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Abstract: Let G be a graph with vertex set V (G). A total double Roman domi-

nating function (TDRD-function) on a graph G with no isolated vertices is a function
f : V (G)→ {0, 1, 2, 3} satisfying the conditions: (i) if f(v) = 0, then the vertex v must

be adjacent to at least two vertices assigned 2 or one vertex assigned 3 under f , and

if f(v) = 1, then the vertex v must be adjacent to at least one vertex assigned 2 or 3
and (ii) the subgraph of G induced by the set {v ∈ V (G) | f(v) 6= 0} has no isolated

vertices. The weight of a TDRD-function f is the sum of its function values over all
vertices, and the minimum weight of a TDRD-function on G is the total double Roman

domination number, γtdR(G). The γtdR-stability (γ−tdR-stability, γ+
tdR-stability) of G,

denoted by stγtdR (G) (resp. st−γtdR (G), st+
γtdR (G)), is defined as the minimum size of

a set of vertices whose removal changes (resp. decreases, increases) the total double

Roman domination number. In this paper, we first determine the exact values of the
γtdR-stability of some special classes of graphs, and then we present some bounds on
stγtdR (G), st−γtdR (G) and st+

γtdR (G)). In particular, for a graph G with maximum

degree ∆ ≥ 3, we show that st−γtdR (G) ≤ ∆− 1.

Keywords: total double Roman domination, total double Roman domination stabil-

ity.
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1. Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set E(G). For v ∈
V (G), the open neighborhood of v is the set N(v) = NG(v) = {u ∈ V (G) : uv ∈ E(G)}
and its closed neighborhood is the set N [v] = NG[v] = N(v) ∪ {v}. We denote the

degree of a vertex v in G by d(v) = dG(v) = |N(v)|. The minimum and maximum

degrees among all vertices of G are denoted by δ = δ(G) and ∆ = ∆(G), respectively.

For u, v ∈ V (G), the length of a shortest (u, v)-path in G is the distance d(u, v)

between u and v. The diameter diam(G) of G is the maximum distance among all

pairs of vertices. A shortest path whose length equals diam(G) is called a diametral

path of G. Let S be a set of vertices, and let v ∈ S. The private neighbor set of v,

with respect to S, is defined by pn[v, S] = N [v] \N [S \ {v}].
A vertex of degree one is called a leaf and a vertex adjacent to (exactly) one leaf is

called a (weak) support vertex. For r, t ≥ 1, a double star Sr,t is a tree with exactly

two adjacent vertices that are not leaves, one of which is adjacent to r leaves and

the other colorred one is adjacent to t leaves. As usual, the path, cycle and complete

graph with n vertices are denoted by Pn, Cn and Kn, respectively. We denote by

Kr,s the complete bipartite graph having partite sets of cardinality r and s.

Inspired by the strategies for defending the Roman Empire presented in ReVelle and

Rosing [14] and Stewart [16], Cockayne et al. [9] introduced in 2004 the concept of

Roman domination. But since its introduction, Roman domination has been inten-

sively studied which led to the emergence of several variants. There are currently over

250 papers published on topics related to this concept. For more details we refer the

reader to the book chapters [4, 8] and surveys [5–7].

In 2020, Hao, Volkmann and Mojdeh [11] introduced a new variant which they called

total double Roman domination defined as follows. A total double Roman dominating

function (TDRD-function) on a graph G with no isolated vertices is a function f :

V (G) → {0, 1, 2, 3} satisfying the conditions: (i) if f(v) = 0, then the vertex v must

be adjacent to at least two vertices assigned 2 or one vertex assigned 3 under f , and

if f(v) = 1, then the vertex v must be adjacent to at least one vertex assigned 2 or 3

and (ii) the subgraph of G induced by the set {v ∈ V (G) | f(v) 6= 0} has no isolated

vertices. The weight of a TDRD-function f is the sum of its function values over

all vertices, and the minimum weight of a TDRD-function on G is the total double

Roman domination number (abbreviated TDRD-number), denoted by γtdR(G). For

any TDRD-function f of G, let Vi = {v ∈ V | f(vi) = i}, where i ∈ {0, 1, 2, 3}.
Since these four sets determine f , we can write f = (V0, V1, V2, V3). Also, a γtdR(G)-

function is a TDRD-function of G with weight γtdR(G). For more details on this

parameter see [2, 12, 17].

In this paper, we are interested in studying the behavior of the TDRD-number with

respect to the deletion of a set of vertices. We therefore define the total double Roman

domination stability (TDRD-stability, or just γtdR-stability) of a graph G as being the

minimum cardinality of a set of vertices whose removal changes the TDRD-number of

G. On the basis of this definition, we can also define the γ−tdR-stability (resp. γ+
tdR(G)-

stability) to be the minimum cardinality of a set of vertices whose removal decreases
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(resp. increases) the TDRD-number of G. By following the standard notations, let

stγtdR(G), st−γtdR(G) and st+
γtdR

(G) denote the γtdR-stability, γ−tdR-stability and γ+
tdR-

stability, respectively. Clearly, stγtdR(G) = min{st−γtdR(G), st+
γtdR

(G)} holds for every

graph G. Furthermore, it is worth noting that it is possible that the removal of any set

of vertices from a graph G does not increase γtdR(G), and for such cases, we consider

that st+
γtdR

(G) =∞. The concept of stability was first studied in 1983 by Bauer et al.

[3] for the domination number, and was subsequently considered for other domination

parameters, including the domination number [13], the Roman domination number

[10], outer independent double Roman domination number [15] and very recently the

restrained domination number [1].

