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Abstract: A generalized subdivision H′ of a digraph H is obtained by replacing

each arc e = (x, y) ∈ E(H) with tail x and head y, by an oriented path Pe whose

first arc has tail x and whose last arc has head y, all these new paths being internally
disjoint. If all these new paths are directed ones, then H′ is simply a subdivision of

H. The number of blocks (which turns out to have the same parity of |E(H)|) of the

generalized subdivision H′ of H is the sum of all the number of blocks of the new paths
Pe. In this paper, we prove that if D is spanned by a subdivision of a digraph H such

that χ(D) is at least 2n+ |V (H)|+ |E(H)|, then D contains a generalized subdivision

of H with n blocks. This bound is simplified when H is an oriented tree. If H is an
oriented cycle, then our results assert a special case of a conjecture of Cohen et al.

Moreover, the bound is improved to 2n + 1 if H is an oriented cycle with two blocks

or H is a directed cycle.
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1. Introduction

In this paper, graphs are finite and simple, that is they have no loop nor multiple

edges, while digraphs are oriented graphs. Let D be a digraph obtained by assigning

to each edge e = xy of G an orientation (x, y) or (y, x), but not both. In this case,

we say that G is the underlying graph of D. The set of vertices of G (resp. D) is

denoted by V (G) (resp. V (D)). The set of edges of G (resp. arcs of D) is denoted

by E(G) (resp. E(D)). If e = xy is an edge of G, then we say that x and y are

neighbors. Also we say that y is a neighbor of x. The degree dG(x) of a vertex x of

G is the number of its neighbors. A path P = x1x2 . . . xn is a graph on n distinct

vertices x1, x2, . . . , xn and whose edges are xixi+1, for 1 ≤ i < n. An oriented path
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P = x1x2 . . . xn is an orientation of a path and it is a directed path if its arcs are

(xi, xi+1), for 1 ≤ i < n. A cycle C = x1x2 . . . xnx1 is a graph on n distinct vertices

x1, x2, . . . , xn and whose edges are xixi+1, for 1 ≤ i < n and the edge xnx1. An

oriented cycle C = x1x2...xnx1 is an orientation of a cycle and it is a directed cycle if

its arcs are (xi, xi+1), for 1 ≤ i < n and (xn, x1). The length of a path or a cycle is the

number of its edges. The length of an oriented path or cycle is the number of its arcs.

The girth of a graph (resp. oriented graph) is the length of a shortest cycle (oriented

cycle) it contains. A block of an oriented cycle or path is a maximal directed path

in the given oriented cycle or path. If C is an oriented cycle which is not a directed

cycle, then the number of its blocks is always even. If C is an oriented cycle (resp.

path) that has exactly p blocks, then we say that C is an oriented cycle (reps. path)

with p blocks. If each block of an oriented cycle C is of length 1, then it is called an

antidirected cycle. A digraph is said to be strongly connected if between any two of

its vertices x and y there is a directed path from x to y. A tree is a connected graph

with no cycle. An oriented tree is an orientation of a tree.

A Hamiltonian path (resp. cycle) is a path (resp. cycle) passing through all the

vertices of a graph G. A Hamiltonian directed path (resp. cycle) is a directed path

(resp. cycle) passing through all the vertices of a digraph D. A digraph is Hamiltonian

if it has a Hamiltonian directed cycle. A Hamiltonian oriented cycle is any oriented

(not necessarily directed) cycle passing through all the vertices of D. If A is a subset of

the set of vertices of D, then D[A] denotes the sub-digraph of D induced by A. If H is

a sub-digraph (resp. subgraph) of a digraph (resp. graph) D such that V (D) = V (H),

then we say that D is spanned by H and also we say that D is spanned by V (H).

