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Abstract: For a given graph G, let θf (G) denote the minimum number of stars
(not necessarily induced) needed to cover the vertices of G, and let αf (G) denote the

maximum number of vertices in a set S ⊆ V (G) such that no two distinct vertices

u, v ∈ S belong to the same subgraph of G that is a star. Clearly, θf (G) ≥ αf (G).
A graph G is said to be non-induced star-perfect if θf (H) = αf (H) for every induced

subgraph H of G. A graph G is a domination graph if every induced subgraph H

of G contains a pair of vertices x, y such that NH(x) ⊆ NH [y]. In this paper, we
investigate domination graphs that are non-induced star-perfect and explore well-known

subclasses within this category. Additionally, we present an integer linear programming

formulation that characterizes a polytope associated with the star-covering set and star-
independence set of a graph.

Keywords: star-perfect, star-covering number, star-independence number, chordal
graphs, domination graphs.
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1. Introduction

In this paper, all graphs are finite and simple, and our notations are from [7], [22],

and [35].

The study of non-induced star-perfect graphs is motivated by Ravindra’s introduction

of F -perfect graphs in 2011 [32]. For a comprehensive understanding of F -perfect

graphs and induced star-perfect graphs, we refer the reader to [1] and [35]. However,

the results in this paper focus specifically on non-induced star-perfect graphs. Herein,

we use F and f to represent induced and non-induced stars, respectively.
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2 Some classes of non-induced star-perfect graphs

A non-induced star of a graph G is a set f ′ ⊆ V (G) such that the subgraph induced by

f ′ contains a spanning star K1,r, where r ≥ 0. A partition C of the vertex set V (G)

of a graph G is called a non-induced star-covering set if each Ci ∈ C is a non-induced

star. The non-induced star-covering number, θf (G), of a graph G is defined as the

minimum cardinality of a non-induced star-covering set in G. A subset S ⊆ V (G)

is called a star-independent set in G if no two distinct vertices u, v ∈ S lie in the

same star. The star-independence number, αf (G), is the maximum cardinality of a

star-independent set in G.

 

C1={(v1,v2),(v3,v4,v5,)} 

C2={(v3,v1,v2,),(v4,v5)} 

 

C ’={(v1,v2,v3,v4,v5,)} 

v4 v5 

v1 v2 

v3 

e1 

e4 e3 e2 e5 

e6 e7 

Figure 1. Illustration of non-induced star-covering set.

Figure 1 illustrates the distinction between induced and non-induced star-covering

sets. Notice that C1 and C2 are both induced and non-induced star-covering sets

since each element in these sets induces a star in G. On the other hand, C ′ is a

non-induced star-covering set, as the removal of the edges e1, e2, and e5 forms a star

K1,4. We remark, however, that the definition of a star-independent set remains the

same for both induced and non-induced star-perfect graphs.

The definition of the non-induced star-covering goes parallel with the notion of star

partitions introduced by Andreatta et al. in [3]. They established that the minimum

cardinality of these invariants is equal to the domination number γ(G). Similarly, the

star-independent set corresponds to the closed neighborhood packing of a graph. We

refer the reader to [4] for applications of these invariants.

The non-induced star-covering number θf is never smaller than the star-independence

number αf , and a graph G is said to be non-induced star-perfect if for every induced

subgraph H of G, θf (H) = αf (H). These graphs are also sometimes referred to as

θf -perfect graphs. A graph G is non-induced star-critical if G is not non-induced

star-perfect, but all of its proper induced subgraphs are.

The class of star-perfect graphs satisfies hereditary property, and therefore, this class

admits a characterization in terms of forbidden induced subgraphs. In the case of

induced star-perfect graphs, it was conjectured by Ravindra that there are three

types of minimal forbidden induced subgraphs: C3, C3n+1, and C3n+2 for n ≥ 1.

This conjecture was settled by Ravindra [35], with an alternative approach provided

by Alex and Caccetta [1]. The effort to establish this conjecture stimulated the study
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on non-induced star-perfect graphs. In [1], they also characterized that, if χF
1 and

ωF are, respectively, the star-chromatic number and the size of a maximum induced

star of a graph G, then G is induced star-perfect if and only if χF (H) = ωF (H)

(also referred to as χF -perfect) or αF (H)ωF (H) ≥ |H| for every induced subgraph

H of G. Here, αF (G) is defined in a manner analogous to αf (G). The alternative

proof to Lovász’s characterization of perfect graphs [2] was the motivation for this

characterization.

The simplest graph known to be non-induced star-perfect but not induced star-perfect

is a complete graph on 3-vertices. In fact, the only minimally known graphs that are

not non-induced star-perfect include C3n+1, C3n+2 for n ≥ 1, and the graphs in the

class G (n, p) (defined in Figure 2) with p = 2k + 1 for k ≥ 1. To this end, Ravindra

postulated the following conjectures2:

Conjecture 1. A graph G is non-induced star-perfect if and only if G is C3n+1-free and
C3n+2-free for n ≥ 1, and does not contain any graph from the class G (n, p) with p = 2k+1
for k ≥ 1 as a proper induced subgraph.

