set {+,−}. The study of vertex-degree-based topological index:
known as Sombor index was initiated by I. Gutman in 2021 for any graph G. He

defined it as SO(G) =
∑

eij∈E(G)

√
dG(vi)2 + dG(vj)2. In this work, the concept of

the Sombor index is extended to connected signed graphs. The Sombor index is derived

mathematically for signed paths and signed cycles, and is supported by computational

algorithms. Furthermore, it is proved that the Sombor index of a connected signed
graph Σ is maximized if and only if the net-degree variance of Σ is also maximized. As

an application, this study provides a solution to the net-degree variance maximization
problem for certain types of signed graphs.
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1. Introduction

Variance is a fundamental concept in probability theory and statistics, with

widespread applications in science, engineering, and various practical contexts. It

quantifies the extent to which the outcomes of a distribution are dispersed, thereby

reflecting the inherent variability within the distribution.

In many real-world scenarios, however, probability distributions are defined over the

vertices of a network-such as websites on the internet, individuals in a social network,

or neurons in the brain. These vertices form the foundational elements of a network,

and when analyzing distributions or signals associated with them, it becomes natural
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2 Net-degree variance and Sombor index of signed graphs

to consider the underlying network structure.

In the analysis of empirically observed graphs, the variance of the vertex degrees

can serve as a measure of the graph’s heterogeneity. Unfortunately, the conventional

definition of variance does not account for this structure, resulting in a lack of

essential methodological tools for analyzing distributions and signals on graphs.

For preliminary notation and terminology, we refer to Harary [8], Zaslavsky [13] and

West [12]. Throughout this paper, all considered graphs are simple and finite. A

signed graph, denoted by Σ = (Σu,σ), is an ordered pair consisting of an underlying

graph Σu = (V,E), where |V | = n throughout; and a signature mapping σ : E →
{+,−} that assigns each edge in Σu a sign-either positive(‘+’) or negative(‘−’).

A subsigned graph H of a signed graph Σ is a signed graph whose vertices and edges

are subsets of those in Σ, and the signs of the edges in H are preserved. In this paper,

edges labelled with a ‘+’ sign are referred to as positive edges and are represented

by solid lines, whereas, edges labelled with a ‘−’ sign are called negative edges and

are represented by dashed lines. If all edges of Σ are assigned the same sign (‘+’ or

‘−’), the graph is said to be homogeneous; otherwise, it is heterogeneous. Note that

an unsigned graph can be regarded as homogeneous signed graph with all edge signs

being ‘+’.

The set of all signed graphs sharing the same underlying graph Σu is denoted by

ψ(Σu).

The adjacency matrix of Σ, with vertices v1, v2, . . . , vn, is the n× n matrix A(Σ) =

[ai,j ], where:

ai,j =


0 if vi and vj are not adjacent

1 if σ(vi, vj) is positive

−1 if σ(vi, vj) is negative

(1.1)

Let d+
Σ(vi) and d−Σ(vi) denote the number of positive and negative edges incident to

vertex vi, respectively. The net-degree of vertex vi is denoted by d±Σ(vi) [10] and is

defined as:

d±Σ(vi) = d+
Σ(vi) − d−Σ(vi).

Throughout this paper, we consider only the numerical value of the net-degree, i.e.,

d±Σ(vi) = |d+
Σ(vi) − d−Σ(vi)|. As usual, the total degree of vertex vi, denoted by

dΣ(vi), is the total number of incident edges and is given by:

dΣ(vi) = d+
Σ(vi) + d−Σ(vi).

By a negative(positive) section [4–6] of a subsigned graph Σ′ of a signed graph Σ, we

mean a maximal edge induced connected subsigned graph in Σ′ consisting solely of

the negative(positive) edges of Σ. A signed cycle on n vertices is a connected signed

graph Σ = (Cn, σ), where the number of vertices equals the number of edges, each

vertex has degree two, and ψ(Cn) denotes the set of all signed cycles on n vertices

whose underlying graph is Cn. A signed tree is a connected signed graph on n vertices
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that contains no cycle subgraphs. A signed path Σ = (Σu, σ) on n vertices is a specific

kind of signed tree in which exactly two vertices have degree one and the remaining

n−2 vertices have degree two. A signed complete graph Σ = (Kn, σ) is a signed graph

where every pair of distinct vertices is connected by an edge.

Let ΠG : dG(v1), dG(v2), . . . , dG(vn) denote the degree sequence of a graph G. The

degree variance, V (ΠG), was introduced in 1981 [11] as a measure of graph hetero-

geneity. It is defined as the variance of the degrees’ dispersion:

V (ΠG) =
1

n

∑
1≤i≤n

(dG(vi)− dG)2 =
1

n

∑
1≤i≤n

dG(vi)
2 − d2

G (1.2)

where dG =
∑

1≤i≤n dG(vi)

n is the mean degree of G.

The net-degree variance refers to the variance in the dispersion of the net-degrees in

a signed graph Σ.

In chemical and mathematical literature, various vertex-degree-based graph invariants

- referred to as “topological indices”-have been studied [2]. One can also refer [1, 3, 9]

for related work. The general formula for a topological index TI of a graph G is given

by:

TI = TI(G) =
∑

eij∈E(G)

F (dG(vi), dG(vj)), (1.3)

where F (x, y) is a symmetric function, i.e., F (x, y) = F (y, x). Recently, Gutman [7]

introduced a new vertex-degree-based topological index for a graph G, defined as:

SO(G) =
∑

eij∈E(G)

√
dG(vi)2 + dG(vj)2. (1.4)

This index is called Sombor index. The expected values and variances of the Sombor

index for general random chains have been studied in [14].

We now extend the Sombor index to signed graphs. For a signed graph Σ, we define

the signed Sombor index as:

SO(Σ) =
∑

eij∈E(Σ)

√
d±Σ(vi)2 + d±Σ(vj)2. (1.5)

Throughout this paper, when referring to the Sombor index of the underlying graph

Σu of a signed graph Σ, we will use the following expression:

SO(Σu) =
∑

eij∈E(Σu)

√
dΣu(vi)2 + dΣu(vj)2. (1.6)

It can be observed that, for any homogeneous signed graph Σ, the Sombor index of

Σ is equal to that of its underlying graph, i.e., SO(Σ) = SO(Σu).

From the definition of the Sombor index given in Equation (1.5), we directly obtain

the following result:
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Theorem 1. Let Σ′ = (Kn, σ) be a homogeneous signed graph on n vertices. Then for
any signed graph Σ of order n, the following inequality holds:

0 ≤ SO(Σ) ≤ SO(Σu) ≤ SO(Σ′). (1.7)

Proof. Recall that SO(Kn) = n(n−1)2√
2

, and that d±Σ(vi) ≤ dΣu(vi) for all vertices

vi.

The left-hand side of inequality (1.7) is sharp if and only if Σ is a null signed graph,

or if net-degree of each vertex is 0. The right-hand side of inequality (1.7) is sharp if

and only if Σ is isomorphic to a homogeneous signed complete graph on n vertices.

Remark 1. If Σ is a signed tree on n vertices with n ≥ 2, then SO(Σ) ≥
√

2.

The negation of a signed graph Σ, denoted η (Σ), is the signed graph obtained by

reversing the sign of each edge in Σ.

Remark 2. If η(Σ) is the negation of a signed graph Σ, then the Sombor index remains
unchanged: SO(η(Σ)) = SO(Σ).

The relationship introduced between the topological index and the net-degree variance

is new and serves as a geometric approach to maximizing net-degree variance.

The paper is organized as follows: In Section 2, we derive the Sombor index for

signed paths and signed cycles, along with computational algorithms. In Section

3, we introduce the maximum net-degree variance problem on signed graphs based

on vertex-degree-based topological indices. A relationship between the maximum

net-degree variance and these indices is established. In Section 4, we provide the

structures of specific signed graphs that maximize net-degree variance using the newly

established relationship.

2. Sombor index of signed cycles and signed paths

Let Z ∈ ψ(Cn) be a heterogeneous signed cycle within a connected signed graph Σ.

Recalling that a negative(positive) section in such a cycle Z is defined as a maximal

all-negative(positive) path within signed cycle Z. If this path contains m vertices,

then the length of the negative(positive) section is m− 1.

Lemma 1. If Z ∈ ψ(Cn) be a heterogeneous signed cycle on n vertices containing a
negative section of length l, then there exist m edges depending on l, such that both their
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incident vertices do not have net-degree in the {−2, 2}, where:

m =


3 if l = 1
4 if 2 ≤ l < n− 1
3 if l = n− 1.

Proof. Let the vertex set V = {vi : i modulo n, i ∈ Z} = {v0, v1, . . ., vn−1}, and

the edge set E = {ei : i modulo n, i ∈ Z} = {e0, e1, . . ., en−1}, of the signed cycle

where edge ei is incident to vi and vi+1 for 0 ≤ i ≤ n− 1.

Case 1. l = 1:

Consider vi and vi+1 for 0 ≤ i ≤ n− 1 as the vertices of the negative section. Then,

d±Z (vi) = d±Z (vi+1) = 0. The edges ei−1, ei and ei+1 are incident to the vertices whose

net-degrees not in {−2, 2}.
Case 2, 2 ≤ l < n− 1:

Let vk and vl be the end vertices of the negative section, such that, 0 ≤ k ≤ n − 1,

0 ≤ l ≤ n − 1 and l ≥ k + 2. Then, d±Z (vk) = d±Z (vl) = 0, and d±Z (vm) = −2 for

k < m < l. The four edges ek−1, ek, el−1, and el all have incident vertices with

net-degrees not in {−2, 2}.
Case 3. l = n− 1:

Let vi and vi+n−1 for 0 ≤ i ≤ n− 1 be the end vertices of the negative section. Then,

d±Z (vi) = d±Z (vi+n−1) = 0. The edges ei−1 = ei+n−1, ei, and ei+n−2 all have incident

vertices whose net-degrees are not in {−2, 2}.

The following two theorems compute the Sombor index of a signed cycle on n vertices,

n ≥ 3.

Theorem 2. Let Z ∈ ψ(Cn) be a homogeneous signed cycle on n vertices, n ≥ 3, then
the Sombor index of Z is given by:

SO(Z) = 2n
√

2.

Proof. In a homogeneous cycle Z, d±Z (vi) ∈ {−2, 2} for all the vertices. Thus, each

term of the Sombor index is
√

22 + 22 = 2
√

2, and there are n such terms (each edge

counted once),leading to the result, SO(Z) = 2n
√

2.

Theorem 3. Let Z ∈ ψ(Cn) be a heterogeneous signed cycle on n vertices, n ≥ 3, with x
negative sections of length one, y negative sections of length greater than equal to two, and
z positive sections of length one. Then, the Sombor index of Z is given by:

SO(Z) = 2[
√

2(n− 3x− 4y + z) + 2x+ 4y − 2z]. (2.1)

Proof. Let V and E be the vertex and edge sets of the signed cycle Z such that V =

{vi : i modulo n, i ∈ Z} and E = {ei : i modulo n, i ∈ Z}. Clearly, for 0 ≤ i ≤ n− 1,

d±Z (vi) ∈ {−2, 0, 2} . If vi and vi+1 are incident to the positive section of length one,
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then d±Z (vi) = d±Z (vj) = 0. The adjacent edges to the positive section of length one are

the edges of negative sections and while counting the number of edges whose both the

incident vertices do not have net-degree in the set {−2, 2}, according to Lemma 1, the

positive section of length one is doubly counted in calculating edge contributions where

net-degree is not in {−2, 2}. Hence, the number of edges whose both the incident

vertices have net-degrees in {−2, 2} is n− 3x− 4y + z, and those where one incident

vertex has net-degree 0 and the other incident vertex has net-degree in {−2, 2} is 2x+

4y−2z. For such edges ei, for which both incident vertices have net-degrees in {−2, 2}
the corresponding Sombor index contributions are

√
d±Z (vi)2 + d±Z (vi+1)2 = 2

√
2, and

those edges ei whose one incident vertex has net-degree 0 the other has net-degree in

{−2, 2} the corresponding Sombor index contributions are
√
d±Z (vi)2 + d±Z (vi+1)2 =

2.

Substituting and simplifying yields:

SO(Z) = 2[
√

2(n− 3x− 4y + z) + 2x+ 4y − 2z].

Example 1. Let Z be a heterogeneous signed cycle on 6 vertices, as shown in Figure 1.
It is easy to see that Z has one negative section of length 1, i.e. x = 1, one positive section
of length 1, i.e. z = 1, and one negative section of length ≥ 2, i.e. y = 1. Using Theorem 3,
Sombor index of Z is:

SO(Z) = 2[
√

2(n− 3x− 4y + z) + 2x+ 4y − 2z]

= 2[
√

2(6− 3− 4 + 1) + 2 + 4− 2]

= 8.

Figure 1. Heterogeneous signed cycle

Lemma 2. If Σ is a signed path on 2 vertices, then Sombor index is given by:

SO(Σ) =
√

2.

Proof. The path contains a single edge; thus, each vertex has net-degree 1 or −1.

Therefore,
√
d±Σ(vi)2 + d±Σ(vj)2 =

√
2.
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Lemma 3. For a signed path Σ on 3 vertices, the Sombor index is given by:

SO(Σ) =

{
2 if Σ is heterogeneous

2
√

5 if Σ is homogeneous .
(2.2)

Proof. If Σ is heterogeneous signed path v1v2v3 (edges are of different signs), the

net-degrees of the three vertices are −1, 0 and 1; say d±Σ(v1) = −1, d±Σ(v2) =

0 and d±Σ(v3) = 1. Therefore,
√
d±Σ(v1)2 + d±Σ(v2)2 +

√
d±Σ(v2)2 + d±Σ(v3)2 =√

(−1)2 + (0)2 +
√

(0)2 + (1)2 = 2. If Σ is homogeneous (edges are of same

signs), pendant vertices have net-degree either 1 or −1 and non pendant vertex

will have net-degree either 2 or −2. Therefore, SO(Σ) =
√
d±Σ(v1)2 + d±Σ(v2)2 +√

d±Σ(v2)2 + d±Σ(v3)2 = 2
√

5.