Let H be a digraph. A subdivision H ′ of H is a digraph obtained from H by replacing

each arc e = (x, y) by a directed path Pe = xx1 · · ·xly from x to y, all these new paths

being internally disjoint. A generalized subdivision H ′ of H is a digraph obtained

from H by replacing each arc e = (x, y) by an oriented path Pe = xx1 · · ·xly such

that (x, x1) and (xl, y) are arcs of Pe, all these new paths being internally disjoint.

Note that, in the previous two definitions, the number l may vary from one arc to

another. For e ∈ E(H), we define block(Pe) to be the number of blocks of the

oriented path Pe. We say that H ′ is a generalized subdivision of H with n blocks if∑
e∈E(H) block(Pe) = n. Note that every subdivision of H is a generalized subdivision

of H with |E(H)| blocks, because in this case we have block(Pe) = 1, for every

e ∈ E(H).

The chromatic number χ(G) of a graph G is the smallest integer n such that all the

vertices can be colored using n colors in a way that any two neighbor vertices receive

distinct colors. The chromatic number of a digraph D is that of its underlying graph

and is denoted by χ(D). We say that D is n-chromatic if its chromatic number is

n. A graph G is n-degenerate if every subgraph G′ of G has a vertex v such that

dG′(v) ≤ n. It is well known that if G is n-degenerate graph, then χ(G) ≤ n+ 1.

A classical result of Gallai and Roy is the following:
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Theorem 1. (Roy-Galli [9], [6]) Every digraph with chromatic number at least n + 1
contains a directed path of length at least n.

In other words, the directed path of length n is contained in every digraph

with chromatic number at least n + 1. This prompts the following question: Which

digraphs H are sub-digraphs of all digraphs with sufficiently large chromatic number?

In 1959, Erd´́os proved that there are graphs with arbitrarily large chromatic number

and arbitrarily large girth:

Theorem 2. (Erd´́os [5]) For every k ≥ 3 and g ≥ 3, there is a graph with chromatic
number at least k and girth at least g.

Suppose that H is a digraph that contains an oriented cycle C of length n. Then by

Theorem 2, for every k ≥ 3, there is an oriented graph D with chromatic number at

least k and girth at least n+ 1. Hence, H is not a sub-digraph of D.

Thus, the only connected oriented graphs H that are possibly candidates to generalize

theorem 1 are oriented trees.

However, the following celebrated theorem of Bondy shows that the story does not

stop here.

Theorem 3. (Bondy [2]) Every strongly connected digraph of chromatic number at least
n contains a directed cycle of length at least n.

By interpreting directed cycles of length at least n as subdivisions of the directed

cycle of length n, the preceding theorem establishes a special case of a conjecture

proposed by Cohen et al.:

Conjecture 1. ([3]) For every oriented cycle C, there is a constant f(C) such that every
strongly connected digraph with chromatic number at least f(C) contains a subdivision of
C.

Let C(k, l) denote the cycle with two blocks of lengths k and l respectively and let

n = k + l. Kim et al. [8] proved that f(C(k, l)) is O(n4). Ghazal and Al-Mniny

[1] proved that if D is a digraph (not necessarily strongly connected) that has a

Hamiltonian directed path and χ(D) > 3.max{k, l}, then D contains a subdivision

of C(k, l). Furthermore, El Joubbeh [4] proved that if D is digraph that has a

Hamiltonian directed cycle and χ(D) ≥ 3n, then D contains a subdivision of any

oriented cycle on n vertices. Recently, Ghazal and Tfaili [7] refined El-Joubbeh’s

proof and showed that the bound of 2n is sufficient.
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Hamiltonian directed cycles can be viewed as spanning sub-digraphs and subdivisions

of the antidirected cycle on n vertices can be viewed as an oriented cycle with n

blocks. Motivated by this remark and by previous results, in this paper we consider

digraphs D spanned by a subdivision of any digraph H. We prove that D contains a

generalized subdivision of H with n blocks, if χ(D) is at least 2n+ |V (H)|+ |E(H)|.
When H is a tree on m vertices, then this bound reduces to 2n+ 2m− 1. If H is an

oriented cycle with two blocks or a directed cycle, then a stronger bound of 2n+ 1 is

achieved.