We define a graph G(n, p) as follows: We begin with a complete graph H = Kp, with

V (H) = {v1, v2, . . . , vp} and label the edges of a Hamilton cycle ofH as {e1, e2, . . . , ep}
such that ei = vivi+1, i = 1, 2, . . . , p (note that vp+1 = v1). We form G(n, p) by

adding p disjoint paths, Pni
from vi to vi+1 such that Pni

∪ ei is a cycle Cni
of length

ni ≡ 0(mod 3), V (Cni
)∩V (H) = {vi, vi+1} and

∑p
i=1 ni = n+p. Figure 2 illustrates

our construction of G(n, 3) and G(n, 4). Finally, we define the class G (n, p) to be the

set of all such graphs G(n, p) formed under the above construction.

 

path 𝑃𝑛2  

  𝑣1 

 

               𝐶𝑛1                                      𝐶𝑛3 

                       𝑒1                   𝑒3        

𝐻 = 𝐾3 

 

              𝑣2                          𝑒2                          𝑣3 

 

𝐶𝑛2 
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 𝑣1     
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                          𝑒1                      𝑒4 

                                       

      𝑣2                                                                          𝑣4              

                                  

                       𝑒2                          𝑒3 

     𝐶𝑛2                                                𝐶𝑛3                    

    𝑣3 

     

Figure 2. G(n, 3) and G(n, 4) graphs.

1 χF is the minimum number of color needed to color G such that no two vertices in the same star

of G receive the same color.
2 Personal Communication



4 Some classes of non-induced star-perfect graphs

A consequence established in [1] is that a graph is induced star-perfect if and only if

it is χF -perfect. In contrast to this result, χf -perfect graphs (where every induced

subgraph H of G satisfies χf (H)3 = ωf (H)4) are not necessarily non-induced star-

perfect. For example, the graphs in G (n, p), different from n-suns, are χf -perfect

but not θf -perfect. However, one can identify several results concerning induced

star-perfect graphs that hold for non-induced star-perfect graphs. Graphs that are si-

multaneously induced and non-induced star-perfect were characterized to some extent

by Ravindra [32, 33] and Ghosh [21].

The primary objective of this paper is to identify several classes of non-induced star-

perfect graphs. Our inclusion criterion specifically focuses on classes that contribute

to the progress of identifying forbidden induced subgraphs for the class of non-induced

star-perfect graphs, as stated in Conjecture 1. As a result, we exclude classes that are

non-induced star-perfect by definition, such as subclasses of known non-induced star-

perfect graphs or the union of two or more non-induced star-perfect graph classes.

However, some exceptions are made for fundamental classes like trees and paths.

While our criterion covers a broad range of classes, there may exist other classes that

satisfy our criterion but are not included in this paper.

This paper is organized as follows: In Section 2, we introduce some terminology and

notation concerning non-induced star-perfect graphs that will be used throughout this

paper. In Section 3, we identify the classes of domination graphs that are non-induced

star-perfect and prove that a domination graph with no C4 or odd-sun is non-induced

star-perfect. In Section 4, we explore well-known hereditary classes of graphs with

equal non-induced star-covering number and star-independence number. In Section 5,

we use a similar phenomenon to [3] to introduce an integer programming formulation

to describe the invariants of non-induced star-perfect graphs. Additionally, we use

the min-max equality of these invariants to establish that strongly chordal graphs are

non-induced star-perfect.

2. Preliminaries

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). For any vertex

v ∈ V (G), NG(v) and NG[v] denote the neighborhood and the closed neighborhood of v,

respectively; thus, NG(v) = {u ∈ V (G) : uv ∈ E(G)} and NG[v] = NG(v) ∪ {v}. The

subscript indicating the graph will be omitted if only one graph is under discussion.

Let G[X] denote the induced subgraph of G with vertex set X, and let G \X denote

the induced subgraph G[V (G)\X]. A lobe of a graph G is an induced subgraph formed

by the vertex set X along with the vertices from a single connected component of the

graph obtained by removing X from G. Specifically, it consists of the vertices in X

and all vertices that belong to one component of G \X.

3 χf (G) is defined in a manner analogous to χF (G)
4 ωf (G) is the size of a maximum non-induced star in G
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A clique is a set of pairwise adjacent vertices, and a stable set is a set of pairwise

non-adjacent vertices. If A,B ⊆ V (G) are disjoint, we say that A is complete to B if

every vertex in A is adjacent to every vertex in B, and anticomplete to B if there is

no edge between A and B. A graph is said to be regular if every vertex has the same

number of neighbors.

A tree is a connected cycle-free graph. A star K1,n is a tree with at most one vertex of

degree greater than one. A non-induced star-clique is a maximal non-induced star of

the graph. A graph is strongly star-perfect if every induced subgraph H of G contains

a star-independent set S which meets every maximal star of H.

A set X ⊆ V (G) is considered homogeneous if every vertex in V (G) \ X is either

complete or anticomplete to X. A homogeneous set X is deemed proper if it contains

at least two vertices (|X| ≥ 2) and if it is not equal to the entire vertex set of G.

Considering a graph G that admits a proper homogeneous set X, let x be any vertex

in X. We can decompose G into two graphs: G[X] and G\ (X \x); notably, the latter

graph remains unchanged regardless of the choice of x, assuming X is a homogeneous

set. Furthermore, both G[X] and G \ (X \ x) are induced subgraphs of G.

A subset B ⊆ V (G) is a packing inG if for every two distinct vertices u, v ∈ B, we have

N [u]∩N [v] = ∅. The packing number ρ(G) is defined as the maximum cardinality of a

packing in G. For a subset D ⊆ V (G), we say that D is a dominating set of G if every

vertex in G is either in D or adjacent to a vertex in D. An efficient closed domination

set is defined as a dominating set D = {v1, v2, . . . , vγ} such that V =
⋃γ
i=1N [vi]

and N [vi] ∩ N [vj ] = ∅ for all distinct indices i, j. The cardinality of the smallest

dominating set is called the domination number, denoted as γ(G). An efficient closed

domination graph refers to those graphs where the minimum dominating sets coincide

with maximum packing sets. The D-partition of G refers to a partition of V (G) into

dominating sets. The maximum order of a D-partition of G is known as the domatic

number, denoted by d(G). A graph for which d(G) = δ(G) + 1 is termed as being

domatically full. A graph G is called domatically critical if removing any edge from

G results in a smaller domatic number than G.

A vertex v is said to be simple if for any two vertices x, y ∈ N(v), either N [x] ⊆ N [y]

or N [y] ⊆ N [x]. An ordering v1, v2, . . . , vn is called a simple elimination ordering

if for each 1 ≤ t ≤ n, the vertex vt is simple in G[{vt, . . . , vn}]. For n ≥ 3, an

n-sun is defined as a graph on 2n vertices whose vertex set can be partitioned into

X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} such that X forms a maximum set

of pairwise non-adjacent vertices, while Y induces a clique. Moreover, for each i ∈
{1, . . . , n}, vertex xi is adjacent to exactly yi and yi+1.

A graph is called brittle [27] if for every induced subgraph H of G, there exists at

least one vertex in H that is neither an endpoint nor a midpoint of any induced path

of length four in H. In simpler terms, every subgraph contains at least one vertex

that cannot be part of any induced path P4. The term bull refers to the graph with

vertex set {v1, v2, v3, u, w} and edge set {v1v2, v2v3, v1v3, v1u, v2w}.
A graph is chordal if every cycle of length four or more contains a chord. A graph is

strongly chordal if it is chordal and every cycle of length six or more contains a chord

splitting the cycle into two odd-length paths. A graph G is weakly chordal if every
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cycle of length greater than four in G and its complement contains a chord.

A paw-free graph is a graph that does not contain (P 2∨K1) as an induced subgraph.

A graph is a tolerance graph [23] if there exists a collection I = {Iv}v∈V of closed

intervals on the real line and an assignment of positive numbers t = {tv}v∈V such

that vw ∈ E ⇔ |Iv ∩ Iw| ≥ min{tv, tw}. Here |Iu| denotes the length of the interval

Iu. The tolerance chain graphs are defined to be the tolerance graphs that have a

representation consisting of a nested family of intervals (i.e., a set of intervals totally

ordered by inclusion). A graph is called a threshold graph if it does not contain C4,

C4, or P4 as an induced subgraph.

A graph is a domination graph if every induced subgraph H of G contains a pair of

vertices x, y such that NH(x) ⊆ NH [y] in H (in this case, x is said to be dominated by

y in H). Domination graphs contain many important classes of graphs, which we will

discuss in the next section, such as chordal graphs, strongly chordal graphs, trapezoid

graphs, tolerance graphs, and brittle graphs [13, 37]. Finally, a connected graph G is

termed γβ-perfect if the domination number γ(H) equals the covering number β(H)

for every induced connected subgraph H of G.

Next, we summarize some well-known results from [1] that hold for more general sit-

uations of induced and non-induced star-perfect graphs, which allows us to structure

our study on non-induced star-perfect graphs.

Observation 2. [1] If G is non-induced star-critical, then θf (G) ≥ αf (G) + 1.

Observation 3. [1] A graph G is non-induced star-critical if and only if αf (G − f ′) =
αf (G) for all maximal non-induced star-cliques f ′ in G.

Observation 4. [1] For every maximal non-induced star-clique f ′ of a non-induced star-
critical graph G, αf (G− f ′) = αf (G).

Observation 5. [1] If f ′ is a maximal star of a graph G, then θf (G) = θ(G− f ′) + 1.

Observation 6. [1] For every vertex v ∈ V (G) of a non-induced star-critical graph G,
there exists a maximum star-independent set of G that does not contain v, and there are at
least αf (G) distinct maximum star-independent sets, each containing v.

Observation 7. For any graph G, θf (G) = γ(G) and αf (G) = ρ(G).

Next, we also state a couple of well-known (and easy-to-prove) lemmas.

Lemma 1. [31] Every tree is non-induced star-perfect.

Lemma 2. [21] P4-free graphs are non-induced star-perfect if and only if the graph is a
tree.
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Lemma 3. [21] A graph is non-induced star-perfect if each lobe of G with respect to a
vertex v is non-induced star-perfect.

Lemma 4. Induced star-perfect graphs are non-induced star-perfect graphs.

More generally, it can be shown that all K3-free non-induced star-perfect graphs are

induced star-perfect.

Fact 1. K3-free non-induced star-perfect graphs are induced star-perfect.

3. Which domination graphs are non-induced star-perfect

In this section, we aim to identify various families of domination graphs with equal

non-induced star-covering number and star-independence number for every induced

subgraph.

The first class of domination graphs that is interesting in this context is the class of

strongly chordal graphs.

Theorem 8. Strongly chordal graphs are non-induced star-perfect.

For the proof of Theorem 8, we use the following result due to Faber [17].

Lemma 5. [17] [see Theorem 1 in [38]] A graph G is strongly chordal if and only if it
has a simple elimination ordering.

Proof of Theorem 8. We proceed by induction on the number of vertices. The claim

is trivial for graphs with few vertices. Let us assume that the argument is true for any

strongly chordal graph with fewer than n vertices, and let G be a strongly chordal

graph on n vertices. Since the property of being strongly chordal is hereditary, it

suffices to prove that θf (G) = αf (G). First, by Lemma 5, the vertices of G admit a

simple elimination ordering v1, v2, . . . , vn such that v1 is a simple vertex. Next, let

x ∈ N(v1) be a vertex in G that has the maximum degree among all the neighbors

of v1, and let f ′ = N [x] be the maximum non-induced star obtained with center

vertex x. Now, the graph G \ f ′ is strongly chordal and has fewer than n vertices

and hence, by the induction hypothesis, θf (G \ f ′) = αf (G \ f ′). Also, since f ′ is

maximal, by Observation 5 we have θf (G) = θf (G \ f ′) + 1. Finally, observe that

for any y ∈ N(v1) with y 6= x, N [y] ⊆ f ′. By construction, every maximum star-

independent set S of G \ f ′ of size αf (G \ f ′) misses N [x] in G. Therefore, S ∪ {x}
is a maximum star-independent set in G, and αf (G) = αf (G \ f ′) + 1. This proves

that θf (G) = αf (G).

Lemma 6. Odd-sun graphs are non-induced star-critical graphs.
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Proof. Consider an n-sun of order n = 2m + 1, m ≥ 1, whose vertex set V can

be partitioned into inner vertices with degree more than two and outer vertices with

degree equal to two. Let X = {x1, x2, . . . , xn} denote the set of all outer vertices. We

know that any non-induced star-cover C of size θf should meet every vertex in X.

Since each Ci ∈ C can contain at most two vertices of X, θf ≥ n
2 > m follows immedi-

ately. Now, for any maximal star-independent set S of size αf , S ⊂ {x1, x2, . . . , xn},
and for any xi ∈ S, xi−1, xi+1 /∈ S. Hence, αf = n−1

2 = m. Therefore, θf > αf .

Theorem 9. [34] Chordal graphs are non-induced star-perfect graphs if and only if it is
odd-sun-free.

We remark that the ‘if’ part of Theorem 9 is also a generalization of Theorem 2.2 in

[15] since all trees are strongly chordal. In [29], Lehel and Tuza proved that a chordal

graph is neighborhood perfect if and only if it contains no odd-sun. This proves the

following corollary.

Corollary 1. Chordal graphs are non-induced star-perfect if and only if it is neighborhood
perfect.

It is known that C4-free trapezoid graphs are interval graphs and all interval graphs

are strongly chordal (see page 595, Proposition 12 in [5]). Therefore, we have the

following corollary.

Corollary 2. C4-free trapezoid graphs are non-induced star-perfect.

Our next result establishes the relationship between an efficient closed domination set

and a maximum star-independent set for an efficient closed domination graph. We

also present a method to construct a minimum non-induced star-covering set from a

given efficient closed domination set of a graph.

Theorem 10. If every induced subgraph H of G is an efficient closed domination graph,
then G is non-induced star-perfect.

Proof. Since every induced subgraph H of G is an efficient closed domination graph,

there exists an efficient closed domination set DH = {v1, v2, . . . , vγ} for each H such

that V (H) =
⋃γ
i=1NH [vi] and NH [vi]∩NH [vj ] = ∅ for all i 6= j. It is straightforward

to verify that for every vertex v ∈ V (H), |N [v] ∩ DH | = 1. Thus, DH is a star-

independent set of H, and |DH | = γ. Next, construct a set CH = {C1, C2, . . . , Cγ},
where Ci = NH [vi] for each vi ∈ DH and 1 ≤ i ≤ γ. Since V (H) =

⋃γ
i=1NH [vi], CH

is a non-induced star-covering set of H, and therefore θf (H) ≤ γ. On the other hand,

αf (H) ≤ θf (H). Thus, αf (H) = θf (H), and G is non-induced star-perfect.
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We now turn to our main theorem on domination graphs. A graph G is a domination

graph if every induced subgraph H of G is a domination graph. Additionally, these

graphs are self-complementary, and therefore, if x is said to be dominated by y in G,

then y is also dominated by x in G, and vice versa.

Theorem 11. A domination graph is non-induced star-perfect if and only if it is C4-free
and odd-sun-free.

Proof. Observe that chordless cycles of length greater than four do not contain

dominated vertices. Therefore, the class of domination graphs is either chordal or

weakly chordal. However, since G is C4-free, it cannot be weakly chordal. Thus, G

must be chordal, and the theorem follows from Theorem 9.

Recall that every subgraph of a brittle graph contains a vertex that cannot be part

of a P4 within that subgraph. Chordal graphs are brittle (see [25]). This follows a

result from Dirac [14]. In particular, there is a result of Dahihaus [13] that implies

that brittle graphs are domination graphs.