Lemma 4. For a signed path Σ on 4 vertices, the Sombor index is given by:

SO(Σ) =


2(
√

2 +
√

5) if Σ is homogeneous
2 if Σ is heterogeneous and pendant vertices have

same net degree

3 +
√

5 if Σ is heterogeneous and pendant vertices have
different net degree.

Proof. Case 1: Homogeneous signed path.

If Σ is homogeneous, then two pendant vertices will have net-degrees of either 1 or

(−1), while the internal vertices will have net-degrees 2 or −2. Through straightfor-

ward calculation, it follows that SO(Σ) = 2(
√

2 +
√

5).

Case 2: Heterogeneous signed path with identical pendant net-degrees.

If Σ is heterogeneous and the pendant vertices have same net-degree, then both the

pendant vertices will have net-degree either 1 or −1 and the remaining n− 2 vertices

will each have net-degree 0. Therefore, SO(Σ) = 2.

Case 3: Heterogeneous signed path with different pendant net-degrees.

If Σ is heterogeneous and pendant vertices have different net-degrees, then the signed

path Σ is isomorphic to one of the signed graphs S1 or S2, as illustrated in Figure 2

and can be easily verified that SO(S1) = SO(S2) = 3 +
√

5

S
1 S2

Figure 2. Signed graphs S1 and S2
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Lemma 5. Let Σ be a heterogeneous signed path on n vertices, n ≥ 5 with {v1, v2, . . ., vn}
vertex set and let q be the number of edges whose both the incident vertices have net-degree
in the set {−2, 2}, then q is given by:

q =


n− 3x− 4y + z − 3 if d±Σ(v1) = d±Σ(vn) = 1
n− 3x− 4y + z − 1 if d±Σ(v1) 6= d±Σ(vn)
n− 3x− 4y + z + 1 if d±Σ(v1) = d±Σ(vn) = −1

here, x and y are the numbers of negative sections of length one and length greater than or
equal to two, respectively, and z be the number of positive sections of length one

Proof. Let ei ∈ E(Σ) be an edge incident to the vertices vi and vi+1, for all 1 ≤ i

≤ n −1.

Case 1. d±Σ(v1) = d±Σ(vn) = 1.

This case is further divided into three sub cases.

Subcase 1.1. d±Σ(v2) = d±Σ(vn−2) = 2, i.e. e2 and en−2 have positive signs.

Then, d±Σ(v1) = d±Σ(vn) = 1, d±Σ(v2) = d±Σ(vn−1) = 2 and d±Σ(vi) ∈ {−2, 0, 2},
3 ≤ i ≤ n− 2. Suppose vi and vi+1, 3 ≤ i ≤ n− 3 are incident vertices of a negative

section of length 1. Then, d±Σ(vi) = d±Σ(vi+1) = 0. Consequently, ei−1, ei, and ei+1

are the three edges such that at least one of the end vertices does not have net-degree

in the set {−2, 2} (though one incident vertex to ei−1 and ei+1 may have net-degree

in the set {−2, 2}). Thus, there are 3x edges for which both incident vertices have

net-degrees not in {−2, 2}.
Now, suppose vi and vj , with 3 ≤ i, j ≤ n − 2, j − i ≥ 2 are the end vertices of a

negative section of length ≥ 2. In this case, d±Σ(vi) = d±Σ(vj) = 0, and d±Σ(vm) = −2

for all i < m < j. Then, the edges ei−1, ei, ej−1, and ej have both incident vertices

with net-degree not in the set {−2, 2}. There are 4y edges with net-degrees not in

the set {−2, 2} at both incident vertices.

Additionally, the net-degrees of both incident vertices of the edges e1 and e2 do not

belong to the set {−2, 2}. In this scenario, the edges adjacent to the positive section

of length 1 are the edges of negative sections. While counting the edges for which

both incident vertices have net-degrees in {−2, 2}, the positive section of length 1 is

considered twice. Hence, the number of edges whose both incident vertices do not

have net-degree in {−2, 2} is 3x+ 4y− z + 2. Therefore, the number of edges whose

both incident vertices have net-degree in {−2, 2} is n− 3x− 4y + z − 3.

Subcase 1.2. One pendant vertex has net-degree 0, other has net-degree 2 i.e., e2

and en−2 have opposite signs.

Assume without loss of generality that d±Σ(v2) = 0, d±Σ(vn−2) = 2, i.e., e2 is negative

edge and en−2 is positive edge. Let d±Σ(vi) ∈ {−2, 0, 2} for 3 ≤ i ≤ n− 2.

For each pair vi and vi+1 (with 2 ≤ i ≤ n − 3) forming a negative section of length

1, d±Σ(vi) = d±Σ(vi+1) = 0, and the edges ei−1, ei and ei+1 have both the incident

vertices not having net-degree in {−2, 2}, (one incident vertex to ei−1 and ei+1 can

have net-degree in the set {−2, 2}). Again, there are 3x such edges which do not
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have net-degrees in the set {−2, 2} at both incident vertices.

For negative sections of length ≥ 2 with end vertices vi and vj (2 ≤ i, j ≤ n − 2,

j− i ≥ 2), d±Σ(vi) = d±Σ(vj) = 0 and d±Σ(vm) = −2 for i < m < j. Thus, ei−1, ei, ej−1

and ej are the four edges whose both the incident vertices do not have net-degrees

in the set {−2, 2}. Thus, 4y such edges exist not having both incident vertices with

net-degree in {−2, 2}.
Also, net-degrees of both incident vertices of edge en−1 will not be in the set

{−2, 2}. In this case, the adjacent edges to a positive section of length 1 are the

edges of negative sections. While counting edges whose both incident vertices have

net-degrees in {−2, 2}, the positive section of length 1 is considered twice except

e1 i.e., the number of edges that is considered twice is z − 1. Thus, the number of

edges whose both the incident vertices do not have net-degrees in the set {−2, 2} is

3x+ 4y − z + 2.

Thus, the number of edges whose both incident vertices have net-degree in the set

{−2, 2} is n− 3x− 4y + z − 3.

Subcase 1.3: d±Σ(v2) = d±Σ(vn−2) = 0, i.e., e2 and en−2 have negative signs.

Here, d±Σ(v1) = d±Σ(vn) = 1, d±Σ(v2) = d±Σ(vn−1) = 0 and for 3 ≤ i ≤ n− 2, d±Σ(vi) ∈
{−2, 0, 2} . Consider the vertices vi and vi+1 for 2 ≤ i ≤ n − 2 as the incident

vertices of a negative section of length 1. Then, d±Σ(vi) = d±Σ(vi+1) = 0. In this case,

the three edges ei−1, ei, and ei+1 are such that none of their incident vertices have

net-degrees in set {−2, 2} (although one of the incident vertices of ei−1 or ei+1 may

have net-degree in the set {−2, 2}). Therefore, there are 3x such edges which do not

have net-degree in set {−2, 2} at both the incident vertices.

Now, consider a negative section of length ≥2, with end vertices vi and vj , where,

3 ≤ i, j ≤ n − 2, j − i ≥ 2. In this case, d±Σ(vi) = d±Σ(vj) = 0, and d±Σ(vm) = −2

for i < m < j. The four edges ei−1, ei, ej−1 and ej are such that both their

incident vertices have net-degrees not belonging to {−2, 2}. There are 4y such edges

which do not have net-degrees in the set {−2, 2} at both the incident vertices. In

this configuration, adjacent edges to a positive section of length 1 part of negative

sections. While calculating the number of edges whose both incident vertices have

net-degrees in the set {−2, 2}, the positive section of length 1 is counted twice, except

for the two pendant edges.Therefore, the number of edges counted twice is z − 2.

Hence, the number of edges for which both incident vertices do not have net-degrees

in the set {−2, 2} is 3x+ 4y− z+ 2. Therefore, the number of edges whose both the

incident vertices have net-degree in the set {−2, 2} is n− 3x− 4y + z − 3.

Case 2. d±Σ(v1) 6= d±Σ(vn) i.e. pendant edges have different signs.

Without loss of generality, consider d±Σ(v1) = 1 and d±Σ(vn) = −1.

In this case, d±Σ(v1) = 1, d±Σ(vn) = −1, and for all 2 ≤ i ≤ n− 1, d±Σ(vi) ∈ {−2, 0, 2}.
Suppose vi and vi+1, where 1 ≤ i ≤ n−2, are the incident vertices of a negative section

of length 1. Then, d±Σ(vi) = d±Σ(vi+1) = 0. Hence, if i = 1, then {ei, ei+1} have both

incident vertices not belonging to the set {−2, 2} and if i ≥ 2, {ei−1, ei, ei+1} are the
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edges whose both the incident vertices will not have net-degrees in set {−2, 2}.
Consider a negative section of length ≥ 2 with end vertices vi and vj , where 2 ≤ i, j ≤
n − 1, and j − i ≥ 2. In this case, d±Σ(vi) = d±Σ(vj) = 0 and d±Σ(vm) = −2 for all

i < m < j. Then, if i = 1, {ei, ej−1, ej} have both incident vertices with net-degree

not in the set {−2, 2}; and if i ≥ 2, {ei−1, ei, ej−1, ej} have both incident vertices

with net-degree not in the set {−2, 2}.
Subcase 2.1. d±Σ(vn−1) = 2.

In this scenario, en has incident vertices of net-degrees 0 and 2. The edges adjacent

to any positive section of length 1 are part of negative sections.

While counting the number of edges whose both incident vertices have net-degrees in

the set {−2, 2}, each positive section of length 1 is considered twice and the number

of such edges counted twice is z. Therefore, the number of edges where both incident

vertices do not have net-degrees in the set {−2, 2} is 3x+4y−z+2; the number of edges

where both incident vertices have net-degrees in the set {−2, 2} is n−3x−4y+z−1.

Subcase 2.2. d±Σ(vn−1) = 0.

In this case, the edges adjacent to the positive section of length 1 belong to negative

sections. While counting the number of edges whose both incident vertices have net-

degrees in the set {−2, 2}, the positive section of length 1 is counted twice, except

for the edge en. Therefore, the number of such edges counted twice is z − 1. Hence,

the number of edges whose both incident vertices do not have net-degrees in the set

{−2, 2} is 3x+4y−z+2; and the number of edges whose both incident vertices have

net-degrees in the set {−2, 2} is n− 3x− 4y + z − 1.

Case 3. d±Σ(v1) = d±Σ(vn) = −1 i.e., both the pendant edges have negative signs.

In this case, d±Σ(v1) = d±Σ(vn) = −1, and for all 2 ≤ i ≤ n − 1, d±Σ(vi) ∈ {−2, 0, 2}.
Consider vi and vi+1, where 1 ≤ i ≤ n − 1, as the incident vertices of a negative

section of length 1. Then d±Σ(vi) = d±Σ(vi+1) = 0.

In such cases, if i = 1, then the edges {e1, e2} have both incident vertices whose

net-degrees are not in the set {−2, 2}; if 2 ≤ i ≤ n− 2, then the edges {ei−1, ei, ei+1}
have both incident vertices whose net-degrees are not in the set {−2, 2}; if i = n− 1,

the edges {en−2, en−1} have both incident vertices whose net-degrees are not in the

set {−2, 2}.
Thus, there are 3x such edges, where both incident vertices do not have net-degrees

in {−2, 2}. Now, consider vi and vj , where 1 ≤ i, j ≤ n− 1, and j − i ≥ 2, as the end

vertices of a negative section of length ≥ 2. In this case, d±Σ(vi) = d±Σ(vj) = 0 and

d±Σ(vm) = −2 for all i < m < j. Then, if i = 1, the edges {e1, ej−1, ej} have both end

vertices whose net-degrees are not in {−2, 2}; if i ≥ 2, the {ei−1, ei, ej−1, ej} have

both end vertices whose net-degrees are not in {−2, 2}. Therefore, there are 4y such

edges.

As in the previous cases, the edges adjacent to each positive section of length 1 are

part of negative sections. While counting the number of edges whose both incident

vertices have net-degrees in the set {−2, 2}, each positive section of length 1 is counted

twice. Hence, the number of such doubly-counted edges is z. Thus, the number of
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edges for which both incident vertices do not have net-degrees in the set {−2, 2} is

3x + 4y − z − 2 and consequently, the number of edges whose both incident vertices

have net-degree in the set {−2, 2} is n− 3x− 4y + z + 1.

Let Σ be a signed path on n vertices and n − 1 edges, where n ≥ 5, with vertex set

{v1, v2, . . . , vn} and edge set {e1, e2, . . . , en−2, en−1}, such that ei ∈ E(Σ) if and only

if ei is incident to both vi and vi+1 for 1 ≤ i ≤ n−1. Let x be the number of negative

sections of length 1, and y be the number of negative sections of length ≥ 2 and let

z be the number of positive sections of length 1.

In Theorems 4 through 13, the Sombor index of the signed path Σ on n vertices,

where n ≥ 5 is determined:

Theorem 4. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, . . . , en−2, en−1} such that the edges e1, e2, en−2, en−1 have positive signs. Then Som-
bor index of Σ is given by:

SO(Σ) = 2[
√

2(n− 3x− 4y + z − 3) + 2x+ 4y − 2z +
√

5]. (2.3)

Proof. Given that e1, e2, en−2 and en−1 are positive, which means d±Σ(v1) =

d±Σ(vn) = 1 and d±Σ(v2) = d±Σ(vn−1) = 2. By Lemma 5, the number of edges whose

both incident vertices have net-degrees in the set {−2, 2} is:

n− 3x− 4y + z − 3.

Each negative or positive section of length 1 contributes edges in which both incident

vertices have net-degree 0. The two pendant edges have one incident vertex with

net-degree 1 and other with net-degree in the set {−2, 2}.
Thus, the number of edges with one incident vertex of net-degree 0 and the other in

the set {−2, 2} is:

(n− 1)− (n− 3x− 4y + z − 3)− (x+ z)− 2 = 2x+ 4y − 2z.

Let ei be an edge such that:

• If both its incident vertices have net-degrees in {−2, 2}, then

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2.

• If one incident vertex has net-degree 0 and other has a net-degree in the set

{−2, 2}, then √
d±Σ(vi)2 + d±Σ(vi+1)2 = 2.
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Therefore, the total contribution from internal edges is:

∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z − 3) + 4x+ 8y − 4z.

Additionally, the contributions from the pendant edges e1 (v1v2) and en−1 (vn−1vn)

are: √
d±Σ(v1)2 + d±Σ(v2)2 =

√
5,
√
d±Σ(vn−1)2 + d±Σ(vn)2 =

√
5.

Therefore, the Sombor index of Σ is:

SO(Σ) = 2[
√

2(n− 3x− 4y + z − 3) + 2x+ 4y − 2z +
√

5].

This completes the proof.

Theorem 5. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, . . . , en−2, en−1}, such that edges e1, en−2, en−1 have positive signs, and the edge e2

has a negative sign. Then, the Sombor index of Σ is given by:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 3) + 4x+ 8y − 4z + 3 +
√

5. (2.4)

Proof. In this configuration, the net-degrees of the vertices are as follows:

d±Σ(v1) = d±Σ(vn) = 1, d±Σ(v2) = 0, d±Σ(vn−1) = 2 and for 3 ≤ i ≤ n − 2, d±Σ(vi) ∈
{−2, 0, 2} .

By Lemma 5, the number of edges with both incident vertices having net-degrees in

the set {−2, 2} is:

n− 3x− 4y + z − 3.

Each section whether positive or negative of length 1, has both incident vertices with

net-degree 0, except for edge e1, which has one incident vertex of net-degree 0 and

other of net-degree 1. The pendant edge en−1 connects one incident vertex with net-

degree 1 and another with net-degree in the set {−2, 2}. Thus, the number of edges

whose one incident vertex has net-degree 0 and the other has net-degree in {−2, 2}
is:

(n− 1)− (n− 3x− 4y + z − 3)− (x+ z − 1)− 2 = 2x+ 4y − 2z + 1.

Therefore, the sum over all interior edges is:

∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z − 3) + 4x+ 8y − 4z + 2.

Additionally:√
d±Σ(v1)2 + d±Σ(v2)2 = 1,

√
d±Σ(vn−1)2 + d±Σ(vn)2 =

√
5.

Hence, the Sombor index of Σ is:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 3) + 4x+ 8y − 4z + 3 +
√

5.
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This concludes the proof.

Theorem 6. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, ..., en−2, en−1}, such that edges e2, en−2, en−1 have positive signs and e1 has a nega-
tive sign. Then, the Sombor index of Σ is given by:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z − 1 +
√

5. (2.5)

Proof. In this configuration, the net-degrees of the vertices are as follows:

d±Σ(v1) = −1, d±Σ(vn) = 1, d±Σ(v2) = 0, d±Σ(vn−1) = 2 and for 3 ≤ i ≤ n − 2,

d±Σ(vi) ∈ {−2, 0, 2}.
By Lemma 5, the number of edges for which both incident vertices have net-degrees

in the set {−2, 2} is:

n− 3x− 4y + z − 1.

Each section of length 1 (positive or negative) has incident vertices of net-degrees

0 except e1. The pendant edge e1 connects one incident vertex of net-degree 0 and

another of net-degree −1, while edge en−1 connects one vertex of net-degree 1 and

another of net-degree in the set {−2, 2}. Thus, the number of edges in which one

incident vertex has net-degree 0 and the other has a net-degree in the set {−2, 2} is:

(n− 1)− (n− 3x− 4y + z − 1)− (x+ z − 1)− 2 = 2x+ 4y − 2z − 1.

Additionally:

∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z − 2.

and
√
d±Σ(v1)2 + d±Σ(v2)2 = 1,

√
d±Σ(vn−1)2 + d±Σ(vn)2 =

√
5.

Therefore, the Sombor index of Σ is:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z − 1 +
√

5.

This completes the proof.

Theorem 7. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, . . . , en−2, en−1}, such that edges en−2, en−1 have positive signs and e1, e2 have nega-
tive signs. Then, the Sombor index of Σ is given by:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z − 4 + 2
√

5. (2.6)
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Proof. In this configuration, the net-degrees of vertices are:

d±Σ(v1) = −1, d±Σ(vn) = 1, d±Σ(v2) = −2, d±Σ(vn−1) = 2 and for 3 ≤ i ≤ n − 2,

d±Σ(vi) ∈ {−2, 0, 2}.
By Lemma 5, the number of edges whose both incident vertices have net-degrees in

the set {−2, 2} is:

n− 3x− 4y + z − 1.

Each negative or positive section of length 1 has both incident vertices with net-degree

0. The pendant edge e1 has one incident vertex with net-degree 0 and the other with

net-degree in {−2, 2}. Similarly, the edge en−1 connects one incident vertex with

net-degree 1 and another with net-degree in {−2, 2}.
The number of edges for which one incident vertex has net-degree 0 and other has

net-degree in {−2, 2} is:

(n− 1)− (n− 3x− 4y + z − 1)− (x+ z)− 2 = 2x+ 4y − 2z − 2.

Therefore, the sum over interior edges becomes:

∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z − 2.

Additionally, for the edge e1 (between v1 and v2) and for the edge en−1 (between

vn−1 and vn):
√
d±Σ(v1)2 + d±Σ(v2)2 =

√
5,
√
d±Σ(vn−1)2 + d±Σ(vn)2 =

√
5.

Thus, the Sombor index of Σ is:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z − 4 +
√

5.

This concludes the proof.

Theorem 8. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, . . . , en−2, en−1}, such that edges e1, e2, en−2 have positive signs and en−1 have nega-
tive sign. Then, the Sombor index of Σ is given by:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z − 1 +
√

5. (2.7)

Proof. In this configuration, the net-degrees of the vertices are as follows:

d±Σ(v1) = −1, d±Σ(vn) = 1, d±Σ(v2) = −2, d±Σ(vn−1) = 0 and for 3 ≤ i ≤ n − 2,

d±Σ(vi) ∈ {−2, 0, 2}.
By Lemma 5, the number of edges whose both incident vertices have net-degrees in

the set {−2, 2} is:

n− 3x− 4y + z − 1.

Each negative or positive section of length 1 has both incident vertices with net-degree

0 except en−1. The pendant edge e1 connects one incident vertex of net-degree −1 and

another of net-degree in {−2, 2}, while edge en−1 connects one vertex of net-degree 1



S. Kumar, D. Sinha 15

and another of net-degree in the set {−2, 2}.
The number of edges for which one incident vertex has net-degree 0 and other has

net-degree in {−2, 2} is:

(n− 1)− (n− 3x− 4y + z − 1)− (x+ z − 1)− 2 = 2x+ 4y − 2z − 1.

Additionally:

∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z − 2,

and
√
d±Σ(v1)2 + d±Σ(v2)2 =

√
5,

√
d±Σ(vn−1)2 + d±Σ(vn)2 = 1.

Therefore, the Sombor index of Σ is:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z − 1 +
√

5.

This concludes the proof.

Theorem 9. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, . . . , en−2, en−1}, such that edges e1, e2, en−2, en−1 have negative signs. Then, the
Sombor index of Σ is given by:

SO(Σ) = 2
√

2(n− 3− 3x− 4y + z + 4) + 4x+ 8y + 4z − 8 + 2
√

5. (2.8)

Proof. In this configuration, the net-degrees of the vertices are as follows:

d±Σ(v1) = d±Σ(vn) = −1 and d±Σ(v2) = d±Σ(vn−1) = −2.

By Lemma 5, the number of edges whose both incident vertices have net-degrees in

the set {−2, 2} is:

n− 3x− 4y + z + 1.

Each negative or positive section of length 1 has both incident vertices with net-degree

0. The two pendant edges have one incident vertex with net-degree 1 and other with

net-degree in the set {−2, 2}.
The number of edges for which one incident vertex has net-degree 0 and other has

net-degree in {−2, 2} is:

(n− 1)− (n− 3x− 4y + z + 1)− (x+ z)− 2 = 2x+ 4y − 2z − 4.

Additionally:

∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z + 1) + 4x+ 8y − 4z − 4,

and
√
d±Σ(v1)2 + d±Σ(v2)2 =

√
5,
√
d±Σ(vn−1)2 + d±Σ(vn)2 =

√
5.

Therefore, the Sombor index of Σ is:
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SO(Σ) = 2
√

2(n− 3x− 4y + z + 1) + 4x+ 8y − 4z − 8 + 2
√

5.

This concludes the proof.

Theorem 10. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, . . . , en−2, en−1}, such that edges e1, e2, en−1 have negative signs and en−2 has positive
sign. Then, the Sombor index of Σ is given by:

SO(Σ) = 2
√

2(n− 3x− 4y + z + 1) + 4x+ 8y + 4z − 5 +
√

5. (2.9)

Proof. In this configuration, the net-degrees of the vertices are as follows:

d±Σ(v1) = d±Σ(vn) = −1, d±Σ(v2) = −2, d±Σ(vn−1) = 0 and for 3 ≤ i ≤ n− 2 d±Σ(vi) ∈
{−2, 0, 2}.
By Lemma 5, the number of edges with both incident vertices have net-degrees in the

set {−2, 2} is:

n− 3x− 4y + z + 1.

Each negative or positive section of length 1 has both incident vertices with net-degree

0 except en−1. The pendant edge e1 connects one incident vertex of net-degree −1 and

another of net-degree in {−2, 2}, while edge en−1 connects one vertex of net-degree 0

and another of net-degree −1.

The number of edges for which one incident vertex has net-degree 0 and other has

net-degree in {−2, 2} is:

(n− 1)− (n− 3x− 4y + z + 1)− (x+ z)− 2 = 2x+ 4y − 2z − 3.

Additionally:

∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z + 1) + 4x+ 8y − 4z − 3,

and
√
d±Σ(v1)2 + d±Σ(v2)2 =

√
5,

√
d±Σ(vn−1)2 + d±Σ(vn)2 = 1.

Therefore, the Sombor index of Σ is:

SO(Σ) = 2
√

2(n− 3x− 4y + z + 1) + 4x+ 8y − 4z − 5 +
√

5.

This concludes the proof.

Theorem 11. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, . . . , en−2, en−1}, such that edges e1, en−2 have negative signs and e2, en−1 have posi-
tive signs. Then, the Sombor index of Σ is given by:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z + 2. (2.10)



S. Kumar, D. Sinha 17

Proof. In this configuration, the net-degrees of the vertices are as follows: d±Σ(v1) =

−1, d±Σ(vn) = 1, d±Σ(v2) = d±Σ(vn−1) = 0 and for 3 ≤ i ≤ n− 2, d±Σ(vi) ∈ {−2, 0, 2}.
By Lemma 5, the number of edges with both incident vertices have net-degrees in the

set {−2, 2} is:

n− 3x− 4y + z − 1.

Each negative or positive section of length 1 has both incident vertices with net-degree

0 except e1 and en−1. The pendant edge e1 connects one incident vertex of net-degree

−1 and another of net-degree 0, while edge en−1 connects one vertex of net-degree 0

and another of net-degree 1.

The number of edges for which one incident vertex has net-degree 0 and other has

net-degree in {−2, 2} is:

(n− 1)− (n− 3x− 4y + z − 1)− (x+ z − 2)− 2 = 2x+ 4y − 2z.

Additionally:

∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z,

and
√
d±Σ(v1)2 + d±Σ(v2)2 = 1,

√
d±Σ(vn−1)2 + d±Σ(vn)2 = 1.

Therefore, the Sombor index of Σ is:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z + 2.

This concludes the proof.

Theorem 12. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, . . . , en−2, en−1}, such that edges e1, en−1 have negative signs and e2, en−2 have posi-
tive signs. Then, the Sombor index of Σ is given by:

SO(Σ) = 2
√

2(n− 3x− 4y + z + 1) + 4x+ 8y − 4z − 2. (2.11)

Proof. In this configuration, the net-degrees of the vertices are as follows: d±Σ(v1) =

d±Σ(vn) = −1, d±Σ(v2) = d±Σ(vn−1) = 0 and for 3 ≤ i ≤ n− 2, d±Σ(vi) ∈ {−2, 0, 2}.
By Lemma 5, the number of edges with both incident vertices have net-degrees in the

set {−2, 2} is:

n− 3x− 4y + z + 1.

Each negative or positive section of length 1 has both incident vertices with net-degree

0 except e1 and en−1.The pendant edge e1 connects one incident vertex of net-degree

−1 and another of net-degree 0, while edge en−1 connects one vertex of net-degree

−1 and another of net-degree 0.

The pendant edges, e1 and en−1 have their one incident vertex with net-degree −1

other with net-degree 0.
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The number of edges for which one incident vertex has net-degree 0 and other has

net-degree in {−2, 2} is:

(n− 1)− (n− 3x− 4y + z + 1)− (x+ z − 2)− 2 = 2x+ 4y − 2z − 2.

Additionally:∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z + 1) + 4x+ 8y − 4z − 4,

and
√
d±Σ(v1)2 + d±Σ(v2)2 = 1,

√
d±Σ(vn−1)2 + d±Σ(vn)2 = 1.

Therefore, the Sombor index of Σ is:

SO(Σ) = 2
√

2(n− 3x− 4y + z + 1) + 4x+ 8y − 4z − 2

This concludes the proof.

Theorem 13. Let Σ be a signed path on n vertices, where n ≥ 5 with edge set
{e1, e2, ..., en−2, en−1}, such that edges e2, en−2 have negative signs and e1, en−1 have positive
signs. Then, the Sombor index of Σ is given by:

SO(Σ) = 2
√

2(n− 3− 3x− 4y + z) + 4x+ 8y − 4(z − 2)− 2 (2.12)

Proof. In this configuration, the net-degrees of the vertices are as follows:

d±Σ(v1) = d±Σ(vn) = 1, d±Σ(v2) = d±Σ(vn−1) = 0

and for 3 ≤ i ≤ n− 2, d±Σ(vi) ∈ {−2, 0, 2}.
By Lemma 5, the number of edges with both incident vertices have net-degrees in the

set {−2, 2} is:

n− 3x− 4y + z − 3.

Each negative or positive section of length 1 has both incident vertices with net-degree

0 except e1 and en−1. The pendant edge e1 connects one incident vertex of net-degree

0 and another of net-degree 1, while edge en−1 connects one vertex of net-degree 0

and another of net-degree 1.

The number of edges for which one incident vertex has net-degree 0 and other has

net-degree in {−2, 2} is:

(n− 1)− (n− 3x− 4y + z − 3)− (x+ z − 2)− 2 = 2x+ 4y − 2z + 2.

Additionally:∑
2≤i≤n−2

√
d±Σ(vi)2 + d±Σ(vi+1)2 = 2

√
2(n− 3x− 4y + z + 1) + 4x+ 8y − 4z + 4,

and
√
d±Σ(v1)2 + d±Σ(v2)2 = 1,

√
d±Σ(vn−1)2 + d±Σ(vn)2 = 1. Therefore, the Sombor

index of Σ is:



S. Kumar, D. Sinha 19

SO(Σ) = 2
√

2(n− 3x− 4y + z + 1) + 4x+ 8y − 4z + 6,

This concludes the proof.

Example 2. Let Σ be a signed path on 6 vertices, as shown in Figure 3. It is easy to
see that first edge has negative sign, i.e. e1 has negative sign, e2 has positive sign, en−1 has
positive sign, and en−2 has negative sign. Here, the signs of these four edges matches the
conditions of the Theorem ??. Using Theorem ??, Sombor index of Σ is:

SO(Σ) = 2
√

2(n− 3x− 4y + z − 1) + 4x+ 8y − 4z + 2

= 2
√

2(6− 3× 2− 4 + 1− 1) + 4× 2 + 8− 4 + 2

= 14− 8
√

2.

Figure 3. Signed path on 6 vertices

2.1. Algorithm

Now we give the algorithms to find out the Sombor index of any signed cycle in ψ(Cn)

and signed path, which may be used computationally.

Algorithm 1 Sombor index of random signed cycle of a given order

Input: order of cycle (N)

1: for j = 1 : N do

2: for j = 1 : N do

3: Generate upper triangular adjacency matrix using (1.1)

4: end for

5: end for

6: for l = 1 : N do

7: if l == N then

8: Identify the upper right most corner, f(l)

9: else

10: Identify f(l) = super diagonal entries al,l+1

11: end if

12: end for

13: if f(1) == f(N) then

14: L = count the number of consecutive negative signs

15: if f(1) == −1 then

16: for h = 1 : numel(L)− 1 do

17: if h == 1 then

18: calculate m2(h) = sum of first and last element of L

19: else
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20: assign m2(h) = L(h)

21: end if

22: end for

23: else

24: assign m2 = L

25: end if

26: for m = 1 : length(m2) do

27: if m2(m) == 1 then

28: x=x+1

29: end if

30: end for

31: calculate y = length(m2)-x

32: M = count the number of consecutive positive signs

33: if f(1) == 1 then

34: for e = 1 : numel(M)− 1 do

35: if e == 1 then

36: calculate m1(e) = sum of first and last element of M

37: elseassign m1(e) = M(e)

38: end if

39: end for

40: else

41: assign m1 = M

42: end if

43: for O = 1 : length(m1) do

44: if m1(o) == 1 then

45: z=z+1

46: end if

47: end for

48: else

49: repeat step 15

50: for m = 1 : length(L) do

51: if L(m) == 1 then

52: repeat step 29

53: end if

54: end for

55: calculate y = length(L)−x

56: repeat step 33

57: for o = 1 : length(M) do

58: if M(o) == 1 then

59: repeat step 46

60: end if

61: end for

62: end if

63: calculate SO using (2.1)
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Algorithm 2 Sombor index of random signed path of a given order
1: Input: order of path (N)
2: Initialisation x=0, y=0, z=0

3: for i = 1 : N do

4: for i = 1 : N do
5: Generate upper triangular adjacency matrix using (1.1)

6: end for

7: end for
8: for l = 1 : N − 1 do

9: Identify, e(l) = super diagonal entries al,l+1

10: end for
11: if e(1) == 1 && e(2) == 2 && e(n− 2) == 1 && e(n− 1) == 1 then

12: count the number of consecutive negative signs, L

13: for m = 1 : length(L) do
14: if L(m) == 1 then

15: x=x+1
16: end if

17: end for

18: Calculate y = length(L) − x
19: count the number of consecutive positive signs, M

20: for o = 1 : length(M) do

21: if M(o) == 1 then
22: z=z+1

23: end if

24: end for
25: Calculate SO using (2.3)

26: else

27: if e(1) == 1 && e(2) == 2 && e(n− 2) == 1 && e(n− 1) == 1 then
28: Repeat step 12 to step 24

29: Calculate SO using (2.4)
30: end if

31: if e(1) == 1 && e(2) == 2 && e(n− 2) == 1 && e(n− 1) == 1 then

32: Repeat step 12 to step 24
33: Calculate SO using (2.5)

34: end if
35: if Check the edge signs for e1 e2 en−2 and en−1 then
36: Repeat step 12 to step 24
37: Calculate SO using (2.6-2.12) according to edge signs
38: end if
39: end if

3. Relation between the Sombor index and net-degree vari-
ance of a signed graph

Let ΠΣ : d±Σ(v1), d±Σ(v2), ..., d±Σ(vn) represent the net-degree sequence of a signed graph

Σ with n vertices. Consider ΠΣ as a distribution of net-degrees, then using Equation

(1.2) the variance of this distribution is given by:

V (ΠΣ) =
1

n

∑
1≤i≤n

(d±Σ(vi)− d±Σ)2 =
1

n

∑
1≤i≤n

d±Σ(vi)
2 − (d±Σ)2 (3.1)
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where d±Σ =

∑
1≤i≤n d

±
Σ(vi)

n
is the mean net-degree.

Let Σ be a connected signed graph with n vertices and q edges. In such signed graphs,

multiple graphical net-degree sequences can exist. This raises the natural question:

which graphical net-degree sequence, maximizes the net-degree variance?

To address this, the following theorem establishes a relationship between the Sombor

index and the net-degree variance of a signed graph a new geometric prespective for

studying variance.

Theorem 14. The Sombor index of connected signed graph Σ is maximized if and only
if the net-degree variance of its degree distribution is maximized.

