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Abstract: The spectral properties of extended adjacency matrices possess high dis-

criminating power and correlate well with various physicochemical properties and bio-

logical activities of organic compounds. In the current article, a detailed investigation
of one of the extended adjacency matrices called the eccentricity sum matrix is un-

dertaken. The eccentricity sum matrix of a graph G, denoted by Aεc (G) is a real

symmetric matrix that if i 6= j and vivj ∈ E(G), then the (i, j)th−entry is e(vi)+e(vj)
and zero otherwise, where e(vi) is the eccentricity of vertex vi. The properties like

trace, principle minors, and eigenvalues of the eccentricity sum matrix are explored.
Moreover, we present some bounds for spectral radius and energy. Also, the energy

and spectrum of some classes of graphs like fan graphs, bi-star graphs, etc., and their

complements are obtained.

Keywords: eccentricity, spectral radius, cocktail party graph, bi-star graph, crown

graph.

AMS Subject classification: 05C10, 05C30 , 05C90

1. Introduction

In this work, by a graph G(V,E), we mean a simple, finite and connected one with

vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). The number of elements in

V (G) is the order and that of E(G) is the size of G. If the vertices vi and vj are

adjacent, we write vi ∼ vj , otherwise vi � vj . The distance d(vi, vj) between vi and

vj is the length of any shortest path connecting them. The eccentricity of a vertex vi
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2 Spectral properties of eccentricity sum matrix of graphs

is the distance of vertex vi from the farthest vertex. That is, e(vi) = max
vj∈V (G)

d(vi, vj).

Further, R(G) = min
vj∈V (G)

e(vj) and D(G) = max
vj∈V (G)

e(vj) are called the radius and

diameter of G, respectively. For more graph theoretic terms and notations, readers

can refer to [4].

The adjacency matrix A(G) of the graph G is defined such that its (i, j)th- entry

for i 6= j is equal to 1 if vivj ∈ E(G) and 0 otherwise. Suppose λ1 > λ2 ≥ · · · ≥ λn
denote the eigenvalues of A(G), then the largest eigenvalue λ1 is usually referred to

as the spectral radius of A(G). Studies on graph spectrum can be found in [6], [21].

The energy of the graph was introduced in 1978 by Ivan Gutman and is defined as

E(G) =
n∑
i=1

|λi| [11]. Nowadays, research on graph energy is very popular leading

to several important conclusions, which can be found in recent articles [8],[7],[5],[20]

and the references cited therein.

The concept of topological indices has evolved over several decades through the inter-

section of graph theory and chemical sciences. Initially, topological indices were de-

veloped to describe molecular structures mathematically, but over time, they became

essential tools in quantitative structure-property relationships (QSPR) and quantita-

tive structure-activity relationships (QSAR) studies. In 1947, Harold Wiener intro-

duced the Wiener index [19], marking the first topological index ever proposed. After

that several topological indices were discovered based on degree, distance, and eccen-

tricity. In fact, in the last few years, degree-based topological molecular descriptors

have become increasingly important in chemical, biological, and physical research.

Researchers on the verge of refining the existing topological indices replaced degrees

with eccentricities in well-known degree-based topological indices such as Zagreb in-

dices, Harmonic index, Atom bond connectivity index, Geometric arithmetic index,

Forgotten index, etc. One of the relevant eccentricity-based topological indices is the

eccentricity connectivity index denoted by εc(G) and is defined as

εc(G) =
∑
vi∼vj

e(vi) + e(vj)

There is an extensive body of literature reporting several mathematical properties of

the eccentricity connectivity index, which are given in [16], [22], [14], [13], [2] and [10].