Thus, our findings enhance prior results in the literature, offering extensions to ex-

isting work. Moreover, we note that our results do not assume strong connectivity.

In Section 2, we present essential technical definitions and preliminary lemmas to

streamline the proofs of our main results, which are detailed in Section 3, ensuring

brevity and enhanced clarity.

2. Preliminary lemmas and definitions

In this section, we formally introduce the concept of generating sequences in graphs

and digraphs and establish key properties governing their behavior. These sequences

are employed to systematically construct oriented paths within digraphs, ensuring a

specified number of blocks.

Suppose that L = x0x1x2...xN is a linear ordering of the vertices of a graph G, that

is L is a list of all the vertices of G. We define the intervals [xi, xj ] = {xs; i ≤ s ≤ j},
[xi, xj [= {xs; i ≤ s < j} and ]xi, xj ] = {xs; i < s ≤ j}. Let e = xixj and e′ = xpxq
be two edges of G. We say that e and e′ are secant edges of G with respect to L if

i < p < j < q. Ghazal et al. [1] proved that if G has no secant edges with respect to

L, then χ(G) ≤ 3.

Lemma 1. ([1], Lemma 8) Let L be a linear ordering of the vertices of a graph G. If G
has no secant edges with respect to L, then χ(G) ≤ 3.

In what follows and without loss of generality, we will suppose that L = 0, 1, · · · , N
is a linear ordering of the vertices of a graph G. A generating sequence of length s of

G with respect to L, denoted by Bs, is a sequence of vertices of G and intervals of L

of the form:

b0 = 0, [b0 + 1, b1[, b1, [b1 + 1, b2[, b2, . . . , bs−1, [bs−1 + 1, bs[, bs

such that for all 0 ≤ i < s, we have:

• bi+1 is maximum with the property that [bi + 1, bi+1[ has no secant edges.

• [bi + 1, bi+1] has secant edges.
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In the proofs of some of our results, we will utilize the following slightly different

sequence to streamline our argument. A modified generating sequence of length s of

G with respect to L, denoted by B′s, is a sequence of intervals and vertices of the

form:

[b0 + 1, b1[, b1, [b1 + 1, b2[, b2, . . . , bs−1, [bs−1 + 1, bs[, bs

such that b0 + 1 = 0 and for all 0 ≤ i < s, we have:

• bi+1 is maximum with the property that [bi + 1, bi+1[ has no secant edges.

• [bi + 1, bi+1] has secant edges.

Suppose that Bs is a generating sequence of length s and let r ≤ s. Then the

subsequence Br:

b0 = 0,[b0 + 1, b1[, b1, [b1 + 1, b2[, b2, . . . , br−1, [br−1 + 1, br[, br

is the generating sequence of length r. Bs is said to be a maximum generating sequence

if s is maximum, that is Bs is not a subsequence of another generating sequence Bt

with s < t. Analogously, we define a subsequence of a modified generating sequence

as well as a maximum modified generating sequence. A generating sequence (also a

modified generating sequence) of a digraph is that of its underlying graph.

Lemma 2. Suppose that Bs: b0, [b0 + 1, b1[, b1, [b1 + 1, b2[, b2, . . . , bs−1, [bs−1 + 1, bs[,
bs is a maximum generating sequence of G with respect to a linear ordering L. Then:

• χ(G[b0, bs]) ≤ 4s+ 1.

• χ(G) ≤ 4s+ 4.

Proof. Assume that [bs+1, N ] has secant edges. Let bs+1 be the minimum such that

[bs + 1, bs+1] has secant edges. Then [bs + 1, bs+1[ has no secant edges. By adding the

terms [bs + 1, bs+1[, bs+1 to the sequence Bs, we get a generating sequence of length

s + 1, which contradicts the maximality of Bs. Therefore, [bs + 1, N ] has no secant

edges. Thus χ(G[bs + 1, N ]) ≤ 3 by Lemma 1.

Since

[b0, bs] = {b0, b1, . . . , bs}
⋃

(
⋃s−1

i=0 [bi + 1, bi+1[),

we have that

χ(G[b0, bs]) ≤ (s+ 1) +
∑s−1

i=0 3 = 4s+ 1.

Finally, χ(G) ≤ (4s+ 1) + 3 = 4s+ 4 because V (G) = [b0, bs] ∪ [bs + 1, N ].

In a similar way, we can prove the following:

Lemma 3. Suppose that B′s: [b0 + 1, b1[, b1, [b1 + 1, b2[, b2, . . . , bs−1, [bs−1 + 1, bs[, bs
is a maximum modified generating sequence of G with respect to a linear ordering L. Then
χ(G) ≤ 4s+ 3.
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Lemma 4. Suppose that χ(G) ≥ 4t+ 1. Then G has a generating sequence of length t.

Proof. Let Bs be a maximum generating sequence of G. Then, 4t + 1 ≤ χ(G) ≤
4s+ 4. Hence, t ≤ s+ 3

4 . But s and t are integers, therefore, t ≤ s. We conclude that

the sequence Bt is a generating sequence of length t.

Lemma 5. Suppose that χ(G) ≥ 4t. Then G has a modified generating sequence of length
t.

Proof. Let B′s be a maximum modified generating sequence of G. Then, 4t ≤
χ(G) ≤ 4s + 3. Hence, t ≤ s + 3

4 . But s and t are integers, therefore t ≤ s. We

conclude that the sequence B′t is a modified generating sequence of length t.

From now on we, suppose that L = 0, 1, . . . , N is a directed Hamiltonian path of a

digraph D. Clearly, L can be considered as a linear ordering of the vertices of D.

Suppose that

Bs: b0, [b0 + 1, b1[, b1, [b1 + 1, b2[, b2, . . . , bs−1, [bs−1 + 1, bs[, bs

is a generating sequence of a digraph D with respect to L. For each 0 ≤ i < s, let

ei = uivi and e′i = u′iv
′
i be secant edges in [bi + 1, bi+1] with ui < u′i < vi < v′i. Let ~ei

and ~e′i denote the orientations in D of the edges ei and e′i. Note that by definition

of bi+1, we have bi+1 = v′i. For 0 ≤ i ≤ j ≤ N , we denote by L[i, j] the sub-path

i, i+ 1, . . . , j of L directed from i to j.

Using some sub-paths of L and the orientations ~ei and ~e′i of the secant edges, we will

generate an oriented path, denoted by P (Bs). Formally, we define:

P (Bs) = (L[b0, u0] ∪ ~e0 ∪L[u′0, v0] ∪ ~e′0)
⋃

(L[b1, u1] ∪ ~e1 ∪L[u′1, v1] ∪ ~e′1)
⋃

(L[b2, u2] ∪
~e2 ∪ L[u′2, v2] ∪ ~e′2)

⋃
· · ·

⋃
(L[bs−1, us−1] ∪ ~es−1 ∪ L[u′s−1, vs−1] ∪ ~e′s−1)

⋃
L[bs, N ]

Figure 1. Example of P (Bs) drawn in bold with s = 2.

These generated paths P (Bs) will be helpful in the next section to form our desired

subdivisions with certain number of blocks, because the number of blocks of the

oriented path P (Bs) is known. In fact, we have:
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Remark 1. Suppose that Bs is a generating sequence of a digraph D with respect to a
directed path L = 0, 1, . . . , N . We have:

• If bs < N , then P (Bs) consists of 2s+ 1 blocks.

• If bs = N and ~e′s−1 = (u′s−1, v
′
s−1), then P (Bs) consists of 2s+ 1 blocks.