We conclude this section with the following result.

Corollary 3. C4-free brittle graphs are non-induced star-perfect.

Proof. By Theorem 11, it suffices to show that brittle graphs are n-sun-free. To

this end, consider an n-sun graph. It is easy to verify that every n-sun contains a

bull graph H as an induced subgraph. Let x, y ∈ V (H) be the two end vertices of H.

It can be verified that G[NH [x] ∪NH [y]] is isomorphic to P4, and therefore H is not

brittle.

4. Miscellaneous classes

In Section 3, we presented a forbidden induced subgraph characterization for the class

of domination graphs that is non-induced star-perfect. In this section, we broaden our

survey to various distinct classes of non-induced star-perfect graphs (sometimes with

added structural restrictions) that contribute to the progress of proving Conjecture

1.

Lemma 7. Every strongly star-perfect graph is non-induced star-perfect.

Proof. Let G be a strongly star-perfect graph. Suppose G is non-induced star-

critical. By Observation 3, for every maximal star f ′, we have αf (G \ f ′) = αf (G).

This implies that for each maximal star-independent set S, S misses at least one

maximal star f ′. However, this contradicts the assumption that G is strongly star-

perfect. Therefore, G must be non-induced star-perfect.
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The next class of graphs of interest is the class of regular domatically full graphs.

Recall that these are graphs with domatic number d(G) = δ(G) + 1.

Theorem 12. Regular domatically full graphs are non-induced star-perfect.

For the proof of Theorem 12, we use the following result due to Zelinka [42].

Lemma 8. [42] A regular domatically full graph G with n vertices and domatic number
d exists if and only if d divides n; such a graph is also domatically critical.
Its structure is as follows:
The vertex set V (G) =

⋃d
i=1 Vi, where Vi ∩ Vj = ∅, |Vi| = n

d
, and the subgraph Gij of G

induced by Vi ∪ Vj is regular of degree 1 (for i, j = 1, . . . , d; i 6= j).

Proof of Theorem 12. Let G be a regular domatically full graph with n vertices and

domatic number d. Since G is regular and domatically full, each vertex of G has

degree d − 1, and thus ωf (G) = d. Also, G has the structure described in Lemma

8 such that the subgraph Gij of G induced by Vi ∪ Vj is 1-regular for i, j = 1, . . . , d

with i 6= j. Let vi1, v
i
2, . . . , v

i
t be the vertices of Vi. Since these sets are pairwise

disjoint, for each i, we can construct a set Ci = {N [vi1], N [vi2], . . . , N [vit]} such that

each element of Ci induces a non-induced star in G of size ωf (G), and all of whose

center vertices are in Vi. Clearly, each Ci is a minimal non-induced star-covering set,

and thus θf (G) ≤ |Vi|. Combining this with the property that ωf (G)θf (G) ≥ n, we

obtain θf (G) = |Vi|. Furthermore, since each Gi,j is a 1-regular bipartite graph (i.e.,

K3-free), no two vertices in Vi are contained in the same maximal star, and each

Vi itself is a maximal star-independent set. This proves θf (G) = αf (G). Finally,

to show that θf (H) = αf (H) for every induced subgraph H of G, observe that for

any induced subgraph H, θf (H) = max |Ci ∩ V (H)|. Similarly, each partition Vi is

the collection of all center vertices of each Ci, and thus αf (H) = max |Vi ∩ V (H)|.
Therefore, θf (H) = αf (H) for every induced subgraph H of G, and the theorem

follows.

Next, we consider threshold graphs. These graphs, which are C4-free, C4-free, and P4-

free, belong to the class of chordal graphs. This follows as an immediate consequence

of a result due to Erdős [16], which states that all threshold graphs are split graphs

(their vertex set can be partitioned as the disjoint union of an independent set and a

clique either of which may be empty). Furthermore, it is known that all split graphs

are chordal.

The following fact easily follows from the definition of threshold graphs.

Fact 2. The property of being threshold is hereditary.

Theorem 13. Threshold graphs are non-induced star-perfect.
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For the proof of Theorem 13, we use the following result due to Chvátal (see Corollary

1B in [12]).

Lemma 9. [12] A graph is a threshold graph if and only if there is a partition of the
vertex set V (G) into disjoint sets X and Y , and an ordering x1, x2, . . . , xr, r ≤ |V (G)| of X
such that:

1. Every two vertices in Y are adjacent.

2. No two vertices in X are adjacent.

3. N(x1) ⊇ N(x2) ⊇ · · · ⊇ N(xr).

Proof of Theorem 13. Let G be a threshold graph. By Fact 2, every induced subgraph

of G is also a threshold graph. Thus, it suffices to prove that θf (G) = αf (G). Let

X and Y be the partitions of G as described in Lemma 9, and satisfying properties

1, 2, and 3. If N(xr) 6= ∅, then θf (G) = αf (G) = 1. Otherwise, suppose N(xr) =

N(xr−1) = · · · = N(xr−{k−1}) = ∅ for some k ≥ 1. By 2, we have N(xr−k) ⊆
Y , and by 1 and 3, there exists a vertex y ∈ N(xr−k) such that N [y] = V (G) \
{xr, xr−1, . . . , xr−{k−1}}. It follows that θf (G) = k+ 1 and αf (G) = αf (N [y]) + k =

1 + k. Therefore, θf (G) = αf (G), which completes the proof.