Motivated by this, the extended adjacency matrix corresponding to the eccentricity

connectivity index was proposed and studied in [18] and [17]. The extended adjacency

matrix corresponding to the eccentricity connectivity index is denoted by Aεc has the

entries aij given by

Aεc = aij =

{
e(vi) + e(vj) if vi ∼ vj
0 otherwise
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This matrix is also known as the eccentricity sum matrix. The characteristic polyno-

mial of Aεc is denoted by φAε(G,µ) = det(µI−Aεc). Suppose µ1 > µ2 > · · · > µk are

the k distinct eigenvalues of Aεc with respective multiplicities c1, c2, . . . , ck, then the

set of these eigenvalues is known as εc- spectrum of G. The εc- spectrum of G is often

represented in the form of an array given by εc- spec(G) =

(
µ1 µ2 µ3 . . . µk
c1 c2 c3 . . . ck

)
. The

largest eigenvalue µ1 is called εc- spectral radius. The absolute sum of all eigenvalues

of Aεc denoted by EAεc(G) =
k∑
i=1

|µi| is called the εc- energy. The specification G can

be omitted if the graph under consideration is understood in the above-defined param-

eters. After the notion of parameters associated with extended adjacency matrices,

the ones associated with classical adjacency matrices are often preceded by A(G) or A,

with A representing the adjacency matrix. That is, A-eigenvalues, A-spectral radius

and A-energy are the ones associated with the adjacency matrices. The abbreviations

tr(A), det(A) denote the trace and determinant functions associated with the matrix

A. Given below are the necessary existing results required to develop some of our

main results.

Lemma 1. [1] The Cauchy–Schwarz inequality: If (a1, a2, . . . , ap) and (b1, b2, . . . , bp) are
real p-vectors then,

p∑
i=1

aibi ≤
p∑
i=1

a2i

p∑
i=1

b2i .

Lemma 2. [3] The Radon’s inequality: If n ∈ N, xk ≥ 0, yk ≥ 0, k ∈ {1, 2, . . . , n} and
m ≥ 0, then

xm+1
1

ym1
+
xm+1
2

ym2
+
xm+1
3

ym3
+ · · ·+ xm+1

n

ymn
≥ (x1 + x2 + x3 + · · ·+ xn)

m+1

(y1 + y2 + y3 + · · ·+ yn)m
.

Lemma 3. [15] Let A =

(
A0 A1

A1 A0

)
be a symmetric matrix partitioned into blocks. Then

the eigenvalues of A are the eigenvalues of the matrices A0 +A1 and A0 −A1.

The Kronecker product of a matrix A = (aij)p×q and B = (bij)r×s is defined as

A⊗B =

a11B . . . a1qB
...

. . .
...

ap1B . . . apqB

 .

Lemma 4. [12] Let A be a square matrix of order m with spectrum σ(A) = (µi), 1 ≤
i ≤ m and B be a square matrix of order n with σ(B) = (λj), 1 ≤ j ≤ n. Then σ(A⊗B) =
(µiλj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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A partition of a square matrix A is said to be equitable if all the blocks of the

partitioned matrix have constant row sums and each of the diagonal blocks is of

square order. A quotient matrix Q of a square matrix A corresponding to an equitable

partition is a matrix whose entries are the constant row sums of the corresponding

blocks of A. The quotient matrices are useful in finding some eigenvalues of block

matrices, which are comparatively larger in size. In the theory of graph spectra,

equitable partitions play an important role, mostly because of the following result.

Lemma 5. [9] Let A be a real symmetric matrix with a quotient matrix Q. Then the
characteristic polynomial of Q divides the characteristic polynomial of A.

This article is organized as follows. Section 2 gives some elementary properties of

the eccentricity sum matrix. In Section 3, the upper and lower bounds for εc- energy

and εc- spectral radius in terms of the graph parameters like radius, size, and other

well-known topological indices are derived. Finally, we conclude with the last section

where the εc-energy of some classes of graphs and their complement are derived.

2. Some properties of eccentricity sum matrix

This section includes some elementary properties of the eccentricity sum matrix of

G. In the matrix Aεc , for i 6= j, the principal submatrix formed by ith row and jth

column of order 2× 2 is the zero matrix if vi � vj and otherwise it equals(
0 e(vi) + e(vj)

e(vi) + e(vj) 0

)
.

Similarly, the principal submatrix formed by any three distinct rows and columns

i, j, k of order 3× 3 is non-singular if and only if the corresponding vertices vi, vj , vk
constitute a triangle in G. In that case, the submatrix is given by 0 e(vi) + e(vj) e(vi) + e(vk)

e(vi) + e(vj) 0 e(vj) + e(vk)

e(vi) + e(vk) e(vk) + e(vj) 0

 .