• If bs = N and ~e′s−1 = (v′s−1, u
′
s−1), then P (Bs) consists of 2s blocks.

3. Main results

In this section, we demonstrate that if a digraph D is spanned by a subdivision of H

and satisfies χ(D) ≥ 2n+ |E(H)|+ |V (H)|, then D necessarily contains a generalized

subdivision of H with n blocks. We subsequently derive several corollaries from this

result. Prior to this, we begin by establishing better bound for the cases where H is

an oriented cycle.

Recall that the number of blocks of any oriented cycle is always even. Also, oriented

cycles with n blocks are the subdivisions of the antidirected cycle on n vertices.

Theorem 4. Let n be an even positive integer and D be a digraph spanned by a directed
cycle. If χ(D) ≥ 2n+ 1, then D contains an oriented cycle with n blocks.

Proof. Set n = 2t and let D be a digraph such that χ(D) ≥ 2n + 1. Suppose

that it is spanned by a directed cycle C = 0, 1, . . . , N, 0. Since χ(D) ≥ 4t + 1, by

Lemma 4 D contains Bt, a generating sequence of D with respect to the directed

path L = 0, 1, . . . , N . By Remark 1, the path P (Bt) consists either of 2t + 1 blocks

or 2t blocks. In both cases, we observe that C ′ = P (Bt) ∪ (N, 0) forms an oriented

cycle with 2t = n blocks. In fact, in the first case, the last block of P (Bt), (N, 0) and

the first block of P (Bt) combine together to form one block of C ′, and that is why

the number of blocks decreases from 2t + 1 to 2t. In the second case, the arc (N, 0)

combines with the first block of P (Bt) to form one block of C ′ and that is why the

number of blocks remains 2t.

Theorem 5. Let n be an even positive integer and D be a digraph spanned by an oriented
cycle with two blocks. If χ(D) ≥ 2n+ 1, then D contains an oriented cycle with n blocks.

Proof. Set n = 2t and let D be a digraph such that χ(D) ≥ 2n + 1 and suppose

that it is spanned by an oriented cycle C = Q ∪ Q′ with two blocks Q and Q′.

For simplicity we denote these two internally disjoint paths by Q = 0, 1, . . . , N and

Q′ = 0, 1, . . . ,M . Let Bs be a maximum generating sequence of D[Q] with respect

to Q.

Case 1: Suppose that bs < N or (bs = N and ~e′s−1 = (u′s−1, v
′
s−1)).

By Lemma 2 and by Remark 1, we have χ(D[Q]) ≤ 4s + 4 and P (Bs) consists
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of 2s + 1 blocks. If s ≥ t − 1, then the oriented cycle P (Bt−1) ∪ Q′ consists of

(2(t− 1) + 1) + 1 = 2t = n blocks. Else, s ≤ t− 2. Hence

χ(D[1,M − 1]) ≥ (2n+ 1)− (4s+ 4) ≥ 4t− 4s− 4 = 4r,

where r = t − s − 1.By Lemma 5, D[1,M − 1] has a modified generating sequence

A′r with respect to the ordering Q′ − {0,M} = 1, 2, . . . ,M − 1. Consider the

sequence Ar : 0, A′r, obtained from A′r by adding the term 0 before its first term.

Then Ar is a generating of D[Q′] with respect to Q′ and ar < M . By Remark 1,

P (Ar) has 2r + 1 blocks. Therefore, the oriented cycle P (Bs) ∪ P (Ar) consists of

(2s+ 1) + (2r + 1) = 2s+ 1 + 2t− 2s− 2 + 1 = 2t = n blocks.

Case 2: Suppose that bs = N and ~e′s−1 = (v′s−1, u
′
s−1).