In this paper, we first determine the exact values of the γtdR-stability of some special

classes of graphs, and then we present some bounds on stγtdR(G), st−γtdR(G) and

st+
γtdR

(G)). In particular, for a graph G with maximum degree ∆ ≥ 3, we show that

st−γtdR(G) ≤ ∆− 1.

2. Exact values

In this section, we determine the TDRD-stability for some classes of graphs and

present various bounds for this parameters. The following two results established in

[11] will be useful.

Proposition 1 ([11]). For n ≥ 2, γtdR(Pn) =

{
6 if n = 4,
d 6n

5
e otherwise.

Proposition 2 ([11]). For n ≥ 3, γtdR(Cn) = d 6n
5
e.

We first determine the γ−tdR-stability for paths.

Proposition 3. For n ≥ 3, st−γtdR(Pn) =

{
2 if n = 5
1 otherwise.

Proof. Let Pn = v1v2 . . . vn be a path on n vertices. If n ≥ 6, then it follows from

Proposition 1 that γtdR(Pn) = d 6n
5 e, and moreover, γtdR(Pn − vn) = γtdR(Pn−1) =

d 6(n−1)
5 e < d 6n

5 e. Hence, st−γtdR(Pn) = 1. Assume next that n = 5. We show that

st−γtdR(P5) ≥ 2. Let x be a vertex of P5. If P5 − x = P4, then from Proposition 1

we have γtdR(P4) = 6 = γtdR(P5). Henceforth, by definition we assume that P5 − x
consists of two disjoint paths P2. It follows from Proposition 1 that 2γtdR(P2) = 6 =

γtdR(P5). It means that st−γtdR(Pn) ≥ 2. On the other hand, by Proposition 1 we

have γtdR(P5 − {v1, v2}) = 4 < 6 = γtdR(P5), which yields st−γtdR(P5) ≤ 2. Therefore,

st−γtdR(P5) = 2. Finally Proposition 1 easily implies st−γtdR(Pn) = 1 for n = 3, 4.
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Proposition 4. For n ≥ 3, st+
γtdR(Pn) =

{
k if n = 5k + 4
∞ if n 6= 5k + 4.

Proof. Let Pn = v1v2 . . . vn and let S = {vi1 , vi2 , . . . , vis}, where i1 < i2 < · · · < is,

be the smallest set of vertices whose removal from Pn increases the TDRD-number.

Suppose that Pn1 , Pn2 , . . . , Pnt are the components of Pn−S. By definition, each com-

ponent must have at least two vertices. Let t1 be the number of non-P4 components

and let t2 be the number of P4 components of Pn − S. We have that

t∑
i=1

γtdR(Pni
) ≤

∑
ni 6=4

6ni + 4

5
+
∑
ni=4

6ni + 6

5

=
6(
∑t
i=1 ni) + 4t1 + 6t2

5

=
6(n− s) + 4t1 + 6t2

5
.

Note that s ≥ t1 + t2 − 1. First, assume that s ≥ t1 + t2. Then

t∑
i=1

γtdR(Pni) ≤
6(n− s) + 6(t1 + t2)− 2t1

5
≤ 6n− 2t1

5
≤ d6n

5
e,

which contradicts the choice of S. Hence, s = t1 + t2 − 1. Since the number of

removing vertices is exactly one less than the number of created components, two

removing vertices cannot be adjacent to each other. Without loss of generality, we

may assume that Pn1 , Pn2 , . . . , Pnt2
are P4 components and the remaining components

are non-P4 components. If t1 ≥ 3 then we obtain the contradiction

t∑
i=1

γtdR(Pni
) ≤ 6(n− s) + 6(s+ 1)− 2t1

5
≤ d6n

5
e.

Next assume that t1 = 2 and that Pns−1 and Pns are the non-P4 components. We

consider five cases. In all these cases we note that n = 5t2 + ns−1 + ns + 1.

Case 1. n = 5k + 1.

Then we have 5k+1 = 5t2 +ns−1 +ns+1, and so 5(k− t2) ≡ ns−1 +ns ≡ 0 (mod 5).

Then, without loss of generality, ns−1 ≡ ns ≡ 0 (mod 5) or ns−1 ≡ 1 (mod 5) and

ns ≡ 4 (mod 5) or ns−1 ≡ 2 (mod 5) and ns ≡ 3 (mod 5). In all cases we observe

that

d6ns−1

5
e+ d6ns

5
e ≤ 6(ns−1 + ns) + 5

5
.
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Therefore,

t∑
i=1

γtdR(Pni
) ≤ 6(ns−1 + ns) + 5 + (6× 4t2) + 6t2

5

=
6(5t2 + ns−1 + ns + 1) + 5− 6

5

=
6n− 1

5

< d6n
5
e,

a contradiction again.

Case 2. n = 5k + 2.

In this case we have ns−1 +ns ≡ 1 (mod 5). Then, without loss of generality, ns−1 ≡
ns ≡ 3 (mod 5) or ns−1 ≡ 4 (mod 5) and ns ≡ 2 (mod 5) or ns−1 ≡ 0 (mod 5) and

ns ≡ 1 (mod 5). In in all cases we have

d6ns−1

5
e+ d6ns

5
e =

6(ns−1 + ns) + 4

5
.

Hence

t∑
i=1

γtdR(Pni
) ≤ 6(ns−1 + ns) + 4 + (6× 4t2) + 6t2

5

=
6(5t2 + ns−1 + ns + 1) + 4− 6

5

=
6n− 2

5

< d6n
5
e,

a contradiction.

Case 3. n = 5k + 3.

As before we have ns−1 + ns ