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Abstract: The commuting graph Γ(G) of a group G is the simple undirected graph

with group elements as a vertex set and two elements x and y are adjacent if and

only if xy = yx in G. By eliminating the identity element of G and all the dom-
inant vertices of Γ(G), the resulting subgraphs of Γ(G) are Γ∗(G) and Γ∗∗(G), re-

spectively. In this paper, we classify all the finite groups G such that the graph
∆(G) ∈ {Γ(G),Γ∗(G),Γ∗∗(G)} is the line graph of some graph. We also classify all the

finite groups G whose graph ∆(G) ∈ {Γ(G),Γ∗(G),Γ∗∗(G)} is the complement of line

graph.
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1. Introduction

In the last few decades the interest of people in the study of algebraic objects using

graph theoretic concepts is growing which is an interesting research topic leading to

several important results and questions. The study of graphs over many algebraic

structures is very important as graphs of this type have numerous applications ([8],

[14]). The commuting graph on a group G was introduced by Brauer and Fowler

[5] with vertex set G \ {e}. The commuting graphs for different non-abelian groups

have been studied by many authors (see [6], [1] [12]). The graph theoretic properties

such as detour distance, metric dimension and resolving polynomial properties of the

commuting graph on the dihedral group Dn were studied by Faisal et al. [1]. Authors

in [10], also studied the detour distance properties, resolving polynomial and spectral
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2 Finite groups whose commuting graphs are line graphs

properties of the commuting graph of non-abelian groups of order p4 with center

having p elements. Recently, Carleton et al. [7], studied the commuting graph for

A-solvable groups and Ashrafi et al. [15], studied the commuting graph of CA-groups.

The line graph L(Γ) of a graph Γ is the graph whose vertex set consists of all edges

of Γ; two vertices of L(Γ) are adjacent if and only if they are incident in Γ. All

finite nilpotent groups whose power graphs and proper power graphs are line graphs

were characterized by Bera [4]. Parveen et al. characterized all finite groups whose

enhanced power graphs are line graphs in [13]. Furthermore, [13] determines all fi-

nite nilpotent groups whose proper enhanced power graphs are line graphs of certain

graphs. In [11], Manisha et al. characterized all the finite groups whose order su-

pergraph is the line graph. Throughout this paper, G is a finite group and e is the

identity element of G.

In this paper, we aim to study the line graph of commuting graph associated to

finite groups. By eliminating the identity element of G and all the dominant ver-

tices of Γ(G), the resulting subgraphs of Γ(G) are Γ∗(G) and Γ∗∗(G), respectively.

We characterize all the finite group G such that ∆(G) ∈ {Γ(G),Γ∗(G),Γ∗∗(G)}
is a line graph of some graph. Also, we classify all finite groups G such that

∆(G) ∈ {Γ(G),Γ∗(G),Γ∗∗(G)} is the complement of a line graph.

2. Preliminaries

The vertex set V (Γ) and the edge set E(Γ) ⊆ V (Γ)×V (Γ) form an ordered pair that

constitutes a graph Γ. If {u, v} ∈ E(Γ), then two vertices, u and v are adjacent; if so,

we denote them as u ∼ v and if not, u � v. When a pair of edges e1 and e2 have a

similar endpoint, then they are referred to as incident edges. If a graph has no loops

or multiple edges, it is referred to as a simple graph. In this study, we just take into

consideration simple graphs. A graph Γ′ such that V (Γ′) ⊆ V (Γ) and E(Γ′) ⊆ E(Γ)

is called a subgraph of a graph Γ.

Suppose that X ⊆ V (Γ). Then the subgraph Γ′ induced by the set X is a graph such

that V (Γ′) = X and u, v ∈ X are adjacent if and only if they are adjacent in Γ. A

vertex u of a graph Γ is referred to as a dominating vertex of Γ if it is adjacent to

every other vertex of Γ. We refer to the set of all dominating vertices of Γ as Dom(Γ).

A graph Γ is considered complete if every pair of vertices is adjacent to one another.

Kn represents a complete graph with n vertices. The graph Γ such that V (Γ) = V (Γ)

and two vertices u and v are adjacent in Γ if and only if u is not adjacent to v in Γ

is the complement of a graph Γ.

Throughout this paper, Zn, Dn, Sn, An and Q8 denotes the cyclic group of order n,

dihedral group of order 2n, symmetric group on n symbols, alternating group on

n symbols and the quaternion group of order 8 respectively. The centralizer of an

element x in the group G is denoted by CG(x) and the center of the group G is

denoted by Z(G).

A characterization of line graph and its complement are described in the next two

lemmas, both of which are helpful in the sequel.
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Lemma 1. [3] A graph Γ is the line graph of some graph if and only if none of the nine
graphs in Figure 1 is an induced subgraph of Γ.

Γ1 Γ2 Γ3 Γ4 Γ5

Γ6 Γ7 Γ8 Γ9

Figure 1. Forbidden induced subgraphs of line graphs.

Lemma 2. [2, Theorem 3.1] A graph Γ is the complement of a line graph if and only if
none of the nine graphs Γi in Figure 2 is an induced subgraph of Γ.

Γ3
Γ1 Γ2 Γ4 Γ5

Γ6 Γ7 Γ8 Γ9

Figure 2. Forbidden induced subgraphs of the complement of line graphs.

3. Line graph characterization of Γ(G)

All the finite groups G such that Γ(G) is a line graph of some graphs are classified in

this section. Afterwards, we identify all the finite groups that have Γ∗(G) and Γ∗∗(G)

as line graphs. Lastly, we characterize all the groups G that have Γ(G), Γ∗(G), and

Γ∗∗(G) as the complement of the line graph of some graph. One can easily observe

the following.

Lemma 3. If a graph is a complete graph, then it is the line graph and complement of
line graph of some graph.
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Lemma 4. The commuting graph Γ(G) of a group G is complete if and only if G is
abelian.

Lemma 5. For the commuting graph Γ(G), the dominating set Dom(Γ) is the center
Z(G) of the group G.

Lemma 6. [16] The maximum number of edges in an n-vertex triangle-free graph is b
n2

4
c.

Theorem 1. The commuting graph Γ(G) is the line graph of some graph if and only if
G is abelian.

Proof. If G is an abelian group, then Γ(G) is the complete graph. Hence it is a line

graph of some graph. Now, we show that no non-abelian group can be a line graph.

Let G be a non-abelian group.

Let | Z(G) |≥ 3. Let three distinct elements in the center be e, x and y. Since G

is a non-abelian group, there exist elements a and b such that a � b. Then the set

{e, x, y, a, b} will make the structure of Γ3 in Figure 1. Therefore, | Z(G) |≤ 2. Now,

suppose that Z(G) = {e, x}. Note that there exist a and b such that a � b. Note that

a ∼ ax and b ∼ bx. The set {e, x, a, ax, b, bx} will make the structure of Γ6 in Figure

1. Therefore, the group G has the trivial center.

Note that the probability of any two elements in G to commute is

P2(G) =
Nubmer of conjugacy classes in G

Total number of elements in G
(see [9]).

One can easily note that if a group G has trivial center, then P2(G) ≤ 1
2 . Let

P2(G) = 1
2 . Then the maximum of half pairs of elements can commute. There is

total nC2 pairs of n elements in which n(n−1)
4 pairs can commute where n =| G |.

This implies that there exist n(n−1)
4 pairs that do not commute.

Let Γ(G) be the complement of the commuting graph Γ(G). By Lemma 6, the max-

imum number of edges in (n − 1) non-central vertex triangle free graph in Γ(G) is b
(n−1)2

4 c. Note that there are n(n−1)
4 pairs which do not commute and

n(n− 1)

4
>

⌊
(n− 1)2

4

⌋
. (3.1)

Hence, there always exists three distinct elements x, y and z such that x does not

commute with y, y does not commute with z and z does not commute with x. As the

identity element always commute with all other elements, so the set {e, x, y, z} will

make Γ1 in Figure 1.

If P2(G) < 1
2 , then there are more choices of pairs which do not commute. One

can easily check that the inequality (3.1) is satisfied in this case. Therefore, we get
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an induced subgraph Γ1 of Figure 1 in this case. Therefore, there does not exist

a non-abelian group for that the commuting graph Γ(G) is the line graph of some

graph.

Theorem 2. The commuting graph Γ∗(G) is the line graph of some graph if and only if
one of the following conditions holds:

1. The group G is abelian.

2. The group G is a non-abelian group with trivial center and the centralizer of any non-
central element is abelian.

Proof. If G is abelian group, then Γ∗(G) is the complete graph. Hence it is a line

graph of some graph. Also, if the centralizer of any non-central element is abelian,

then G is partitioned into disjoint commuting classes. Therefore, Γ∗(G) is the line

graph. For the converse, let G be a non-abelian group such that Γ∗(G) is the line

graph.

By the similar argument as in the proof of Theorem 1, | Z(G) |≤ 2. Now, suppose

Z(G) = {e, x}. Since the conjugacy class of each non-central element contains more

than one element, one can observe that P2(G) > 1
2 if and only if G is either isomorphic

to D4 or Q8, but Γ∗(D4) and Γ∗(Q8) are not line graphs. If P2(G) ≤ 1
2 , then by the

similar argument as in Theorem 1, we get three distinct element y, z and w such that

y � z, z � w and w � y. Now the set {x, y, z, w} will make Γ1 of Figure 1. Therefore,

the group G has the trivial center.