Proof. Let ΠΣj : d±Σj
(v1), d±Σj

(v2), . . . , d±Σj
(vn), for 1 ≤ j ≤ k, where k is number of

possible graphical net-degree sequences, represent a graphical net-degree sequence of

Σ. From Equation (3.1), the net-degree variance with respect to net-degree distribu-

tion is:

V (ΠΣj
) =

1

n

∑
1≤i≤n

(d±Σj
(vi)− d±Σj

)2 =
1

n

∑
1≤i≤n

d±Σj
(vi)

2 − (d±Σj
)2 (3.2)

where d±Σj
=

∑
1≤i≤n d

±
Σj

(vi)

n
is the mean net-degree. Here, d±Σj

remains constant for

all j and also n is a fixed number. Therefore,

V (ΠΣj ) ∝
∑

1≤i≤n

d±Σj
(vi)

2. (3.3)

Now the Sombor index for Σj is:

SO(Σj) =
∑

ers∈E(Σj)

√
d±Σj

(vr)2 + d±Σj
(vs)2

∝
∑

ers∈E(Σj)

(d±Σj
(vr)2 + d±Σj

(vs)
2)

=
∑

1≤i≤n

(dΣj (vi))(d
±
Σj

(vi)
2)

∝
∑

1≤i≤n

d±Σj
(vi)

3.

This gives us,

SO(Σj) ∝
∑

1≤i≤n

d±Σj
(vi)

3. (3.4)

From Equations (3.3) and (3.4), we get:

V (ΠΣj ) ∝ SO(Σj).
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Thus, the higher the Sombor index, the greater net-degree variance, proving the

theorem.

On considering all the edges of the signed graph with positive sign, the remark can

be concluded as:

Remark 3. For a connected graph G on n vertices and q edges, the Sombor index is
maximized if and only if the degree variance of G is also maximized.

Proposition 1. If the Sombor index of a connected signed graph Σ with n vertices, p
positive edges and q negative edges, is maximized then the largest eigenvalue of the adjacency
matrix of Σ is also maximized.

The proof is provided elsewhere.

4. Applications

As an application of Somber index of signed graph, Theorem 16 and Theorem 17 are

presented.

Remark 4. Let x1, x2 and x3 be three points in R2, where all three lie either in the set
{(a, n− 1), (a, n), (a, n+ 1)} or in the set {(n− 1, a), (n, a), (n+ 1, a)}, with a, n ∈ I. Then:

√
(n− 1)2 + a2 +

√
(n+ 1)2 + a2 ≥ 2

√
n2 + a2.

Theorem 15. Let Σ = (Kn, σ) be a signed graph on n vertices with p negative edges
where p < n− 1. If the Sombor index is maximized, then the negative edges induce a signed
star on p+ 1 vertices.

Proof. The result is proved by induction.

Base case: p = 1. The signed graph has single negative edge-a trivial star.

Inductive hypothesis: Assume the result holds for p−1 negative edges. The subgraph

induced by negative edges form K1,p−1. Then, there exists a vertex v in Σ with

net-degree n − 1 − 2(p − 1). Additionally, there are p − 1 vertices {v1, v2, . . . , vi},
1 ≤ i ≤ p − 1, each having net-degree n − 3, and the remaining n − p vertices,

{vi+1, vi+2, . . . , vn}, with net-degree n− 1.

Inductive step: Now consider the case when Σ has p negative edges. More precisely,

suppose the sign of one positive edge is changed to negative in inductive hypothesis.

There are three scenarios, depending on the incident vertices of the new negative

edge.
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Case 1. The edge has both incident vertices in the set {v1, v2, . . . , vi}, 1 ≤ i ≤ p− 1.

In this case the Sombor index of Σ is given by:

SO(Σ) = A(say) =2
√

(n− 1− 2(p− 1))2 + (n− 5)2

+ (p− 3){
√

(n− 1− 2(p− 1))2 + (n− 3)2

+ 2
√

(n− 3)2 + (n− 5)2}+
√

2(n− 5)

+ (n− p){
√

(n− 1− 2(p− 1))2 + (n− 1)2

+ 2
√

(n− 1)2 + (n− 5)2 + (p− 3)
√

(n− 1)2 + (n− 3)2}

+
(n− p)(n− p− 1)(n− 1)√

2
+

(p− 3)(p− 4)(n− 3)√
2

.

Case 2. The edge has both incident vertices in the set {vi+1, vi+2, . . . , vn}, 1 ≤ i ≤
p− 1.

In this scenario the Sombor index of Σ is given by:

SO(Σ) = B(say) =2
√

(n− 1− 2(p− 1))2 + (n− 3)2

+ (n− p− 2){
√

(n− 1− 2(p− 1))2 + (n− 1)2

+ 2
√

(n− 3)2 + (n− 1)2 +
(n− p− 3)(n− 1)√

2

+ (p− 1)
√

(n− 1)2 + (n− 3)2}+
√

2(n− 3)

+ (p− 1){
√

(n− 1− 2(p− 1))2 + (n− 3)2

+ 2
√

2(n− 3) +
(p− 2)(n− 3)√

2
}.

Case 3. One incident vertex of edge is central vertex v and other incident vertex is

in set {vi+1, vi+2, . . . , vn}, 1 ≤ i ≤ p− 1.

In this configuration the Sombor index of Σ is given by:

SO(Σ) = C(say) =p
√

(n− 1− 2p)2 + (n− 3)2 +
(p)(p− 1)(n− 3)√

2

+ (n− 1− p){
√

(n− 1− 2p)2 + (n− 1)2

+ p
√

(n− 3)2 + (n− 1)2 +
(n− p− 2)(n− 1)√

2
}.

From Remark 4, it follows that C ≥ A ≥ B. Hence, the configuration in Case 3 yields

the maximum Sombor index. Therefore, the negative edges of Σ must induce a signed

star with p+ 1 vertices.

Theorem 16. Let Σ = (Kn, σ) be a signed graph on n vertices with p negative edges,
such that p < n− 1. If the net-degree variance is maximized, then the negative edges induce
a signed star on p+ 1 vertices.
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Proof. The proof directly follows from Theorem 15 and Theorem 14.

Theorem 17. Let G be a tree, on n vertices and n− 1 edges. If G maximizes the degree
variance then G ∼= K1,n−1.

Proof. Let d(vi) be the degree of the vertex vi. For any edge vivj ∈ E(G), d(vi) +

d(vj) ≤ n. The maximum value of
√
d(vi)2 + d(vj)2 is achieved when d(vi) + d(vj) =

n, and through comparison, it is evident that:

√
12 + (n− 1)2 >

√
22 + (n− 2)2 > · · · >

√
(bn

2
c)2 + (dn

2
e)2.

Since each edge in K1,n−1 is incident to a vertex of degree 1 and n − 1, this config-

uration gives the maximum possible Sombor index for K1,n−1 and thus, maximum

variance by using Theorem 14.

5. Conclusion

This chapter explored the relationship between the Sombor index and the net-degree

variance in signed graphs, contributing significantly to both graph theory and math-

ematical chemistry. By deriving bounds and analyzing signed graphs for given net-

degree variances, the work enhances how the understanding of signed graph topology

influences the Sombor index. The results not only generalize known inequalities but

also introduce a novel geometric approach to measuring variance.

These insights offer a foundation for inverse problems, network design and real world

applications where structural heterogeneity play a crucial role. The findings deepen

theoretical knowledge while offering practical applications.

Through this work, the Sombor index emerges not merely as a mathematical con-

struct, but as a lens through which the hidden order of complex systems may be

discerned.
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