The following corollary follows from the result due to [12] that compliment of a thresh-

old graph is threshold.

Corollary 4. If G is a threshold graph, then G and G are non-induced star-perfect.

In [28], the following was shown (see also [9], page 473).

Lemma 10. [28] A graph G is a min-tolerance chain graph if and only if G is a threshold
graph.

Therefore, the following result follows from Lemma 10.

Corollary 5. Min-tolerance chain graphs are non-induced star-perfect.

Next, we characterize paw-free graphs that are non-induced star-perfect. Recall that

these are (P 2 ∨K1)-free graphs.

First, we prove the following useful theorem on a proper homogeneous set of a graph.

Theorem 14. Let X be a proper homogeneous set of a graph G and x ∈ X. Then
G is non-induced star-perfect if and only if both G \ (X \ {x}) and G[X] are non-induced
star-perfect, and either G[X] or G[N [x] \X] is a clique.
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Proof. Let X be a proper homogeneous set in G and let x ∈ X.

The ‘only if’ direction follows from the fact that both G \ (X \ {x}) and G[X] are

induced subgraphs of the non-induced star-perfect graph G and therefore are non-

induced star-perfect. If neither G[X] nor G[N [x] \ X] is a clique, then (since X is

a proper homogeneous set) there exist vertices u, v ∈ V (G) \X and u′, v′ ∈ X such

that uv, u′v′ /∈ E(G). This leads to the induced subgraph G[u, u′, v, v′], which is

isomorphic to the cycle C4, contradicting the fact that G is C4-free.

Conversely, suppose that both H = G \ (X \ {x}) and G[X] are non-induced star-

perfect, and either G[X] or G[N [x] \X] is a clique. To prove that G is non-induced

star-perfect, it suffices to show that for every subset X ′ ⊆ X \ {x} and G′ = H ∪X ′,
we have θf (G′) = αf (G′). To this end, we construct a non-induced star-covering set

CG′ for G′ as follows:

• Let CH be a minimum non-induced star-covering set of H. Choose an element

ci ∈ CH that meets vertex x.

• If |ci| = 1 and G[X] is a clique, then set CG′ = (CH \ ci) ∪ (ci ∪ X). If

|ci| = 1 but G[N [x] \ X] is a clique, select a vertex v ∈ N [x] \ X such that

cj ∈ CH meets vertex v, with v being an endpoint of cj . This selection is

valid; otherwise, if we define C ′H = (CH \ ci) ∪ (cj ∪ x), it would contradict

the minimality of CH since we would have |C ′H | < |CH |. Thus, we set CG′ =

(CH \ {ci, cj}) ∪ (cj \ {v}) ∪ (v ∪X).

• If |ci| ≥ 2, then since one of the graphs G[X] or G[N [x] \X] is a clique, the set

ci∪X contains a non-induced star. Therefore, we have CG′ = (CH \ci)∪(ci∪X).

It can be easily verified that CG′ is indeed a minimum non-induced star-covering

set for G′, leading to the conclusion that θf (G′) = |CG′ | = |CH | = |θf (H)|. Next,

let S be a maximum star-independent set of H. Since the adjacency relations of

vertices in V (H) remain unchanged when constructing G′ from H, it follows that for

all v ∈ V (G′), we have |N [v]∩S| = 1. This implies that the set S remains a maximum

star-independent set in G′, and αf (G′) = |S| = αf (H). Consequently, we conclude

that θf (G′) = θf (H) = αf (H) = αf (G′), which completes the proof.

Theorem 15. Paw-free graphs are non-induced star-perfect if and only if it is C3n+1-free
and C3n+2-free.

For the proof of Theorem 15, we use the following result due to Olariu [39].

Lemma 11. [39] A graph G is paw-free if and only if each component of G is K3-free or
complete multipartite.

Proof of Theorem 15. The ‘only if’ part is trivial.

For the converse, consider an arbitrary connected (paw, C3n+1, C3n+2)-free graph G.

If G is K3-free, then by Lemma 4, G is non-induced star-perfect. Therefore, assume

G contains a triangle. By Lemma 11, G is complete multipartite with partitions
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X1, X2, . . . , Xk, k ≥ 3. Since G is C4-free, there exists at most one Xi such that

G \ Xi is a clique, and 2 ≤ |V (G \ Xi)| < |V (G)|. This means that V (G \ Xi) is a

proper homogeneous set in G. Now, since G \ Xi is a clique, and for each v ∈ Xi,

v is anticomplete to Xi \ v, it follows that G \ (Xi \ x) and G[Xi] are non-induced

star-perfect. Then by Theorem 14, G is non-induced star-perfect.

We next turn our attention to bull-free graphs.

Theorem 16. [36] Any bull-free graph has one of the following five properties:

(i) G contains a C5.
(ii) G is K3-free.

(iii) G is K3-free.
(iv) G has a proper homogeneous set.
(v) G or G contains a G0 (see Figure 3) as an induced subgraph.

 

Figure 3. Graph G0.

Theorem 17. Bull-free graphs are non-induced star-perfect if and only if it is C3n+1-free
and C3n+2-free.

Proof. The ‘if’ part is trivial. To prove the ‘only if’ direction, consider a (bull,

C3n+1, C3n+2)-free graph G. Let H be any induced subgraph of G, and denote by

H (H) the set of all maximal proper homogeneous sets of H. We will use induction

on h = |H (H)|. If h = 0, then by Theorem 16, either H or its complement H is

K3-free. If H is K3-free, then by Lemma 4, G is non-induced star-perfect. On the

other hand, if H is K3-free, then H is P5-free. In particular, this means that H is a

bull-free graph that is also free from cycles of lengths C3n+1 and C3n+2. Since H is

bull-free and (C4, C5, P5)-free, it implies that G is sun-free and chordal, respectively.

Therefore, we conclude that H is sun-free chordal and hence strongly chordal (see

[17]). By Theorem 8, it follows that H is non-induced star-perfect.

Now, suppose the statement holds for all graphs with 0 ≤ h ≤ m − 1, and let H be

an induced subgraph of G with h = m. Let X be a proper homogeneous set in H

of maximal order, and let x ∈ X. Then both G[X] and G \ (X \ {x}) are induced

subgraphs of H with at most m − 1 maximal proper homogeneous sets. Thus, both
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G[X] and G\ (X \{x}) are non-induced star-perfect. Next, since G is C3n+1-free and

C3n+2-free, it follows that either G[X] or G[N [x] \ X] must be a clique. Therefore,

by Theorem 14, we conclude that H is non-induced star-perfect.

Finally, we focus on γβ-perfect graphs. In [40], it was observed that γβ-perfect graphs

are not isomorphic to C5 and do not necessarily contain C3 or P6 as induced subgraphs.

Consequently, all C4-free γβ-perfect graphs are also C3-free, C3n+1-free, and C3n+2-

free. These graphs represent the precise class of induced star-perfect graphs. Since all

induced star-perfect graphs are included within the broader category of non-induced

star-perfect graphs, we can derive the following result.

Theorem 18. C4-free γβ-perfect graphs are non-induced star-perfect.

5. Formulating non-induced star-perfect as an integer pro-
gram

A significant part of combinatorics involves optimizing problems, which are often

expressed as linear forms of variables subject to integer or binary constraints. Con-

sequently, these problems can be effectively transformed into linear and integer pro-

gramming formulations. Linear and integer programming are widely used techniques

for finding optimal solutions (either maximizing or minimizing) by optimizing an

objective function subject to a given set of constraints. These techniques have nu-

merous applications across various domains, including resource allocation, scheduling,

and network flow optimization.

To formulate linear and integer programming problems, we consider a (0, 1)-matrix

M and column vectors a, b, x, and y. A linear program (the primal) and its dual

can be expressed as follows:

minimize aTx

subject to Mx ≥ b

x ≥ 0

(5.1)

maximize bTy

subject to MTy ≤ a

y ≥ 0

(5.2)

In these formulations, aTx and bTy are referred to as the objective functions, while

the constraints Mx ≥ b, x ≥ 0, MTy ≤ a, and y ≥ 0 define the feasible regions for

the primal and dual programs.

The integration of integer programming techniques is now commonly used in graph

theory. They provide a strong framework for solving optimization problems specific

to graph invariants, such as finding minimal spanning trees, determining maximum

flows, and identifying optimal matchings.
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The Marriage Theorem [24] was the first problem in graph theory that illustrated

integer programming-like characteristics. Notably, linear programming did not exist

at the time. Ford and Fulkerson’s [18] significant work, which presented one of the first

applications of linear programming to graph theory, did not appear until fifty years

later. Gallai’s [20] seminal study also provides an early indication of this relationship.

Tucker [41] investigated the significance of integer programming techniques on perfect

graphs to solve optimization problems pertaining to the efficient provision of municipal

services. Additionally, when the undominated rows of M correspond to the incidence

vectors of maximal cliques and a = b = 1, it can be observed that equations 5.1 and

5.2 are indeed the covering number θ(G) and independence number α(G), respectively

[10, 11].

Here, we expand this foundation by introducing integer programming formulation for

the non-induced star-perfect invariants. The objective of this section is to explore the

linear programming method for the minimum non-induced star-covering number and

maximum star-independent number problems.

5.1. Preliminaries

We begin with some definitions. Let In denote an identity matrix of order n × n.

The adjacency matrix of a graph is a square matrix A where each entry in the (i, j)th

cell is 1 if there is an edge between vertices i and j, and 0 otherwise. The closed

neighborhood matrix, denoted as N , is obtained by adding the identity matrix to the

adjacency matrix of a graph, i.e., A+ In. To distinguish vectors from other variables,

we use bold notation, and therefore the expression Nx denotes the standard matrix

multiplication between the n× n matrix N and the n× 1 vector x.

5.2. θf and αf as an integer program

Given a non-induced star-covering set C = {C1, . . . , Ck} of a graph G, we define a set

J ⊆ V (G) by selecting the center vertex of each Ci ∈ C . Note that if Ci is isomorphic

to K2, we choose any one vertex, and if Ci is isomorphic to a single vertex v, we

choose v itself.

The characteristic function for the set J is defined such that it assigns the value

1 to each vertex in J and 0 to the vertices outside of J . A key property of this

characteristic function is that it satisfies the condition that the sum of the function

values assigned to any vertex and its neighbors in G is at least 1. This motivates

us to define a non-induced star-covering function as a function l : V (G) → {0, 1}
such that the sum of the function values over all vertices in the closed neighborhood

NG[v] of v satisfies l(N [v]) =
∑
u∈N [v] l(u) ≥ 1 for every vertex v ∈ V (G). A non-

induced star-covering function is considered minimal if there does not exist another

non-induced star-covering function l′ : V (G) → {0, 1}, distinct from l, that satisfies

l′(v) ≤ l(v) for every v ∈ V (G). A minimum non-induced star-covering function on a

graph G is a non-induced star-covering function l which attains the minimum value

of |l| =
∑
v∈V (G) l(v), denoted by θf (G), the non-induced star-covering number of G.
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Figure 4 depicts the non-induced star-covering function x = [1 0 0 1 0 0]T of a 3-sun

graph. It is important to note that x = [100100]T is also a non-induced star-covering

function for the covers {(v1, v2), (v5, v6, v4, v3)} and {(v6, v1, v2), (v5, v4, v3)}.

 

 

C ={(v1,v6),(v4,v2,v3,v5,)},   J ={v1, v4} 

𝑁𝒙 =  

1 1 0 0 0 1
1 1 1 1 0 1
0 1 1 1 0 0
0 1 1 1 1 1
0 0 0 1 1 1
1 1 0 1 1 1

    

1
0
0
1
0
0

 =

1
2
1
1
1
2

 ≥  

1
1
1
1
1
1

 

1 

 

v1 

0 0 

1 

 

v2 

0 0 
v3 v4 v5 

v6 

Figure 4. A non-induced star-covering function.

A star-independent function on a graph G is a function m : V (G) → {0, 1} that

satisfies m(N [v]) =
∑
u∈N [v]m(u) ≤ 1 for all vertices v ∈ V (G). A maximum star-

independent function is a star-independent function m which attains the maximum

value of |m| =
∑
v∈V (G)m(v), denoted by αf (G), the star-independent number of G.

The {0, 1}-vector y of any star-independent function y satisfies the matrix inequality

Ny ≤ 1. As an example, the non-induced star-covering function y = [1 0 0 0 0 0]T of

a 3-sun graph is given in Figure 5..
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v3 v4 v5 

v6 

S ={v1} 

𝑁𝒚 =  

1 1 0 0 0 1
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Figure 5. A non-induced star-independent function.

To determine the non-induced star-covering number in graphs, a common technique

is to formulate the problem as an integer program using the neighborhood matrix

N = A+ In. Now, θf is the value of the integer program in Equation 5.1.

θf = minimize 1Tx

subject to Nx ≥ 1

x ≥ 0, xi ∈ (0, 1)

(5.3)

This formulation allows for the determination of an optimal solution that minimizes

the cardinality of non-induced star coverings in the graph G.

Similarly, the dual problem of determining the star-independence number can also be

formulated in integer program terms; αf (G) is the value of the integer program in

Equation 5.2.
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αf = maximize 1Ty

subject to Ny ≤ 1

y ≥ 0, yi ∈ (0, 1)

(5.4)

The min-max inequality tells us that

θf (G) = min 1Tx ≥ max 1Ty = αf (G)

Under certain conditions, the strong min-max equality holds:

θf (G) = min 1Tx = max 1Ty = αf (G) (5.5)

Our first goal is to show that odd-sun-free graphs are non-induced star-perfect. We

first need the following terminology.

A hypergraph H = (X,E ) is a mathematical structure that consists of a non-empty

set of vertices X and edges E ⊆ P (X), where P (X) is the power set of X. For

a graph G, a hypergraph N (G) = (X,E ) having the vertices of G as X and the

closed neighborhoods N [v] of each v ∈ V (G) as E is called the closed neighborhood

hypergraph of G. A balanced matrix is a (0, 1)-matrix that does not contain an odd

square submatrix with all row and column sums equal to two. A totally balanced

matrix is a (0, 1)-matrix that does not contain a square submatrix with no identical

columns and its row and column sums equal to two.

Balanced matrices have been studied extensively by Berge [6] and Fulkerson et al.

[19]. Notably, Berge studied the balancedness of hypergraphs and in his work [6],

he established that if the incident matrix N of a closed neighborhood hypergraph

is balanced, then the hypergraph is balanced. We observe that N is essentially the

closed neighborhood matrix N of G. Consequently, N is balanced as well.

Theorem 19. [19] If N is a balanced matrix, then the strong min-max equality (5.5)
holds for Equations (5.3) and (5.4).

Theorem 20. [8] A graph is odd-sun-free chordal if and only if its closed neighborhood
hypergraph N (G) is balanced.

Theorem 9. (Restated Theorem). Odd-sun-free chordal graphs are non-induced
star-perfect.

Our next goal is to show that strongly chordal graphs are non-induced star-perfect

(see Theorem 8). To this end, we will consider a more restrictive class of matrices

called totally balanced [30].

Theorem 21. [26] If N is a totally balanced matrix, then the strong min-max equality
(5.5) holds for Equations (5.3) and (5.4).
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Theorem 22. [17] A graph is strongly chordal if and only if its closed neighborhood
matrix N is totally balanced.

Theorem 8. (Restated Theorem). Strongly chordal graphs are non-induced star-
perfect.
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