The following remarks give the bounds for the sum of all principal minors of orders 2

and 3.

Remark 1. Let G be a connected graph whose diameter is D and radius is R. Let S2

and S3 represent the sum of all principal minors of Aεc of order 2 and 3, respectively. Then

2mR2 ≤ |S2| ≤ 2mD2

and

16TR3 ≤ S3 ≤ 16TD3

where m,T are the number of edges and triangles in G, respectively.
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Proof. The principal submatrix formed by ith row and jth column of order 2 is the

matrix

(
0 e(vi) + e(vj)

e(vi) + e(vj) 0

)
whenever vi ∼ vj . Since R ≤ e(vi) ≤ D for all

vi in G, it is true that

∑
vi∼vj

det

(
0 2R

2R 0

)
≤ S2 ≤

∑
vi∼vj

det

(
0 2D

2D 0

)
.

As the summation runs over all the edges in G twice, 2mR2 ≤ |S2| ≤ 2mD2.

Similarly, on considering a principal submatrix of order 3, which is nonzero only when

the corresponding three vertices are mutually adjacent, we get

∑
vivjvk∈T

det

 0 2R 2R

2R 0 2R

2R 2R 0

 ≤ S3 ≤
∑

vivjvk∈T
det

 0 2D 2D

2D 0 2D

2D 2D 0

 .

This implies 16TR3 ≤ S3 ≤ 16TD3.

Proposition 1. Let φAε(G,µ) = c0µ
n + c1µ

n−1 + · · ·+ cn−1µ+ cn be the characteristic
polynomial of Aεc . Then

i. c0 = 1

ii. c1 = 0

iii. c2 = −P where P =
∑

vi∼vj
[e(vi) + e(vj)]

2

iv. c3 = −2
∑

vivjvk∈T
[e(vi) + e(vj)] [e(vj) + e(vk)] [e(vi) + e(vk)], where T is the set of all

triangles in G.

Proof. By definition φAε
(G,µ) = det(µI − Aεc), we have c0 = 1. It is true that

(−1)ici is the sum of all principal minors of Aεc of order i. Given this and since the

trace of Aεc is zero, c1 = 0. Similarly, (−1)2c2 gives the sum of all 2 × 2 principal

submatrices, which can be obtained as follows:

(−1)2c2 =
∑

1≤i≤j≤n

det

(
aii aij
aji ajj

)
=

∑
1≤i≤j≤n

aiiajj − aijaji

=
∑

1≤i≤j≤n

aiiajj −
∑

1≤i≤j≤n

a2ij

= −
∑
vi∼vj

a2ij

= −
∑
vi∼vj

[e(vi) + e(vj)]
2
.
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Similarly, the expression for c3 can be obtained.

Proposition 2. Let µ1, µ2, . . . , µn be the eigenvalues of the eccentricity sum matrix Aεc .

Then
n∑
i=1

µ2
i = 2P , where P =

∑
vi∼vj

[e(vi) + e(vj)]
2 .

Proposition 3. For any connected graph G of order n ≥ 2, the εc-spectrum of G contains
at least two distinct eigenvalues.

Proof. Suppose all the eigenvalues of the matrix Aεc are identical, that is, µ1 =

µ2 = · · · = µn, then since
n∑
i=1

µi = 0, it is clear that each of µi is zero. This implies

Aεc = 0, which is impossible as the eccentricity of every vertex in G is nonzero.

Proposition 4. Let G be an eccentricity regular graph in which the eccentricity of every
vertex is r. Suppose A is the adjacency matrix of G, then tr(A2

εc) = 4r2tr(A2).

Proof. Let λi(1 ≤ i ≤ n) and µi(1 ≤ i ≤ n) be the eigenvalues of A and Aεc ,

respectively. From the definition of A and Aεc ,
n∑
i=1

λi =
n∑
i=1

µi = 0. Also, tr(A2) =

n∑
i=1

λ2i = 2m, where m is the number of edges in G. From Proposition 2,

tr(A2
εc) =

n∑
i=1

µ2
i = 2

∑
vi∼vj

(e(vi) + e(vj))
2 = 2

∑
vi∼vj

(2r)2 = 8r2m = 4r2tr(A2),

as desired

The following two propositions give results similar to classical adjacency matrices.

The proofs are direct and are omitted.

Proposition 5. Let G be a connected graph with diameter D. Suppose Aεc has k distinct
eigenvalues, then k > D.

Proposition 6. Let G be a connected bipartite graph. If µ is an eigenvalues of Aεc , then
−µ is also an eigenvalues of Aεc .

3. Bounds for εc- energy and εc- spectral radius

In this section, some bounds for εc- energy and εc- spectral radius are derived in terms

of few graph parameters.
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Theorem 1. Let G be a connected graph with diameter D and µ1, λ1 are the εc-spectral
radius and A-spectral radius of G respectively. Then,

µ1 ≤ 2Dλ1.

Equality holds if and only if G is self-centered.

Proof. For any two adjacent vertices vi and vj (1 ≤ i, j ≤ n), we have e(vi)+e(vj) ≤
2D. Suppose A(G) is the adjacency matrix of G, then Aεc(G) ≤ 2DA(G). Thus,

µ1 ≤ 2Dλ1.

Theorem 2. Let G be a connected graph and µ1 be the εc-spectral radius of G. Then

EAεc ≥ 2µ1.

Proof. The εc-energy is given by EAεc =
n∑
i=1

|µi| = |µ1|+
n∑
i=2

|µi| ≥ |µ1|+ |
n∑
i=2

µi|.

Since
n∑
i=2

µi = 0, µ1 = −
n∑
i=2

µi and |µ1| = |
n∑
i=2

µi|. This implies, EAεc ≥ |µ1|+ |µ1| =

2|µ1|.

Theorem 3. Let G be a graph of order n and P =
∑

vi∼vj
[e(vi) + e(vj)]

2. Then

EAεc ≤
√
2nP .

Proof. This follows from the Cauchy-Schwarz inequality given in Lemma 1.

Theorem 4. For any connected graph G of order n,√
tr(Aεc)2 ≤ EAεc ≤

√
n× tr(Aεc)2.

Proof. The variance of the number |µi|, i = 1, 2, . . . , n is given by 1
n

n∑
i=1

|µi|2 −(
1
n

n∑
i=1

|µi|
)2

≥ 0. Since
n∑
i=1

µ2
i = tr(Aεc)2, we have

n∑
i=1

µi ≤
√
n× tr(Aεc)2.

By Radon’s inequality 2,

n∑
i=1

|µi| =
n∑
i=1

|µi|2

|µi|
≥

n∑
i=1

|µi|2

n∑
i=1

|µi|

=⇒
n∑
i=1

|µi| ≥

√√√√ n∑
i=1

|µi|2 =
√
tr(Aεc)2.



8 Spectral properties of eccentricity sum matrix of graphs

Corollary 1. Let G be an eccentricity regular graph in which the eccentricity of every
vertex is r. Then

2r
√
2m ≤ EAεc ≤ 2r

√
2mn

where n,m are the order and size of G, respectively.

Proof. By Theorem 4, we have

EAεc ≤
√
n× tr(Aεc)2 =

√
2n

n∑
i=1

[e(vi) + e(vj)]
2

=

√
2n

n∑
i=1

(r + r)2 = 2r
√

2mn.

Similarly, EAεc ≥
√
tr(Aεc)2 =

√
2

n∑
i=1

[e(vi) + e(vj)]
2

=

√
2

n∑
i=1

(r + r)2 = 2r
√

2m.

Theorem 5. Let F (G) =
∑

vi∼vj
e(vi)

2 + e(vj)
2 and M1(G) =

∑
vi∼vj

e(vi)e(vj) be the

forgotten index and the first Zagreb index associated with a graph G. Then

EAεc ≥
√

2F (G) + 4M1(G).

Proof. By Theorem 4, we have

EAεc ≥
√
tr(Aεc)2

=

√
2
∑
vi∼vj

[
e(vi) + e(vj)

]2
=

√
2
∑
vi∼vj

[
e(vi)2 + e(vj)2 + 2e(vi)e(vj)

]
=

√
2
∑
vi∼vj

e(vi)2 + e(vj)2 + 4
∑
vi∼vj

e(vi)e(vj)

=
√

2F (G) + 4M1(G).

The sharpness of the above bounds can be observed by comparing them with the

actual values for the following graph.

Example 1. Consider the graph G given in Figure 1.

The various bounds computed in this section and the actual values of µ1(G), EAεc(G)

are listed in the following table.
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Figure 1. The graph G with µ1(G) = 7.0920, λ1(G) = 2.1705 and EAεc (G) = 16.5570

Hypothesis Bound as per the hypothesis Comparison with the actual value

Theorem 1 µ1 ≤ 8.68 7.0920 ≥ 8.68

Theorem 2 EAεc ≥ 14.8184 16.5570 ≥ 14.8184

Theorem 3 EAεc ≤ 18.5472 16.5570 ≤ 18.5472

Theorem 4 9.2736 ≤ EAεc ≤ 18.547 9.2736 ≤ 16.5570 ≤ 18.547

Theorem 5 EAεc ≥ 9.2736 16.5570 ≥ 9.2736

Clearly, all of the above bounds are well-defined and notably precise.

4. εc- spectrum of some classes of graphs and their comple-
ments

This section gives the expression εc- energy of some classes of graphs like wheel

graphs, bi-star graphs, cocktail party graphs, etc, and their complements if they are

connected.

Theorem 6. For a wheel graph W1,n on n+ 1 vertices,

εc-spec(W1,n) =

4 +
√
16 + 9n 4−

√
16 + 9n 8cos

(
2πi
n

)
i = 1, . . . , (n− 1)

1 1 1

 .

Proof. The eccentricity sum matrix of W1,n is a block matrix given by

Aεc(W1,n) =

(
01×1 31×n
3n×1 4A(Cn)n×n

)
,

where A(Cn) is the adjacency matrix of a cycle graph on n vertices. The block 3

above represents a matrix in which every entry is 3. Let V =
(
X1×1 Yn×1

)T
be the

nonzero eigenvector of Aεc(W1,n) corresponding to the eigenvalue µ. That is,

AεcV = µV (4.1)
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We obtain a pair of a nonzero vector V and a scalar µ satisfying Equation 4.1. Suppose

X = 0 and Y =
(
y1 y2 . . . yn

)T
, then from Equation 4.1, we get

3(y1 + y2 + · · ·+ yn) = 0 (4.2)

4A(Cn)Y = µY (4.3)

From Equation 4.2, the components in Y sum up to 0. Further, from Equation 4.3,

suppose σ is an eigenvalue of A(Cn) with an eigenvector Y whose components sum

up to zero, then µ = 4σ is an eigenvalue of Aεc . We know that for all eigenvalues σ

of A(Cn), the components in the eigenvectors sum up to 0, except for σ = 2 (whose

eigenvector is a unity). That is, if σ 6= 2 is an eigenvalue of A(Cn) with the eigenvector

Y , then µ = 4σ is an eigenvalue of Aεc with eigenvector V =
(
01×1 Yn×1

)T
. Since

A(Cn) have eigenvalues 2cos
(
2πi
n

)
; j = 0, 1, . . . , (n − 1), the (n − 1) eigenvalues of

Aεc(W1,n) are 8cos
(
2πi
n

)
; j = 1, . . . , (n − 1). The remaining two eigenvalues can be

obtained from the quotient matrix. The quotient matrix Q of Aεc(W1,n) is given by

Q =

(
0 3n

3 8

)
, the eigenvalues of which are 4±

√
16 + 9n. By Lemma 5, 4±

√
16 + 9n

are eigenvalues of Aεc .

Corollary 2. Let W1,n be a wheel graph. Then 0 ∈ εc-spec(W1,n) if and only if n
2

is
even.

Proof. By Theorem 6, for each of the integers i = 1, 2, . . . , (n−1), 8cos
(
2πi
n

)
are the

eigenvalues of W1,n . When n
2 is even, n4 is an integer such that n

4 < (n− 1). Clearly,

when i = n
4 , we get the eigenvalues 0. Conversely, suppose 0 ∈ εc-spec(W1,n), then

it follows directly that, it is contributed from 8cos
(
2πi
n

)
for some integer i ≤ (n− 1)

and n
2 is even. This implies n

2 is even.

A friendship graph is a graph in which every two distinct vertices have exactly one

common adjacent vertex. A friendship graph, often denoted by Fn has 2n+1 vertices,

2n of them being of degree two and the remaining one being of degree 2n.

Theorem 7. For a friendship graph Fn on 2n+ 1 vertices, EAεc(Fn) = 8n.

Proof. The eccentricity sum matrix Aεc(Fn) can be represented as a block matrix

Aεc(Fn) =

(
01×1 31×2n
32n×1 B2n×2n

)
,

where B is a block diagonal matrix B = diag [4(J − I), 4(J − I), . . . , 4(J − I)], with

J − I =

(
0 1

1 0

)
. Let the rows and columns of Aεc(Fn) (indexed by the vertices
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v1, v2, . . . , v2n+1) be named as R1, R2, . . . , R2n+1 and C1, C2, . . . , C2n+1 as shown be-

low.

Aεc(Fn) =



C1 C2 C3 C4 C5 . . . C2n C2n+1

R1 0 3 3 3 3 . . . 3 3

R2 3 0 4 0 0 . . . 0 0

R3 3 4 0 0 0 . . . 0 0

R4 3 0 0 0 4 . . . 0 0

...
...

...
...

...
...

. . .
...

...

R2n 3 0 0 0 0 . . . 0 4

R2n+1 3 0 0 0 0 . . . 4 0


Consider the characteristic polynomial, det (Aεc(Fn)− µI).

We use the technique of elementary row and column operations. Let Rj = Rj ± Rk
represent the operation, in which the entries in Rj are obtained by adding to

/subtracting from each entry of Rj the corresponding entries from the row Rk.

similarly, Cj = Cj ± Ck results in a new column Cj whose entries are obtained by

adding/subtracting the corresponding entries from the column Ck.

For each 1 ≤ i ≤ n, on performing the row operations R2i = R2i −R2i+1, we get

Aεc(Fn) =



C1 C2 C3 C4 C5 . . . C2n C2n+1

R1 −µ 3 3 0 3 . . . 3 3

R2 0 µ− 4 4 + µ 0 0 . . . 0 0

R3 0 0 −µ 0 0 . . . 0 0

R4 0 0 0 −µ− 4 4 + µ . . . 0 0

...
...

...
...

...
...

. . .
...

...

R2n 3 0 0 0 0 . . . 0 4

R2n+1 3 0 0 −4 + µ 0 . . . 4 −µ


This can be written as Aεc(Fn) − µI = (4 + µ)ndet(B), where B is a matrix of the
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form

B =



C1 C2 C3 C4 C5 . . . C2n C2n+1

R1 −µ 3 3 3 3 . . . 3 3

R2 0 −1 1 0 0 . . . 0 0

R3 3 4 −µ 0 0 . . . 0 0

R4 0 0 0 −1 1 . . . 0 0

...
...

...
...

...
...

. . .
...

...

R2n 0 0 0 0 0 . . . −1 1

R2n+1 3 0 0 0 0 . . . 4 −µ


Now, on performing the column operation C2j = C2j + C2j+1 for each 1 ≤ j ≤ n− 1

and then C2j = C2j − C2j+2 sequentially, we get

Aεc(Fn)− µI = (4 + µ)n(µ− 4)n−1det(C),

where C is the reduced resultant matrix given by

C =



C1 C2 C3 C4 C5 . . . C2n C2n+1

R1 −µ 0 3 0 3 . . . 3 3

R2 0 0 1 0 0 . . . 0 3

R3 3 1 −µ 0 0 . . . 0 0

R4 0 0 0 0 1 . . . 0 0

...
...

...
...

...
...

. . .
...

...

R2n 0 0 0 0 0 . . . −1 1

R2n+1 3 0 0 −1 0 . . . 4 −µ


From this, one can note that ±4 are the eigenvalues with respective multiplicities

(n−1) and n. For the remaining two eigenvalues, we make use of the quotient matrix

Q =

(
0 6n

3 4

)
, eigenvalues of which can be easily computed as 2 ±

√
4 + 18n. By

Lemma 5,2±
√

4 + 18n ∈ εc- spectrum. Thus, EAεc(Fn) = 8n.
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A crown graph Hn,n is a graph obtained from the complete bipartite graph Kn,n by

removing a perfect matching.

Theorem 8. For crown graph Hn,n on 2n vertices, EAεc(Hn,n) = 24(n− 1).

Proof. The eccentricity sum matrix of the crown graph is Aεc(Hn,n) = 6A(Hn,n),

where A(Hn,n) is the adjacency matrix H(n, n) given by

A(Hn,n) =

(
0n×n (J − I)n×n

(J − I)n×n 0n×n

)
.

By Lemma 3, A-spec(Hn,n) = spec{(J − I),−(J − I)}. Since the eigenvalues of

J − I of order n are n − 1,−1 with respective multiplicities 1 and 2n − 1, the A-

spectrum contains ±(n−1) and ±1 with respective multiplicities 1 and (n−1). Thus

εc- spec(Hn,n) contains ±6(n − 1) and ±6 with repective multiplicities 1, 1, (n − 1)

and (n− 1) and EAεc(Hn,n) = 24(n− 1).

Theorem 9. Let Hn,n be the complement of crown graph. Then EAεc(Hn,n) = 16(n−1).

Proof. The extended adjacency matrix of the complement of the crown graph is

Aεc(Hn,n) =

(
4(J − I)n×n 4In×n

4In×n 4(J − I)n×n

)
.

The eigenvalues of 4(J − I) + 4I = 4J are 4n, 0 with respective multiplicities 1 and

n−1. Similarly, 4(J−I)−4I = 4J−8I has the eigenvalues 4n−8,−8 with respective

multiplicities 1 and (n− 1). Thus by using Lemma 3, EAεc(Hn,n) = 16(n− 1).

A bi-star graph B(p, q) is a tree on p+ q vertices obtained by joining two star graphs

K1,p−1 and K1,q−1 by an edge.

Theorem 10. For a bi-star graph Bn,n on 2n vertices, EAεc(B(n, n)) = 4
√
25n− 21.

Proof. On labeling the vertices of B(n, n) appropriately (where the rows in each of

the blocks P,Q corresponds to the vertices inducing the stars K1,n−1, the first row

P and Q respectively corresponding to the central vertices of star graphs) can be

written as,

Aεc(Bn,n) =

(
Pn×n Qn×n
Qn×n Pn×n

)
,
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where P =


0 5 5 . . . 5

5 0 0 . . . 0

5 0 0 . . . 0
...

...
...

. . .
...

5 0 0 . . . 0

 and Q =


4 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

.

Using Lemma 3, the eigenvalues of Aεc consists of the eigenvalues of P+Q and P−Q.

Consider P +Q =


4 5 5 . . . 5

5 0 0 . . . 0
...

...
...

. . .
...

5 0 0 . . . 0


Let X =

(
x1, x2, . . . , xn

)T
be the nonzero eigenvector of P +Q corresponding to the

eigenvalue µ. Since (P +Q)X = µX, we have

4x1 + 5

n∑
i=2

xi = µx1

5x1 = µxj for j = 2, 3, . . . , n

On solving this system of equations, for each of j = 2, 3, . . . , n, we get

xj =
5x1
µ[

µ2 − 4µ+ 25(n− 1)
]
x1 = 0

Since x1 6= 0, it follows that µ2−4µ+25(n−1) = 0, which results in µ = 2±
√

25n− 21.

The other eigenvalues of P +Q are 0, as it has the rank 2.

Similarly, P −Q =


−4 5 5 . . . 5

5 0 0 . . . 0
...

...
...

. . .
...

5 0 0 . . . 0

 .

One can show that P −Q has the eigenvalues −2±
√

25n− 21 (each with multiplicity

1) and 0 (with multiplicity n− 2). Since εc-spec(B(n, n)) contains the eigenvalues of

P +Q and P −Q, EAεc(Bn,n) = 4
√

25n− 21.