By the first point of Lemma 2 and by Remark 1, we have χ(D[Q]) ≤ 4s+1 and P (Bs)

consists of 2s blocks. Hence,

χ(D[1,M − 1]) ≥ (2n+ 1)− (4s+ 1) = 4t− 4s = 4r,

where r = t − s. By Lemma 5, D[1,M − 1] has a modified generating sequence A′r
with respect to the ordering Q′ − {0,M} = 1, 2, . . . ,M − 1. Consider the sequence

Ar : 0, A′r, obtained from A′r by adding the term 0 before its first term. Then Ar

is a generating sequence of D[Q′] with respect to Q′ and ar < M . By Remark 1,

P (Ar) has 2r + 1 blocks. Therefore, the oriented cycle C ′ = P (Bs) ∪ P (Ar) consists

of (2s) + (2r+ 1)− 1 = 2t = n blocks. Note that the union of the last block of P (Bs)

and the first block of P (Ar) is a directed path that forms one block of C ′, which

explains the −1 in the last equality.

Theorem 6. Let n be an even positive integer and D be a digraph spanned by a non-
directed cycle with at most n blocks. If χ(D) ≥ 4n, then D contains an oriented cycle with
n blocks.

Proof. Set n = 2t and let D be a digraph such that χ(D) ≥ 4n. Suppose that it is

spanned by an oriented cycle C = Q1 ∪Q2 ∪ · · · ∪Q2t′ with 2t′ blocks, where 2t′ ≤ n
and the Qi’s being listed consecutively. For each 1 ≤ i ≤ 2t′, let ui and vi denote the

initial vertex and the terminal vertex of Qi, respectively, Hi = D[Qi − {ui, vi}] and

B′si be a maximum modified generating sequence of Hi with respect to the ordering

Qi − {ui, vi}. By Lemma 3, we get χ(Hi) ≤ 4si + 3, for all i. Since V (D) =

(
⋃2t′

i=1 V (Hi))
⋃

(
⋃2t′

i=1{ui, vi}) and
⋃2t′

i=1{ui, vi} consists of 2t′ vertices, we have that:

4n ≤ χ(D) ≤
2t′∑
i=1

χ(Hi)+2t′ ≤
2t′∑
i=1

(4si+3)+2t′ =
2t′∑
i=1

(4si+2)+2t′+2t′ = 4t′+2
2t′∑
i=1

(2si+1).

Hence,
∑2t′

i=1(2si + 1) ≥ (4n−4t′)/2 ≥ (4n−2n)/2 = n. Then there are non-negative

integers r1 ≤ s1, . . . , r2t′ ≤ s2t′ such that
∑2t′

i=1(2ri + 1) = n. For each i, consider

the generating sequence Bsi : ui, B
′
si of D[Qi] with respect to Qi and let Bri be
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its subsequence of length ri. By Lemma 1, each P (Bri) consists of 2ri + 1 blocks.

Therefore, the oriented cycle formed by
⋃2t′

i=1 P (Bri) consists of
∑2t′

i=1(2ri + 1) = n

blocks.

Remark 2. Suppose that H ′ is a generalized subdivision of a digraph H with n blocks.
Then:

• For every e ∈ E(H), block(Pe) is odd.

• n and |E(H)| have the same parity.

• n ≥ |E(H)|.

• n = |E(H)| if and only if H ′ is a subdivision of H.

Proof. Since Pe = xx1 . . . xly such that (x, x1) and (xl, y) are arcs of Pe, then it

starts by a forward block and also ends by a forward block. Hence the number of it

blocks must be odd. Therefore, the parity of
∑

e∈E(H) block(Pe) = n and the parity

of |E(H)| are the same.

Since for every e ∈ E(H), block(Pe) ≥ 1, then n =
∑

e∈E(H) block(Pe) ≥ |E(H)|.
For the last point we have: H ′ is a subdivision of H ⇔ for every e ∈ E(H), Pe is a

directed path ⇔ for every e ∈ E(H), block(Pe) = 1 ⇔
∑

e∈E(H) block(Pe) = |E(H)|
⇔ n = |E(H)|.