Let x ∈ G be a non-central element. Suppose that the centralizer CG(x) =

{e, x, y1, . . . , ym−2} of x in G is non-abelian. By the similar argument as in The-

orem 1, we can suppose | Z(CG(x)) |= 2. By the similar argument for CG(x) as

above, one can show that Γ∗(G) is not a line graph. This implies that the centralizer

of each non-central element is abelian. One can easily observe that Γ∗(G) is a line

graph in this case.

Example 1. The commuting graph Γ∗(Dn) is the line graph for dihedral groups Dn when
n is odd.

If G is abelian group, then the center consists all the elements of group. In this case

there is no vertex left for Γ∗∗(G). So, we will find when the commuting graph Γ∗∗(G)

is the line graph of some graph for non-abelian groups.

Theorem 3. Let G be a non-abelian group. Then the commuting graph Γ∗∗(G) is the
line graph of some graph if and only if centralizer of any non-central element is abelian.

Proof. If the centralizer of each element is abelian, then G is partitioned in com-

muting classes. One can easily check that Γ∗∗(G) is a line graph in this case.

If the centralizer of an element in a group G is non-abelian, then by the similar

argument as in Theorem 2, one can show that Γ∗∗(G) is not a line graph.
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Example 2. The commuting graph Γ∗∗(Dn) is the line graph for dihedral groups Dn.

Example 3. The commuting graph Γ∗∗(Q8) is the line graph for quaternion groups Q8.

Theorem 4. Let ∆(G) ∈ {Γ(G),Γ∗(G),Γ∗∗(G)}. Then ∆(G) is the complement of the
line graph of some graph if and only if one of the following conditions holds:

1. The group G is abelian.

2. If G is a non-abelian group, then G ∼= D4 or G ∼= Q8.

Proof. If G is abelian group, then ∆(G) is the complete graph. Hence it is the

complement of a line graph of some graph. Also, if G ∼= D4 or G ∼= Q8, then one can

check that ∆(G) is the complement of the line graph. For the converse, let G be a

non-abelian group such that ∆(G) is the complement of the line graph.

Let | Z(G) |> 2. Then there exists two elements in center besides the identity. Let x

and y to be two distinct elements of center other than the identity. As G is non-abelian

group, there exists a and b in G such that a � b. Now, a, ax and ay commute with

each other. But b does not commute with all three of them. So the set {a, ax, ay, b}
will make Γ1 of Figure 2. Hence, for the complement of line graph, | Z(G) |≤ 2.

Let Z(G) = {e, x}. First, suppose that the centralizer of every non-central element a

as {e, x, a, ax}. Then the set of non-central elements is partitioned into the commuting

classes consists of only two elements. If the number of commuting classes of non-

central elements is greater than three, then we get Γ3 of Figure 2. This implies that

there are three or less commuting classes. The only possibility for such group are

either D4 or Q8. One can easily check that ∆(D4) and ∆(Q8) are complement of a

line graph.

Now, suppose that the centralizer CG(a) of every non-central element a ∈ G is abelian

and some centralizer CG(a) consists of more than four elements. This implies that

CG(a)\Z(G) consists of at least three distinct elements a1, a2 and a3. Since, G is

non-abelian, there exists y in G\CG(a) which does not commute with any of a1, a2
and a3. Therefore, we get an induced subgraph Γ1 of Figure 2.

Now, suppose that the centralizer of CG(a) of a non-central element a ∈ G is non-

abelian. Then the centralizer CG(a) consists of at least two elements c and d such

that c � d. Note that c ∼ cx, cx ∼ ca, c ∼ ca, c � d, d � cx and d � ca. Therefore, we

get an induced subgraph Γ1 of Figure 2. Hence, | Z(G) |= 1.

Now, suppose an odd prime p ≥ 5 divide the order | G | of G. Then there exists an

element x ∈ G such that o(x) = p. Therefore, we get a cyclic subgroup

H = 〈x〉 = {e, x, x2, . . . xp−1} ∼= Zp.

Note that CG(x) ⊆ CG(x2) ⊆ CG(x4). Since G is non-abelian, we get an element

y ∈ G\CG(x4) such that y � x, y � x2, y � x4. Therefore, we get an induced subgraph

Γ1 of Figure 2. This implies that only divisors of the order | G | of G are 2 or 3 such
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that the order of each element is less than five. Therefore, | G |= 2α3β , α, β ≥ 1.

Then, there exists a subgroup H of G generated by an involution and an element of

order 3. Hence, by [17], G is isomorphic to either A4, S3 or S4. One can easily check

that ∆(A4),∆(S3) and ∆(S4) are not complement of a line graph.
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