Theorem 11. Let Bn,n be the complement of the bi-star graph. Then

εc − spec(Bn,n) =
(
−4 (4n− 6)±

√
k1 −2± 2

√
k2

2n− 4 1 1

)
,

where k1 = 16n2 − 23n+ 11 and k2 = 25n− 21.
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Proof. The eccentricity sum matrix Aεc(Bn,n) can be represented as a block matrix

Aεc(Bn,n) =

(
Pn×n Qn×n
Qn×n Pn×n

)
,

where P =

(
01×1 51×n−1

5n−1×1 4(J − I)n−1×n−1

)
and Q =

(
01×1 01×n−1

0n−1×1 4Jn−1×n−1

)
.

Note that P +Q =

(
0 5

5 8J − 4I

)
and P −Q =

(
0 5

5 −4I

)
.

Let the rows and columns of P +Q (indexed by the vertices v1, v2, . . . , v2n) be named

as R1, R2, . . . , R2n and C1, C2, . . . , C2n, respectively.

Consider the characteristic polynomial of P +Q, det ((P +Q)− µI).

For each 2 ≤ i ≤ 2n− 1, on performing the row operations Ri = Ri −Ri+1, we get

(P +Q)− µI = (µ+ 4)n−2det(B),

where B is a matrix of the form

B =



C1 C2 C3 C4 C5 . . . C2n−1 C2n

R1 −µ 5 5 5 5 . . . 5 5

R2 0 1 −1 0 0 . . . 0 0

R3 0 0 1 −1 0 . . . 0 0

R4 0 0 0 1 −1 . . . 0 0

...
...

R2n−1 0 0 0 0 0 . . . −1 1

R2n 5 8 8 8 8 . . . 8 4− µ


From this, −4 is an eigenvalue of (P +Q) with multiplicity n− 2. Similarly, one can

show that −4 is an eigenvalue of (P −Q) with the same multiplicity. The respective

quotient matrices Q1 and Q2 of P + Q and P − Q are given by is given by Q1 =(
0 5n− 5

5 8n− 12

)
and Q2 =

(
0 5n− 5

5 −4

)
. The eiegenvalues of Q1 and Q2 are respectively,

(4n−6)±
√
k1 and −2±2

√
k2, where k1 = 16n2−23n+11 and k2 = 25n− 21. Thus,

by Lemma 3 and Lemma 5, the spectrum follows.

Two edges in a graph are said to be independent if they do not share any vertex in

common. A set of edges is said to be independent if every pair of edges in it are
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independent. The cocktail party graph of order 2n, also called the hyperoctahedral

graph is the graph obtained from a complete graph K2n by removing n independent

edges.

Theorem 12. For a cocktail party graph Kn×2 on 2n vertices, EAεc(Kn×2) = 16(n−1).

Proof. The extended adjacency matrix Aεc(Kn×n) can be written as

Aεc(Kn×2) = (J − I)n×n ⊗B,

where B =

(
4 4

4 4

)
.

Using Lemma 4, the eigenvalues of Aεc(Kn×2) are λiωj for each eigenvalues λi of

J − I, and ωj of B. One can easily compute the eigenvalues of (J − I) as (n− 1),−1

(with respective multiplicities 1, (n− 1)) and that of B as 8, 0 (each with multiplicity

1). Thus EAεc(Kn×2) = 16(n− 1).

The eccentricity sum matrix of the complement of the first two classes of graphs

discussed above is not undertaken as they are disconnected.

5. Conclusion

The eccentricity sum matrix is a type of weighted adjacency matrix associated with

graphs, where each weight is in terms of vertex eccentricities. This matrix a type

of eccentricity based extended adjacency matrix. The scope of the eigenvalues and

energy associated with extended adjacency matrices has been broadened in recent

years, yielding intriguing insights in the field of molecular chemistry. That is, the

energy and spectral radius of the extended adjacency matrix of molecular compounds

have been discovered to have strong correlations with a number of biological activities

and physicochemical characteristics.

This article effectively investigates the spectral properties of one of the extended

adjacency matrices defined based on vertex eccentricities. New bounds for spectral

radius and energy are derived. We obtained the spectrum and energy of certain

graph classes and their complements wherever they are connected. The eccentricity

sum matrix of the complement of the first two classes of graphs discussed above is

not undertaken as they are disconnected.
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