Theorem 7. Let H be a digraph and n ≥ |E(H)| such that n and |E(H)| have the same
parity. Let D be a digraph spanned by a subdivision of H. If χ(D) ≥ 2n+ |E(H)|+ |V (H)|,
then D contains a generalized subdivision of H with n blocks.

Proof. Let D be a digraph spanned by a subdivision of H and |E(H)| and n have

the same parity. Suppose that D is a digraph such that χ(D) ≥ 2n+ |E(H)|+ |V (H)|.
For all e = (x(e), y(e)) ∈ E(H), let Pe denote the directed path in D that re-

places e, De = D[Pe − {x(e), y(e)}] and B′s(e) be a maximum modified generat-

ing sequence of De with respect to the ordering Pe − {x(e), y(e)}. Since V (D) =

(
⋃

e∈E(H) V (De))
⋃

(
⋃

e∈E(H){x(e), y(e)}), we obtain that:

2n+ |E(H)|+ |V (H)| ≤ χ(D) ≤
∑

e∈E(H)

χ(De) + |V (H)| ≤
∑

e∈E(H)

(4s(e) + 3) + |V (H)|

=
∑

e∈E(H)

(4s(e) + 2) + |E(H)|+ |V (H)| = 2
∑

e∈E(H)

(2s(e) + 1) + |E(H)|+ |V (H)|.

Hence
∑

e∈E(H)(2s(e) + 1) ≥ n. Since n and |E(H)| have the same parity, we get

that for all e ∈ E(H), there is 0 ≤ r(e) ≤ s(e) such that
∑

e∈E(H)(2r(e)+1) = n. For

all e ∈ E(H), consider the generating sequence Bs(e) : x(e), B′s(e) and its generating

subsequence Br(e) of length r(e). Note that Br(e) can be viewed as a generating

sequence of D[Pe] with respect to Pe. Then by Remark 1, we deduce that the path
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P (Br(e)) consists of 2r(e)+1 blocks. Therefore
⋃

e∈E(H) P (Br(e)) forms a generalized

subdivision of H consisting of
∑

e∈E(H)(2r(e) + 1) = n blocks.

Corollary 1. Let H be any tree on m vertices and n ≥ m−1 such that n and m−1 have
the same parity. Let D be a digraph spanned by any subdivision of H. If χ(D) ≥ 2n+2m−1,
then D contains a generalized subdivision of H with n blocks.

Proof. It is enough to note that |E(H)| = |V (H)| = m−1 and apply Theorem 7.

Corollary 2. Let H be a digraph on m vertices and n ≥ |E(H)| such that n and
|E(H)| have the same parity. Let D be a digraph spanned by any subdivision of H. If
χ(D) ≥ 2n+m(m+ 1)/2, then D contains a generalized subdivision of H with n blocks.

Proof. It is enough to note that |V (H)| = m, |E(H)| ≤ m(m − 1)/2 and apply

Theorem 7.

Remark 3. Let n ≥ 2t′ and let C′ be the antidirected cycle on 2t′ vertices. We have the
following easy observation:

• C is a subdivision of C′ ⇔ C is an oriented cycle with 2t′ blocks.

• C is a generalized subdivision with n blocks of C′ ⇔ C is an oriented cycle with n
blocks.

Theorem 8. Let n be an even integer and suppose that D is spanned by an oriented
cycle with 2t′ blocks, where n ≥ 2t′. If χ(D) ≥ 2n + 4t′, then D contains an oriented cycle
with exactly n blocks.

Proof. Note that an oriented cycle with 2t′ blocks is a subdivision of the antidirected

cycle C ′ on 2t′ vertices. Since |V (C ′)| = |E(C ′)| = 2t′ and χ(D) ≥ 2n + 4t′, by

applying Theorem 7, we conclude that D contains a generalized subdivision C of C ′

with n blocks. By the previous remark, C is an oriented cycle with n blocks.
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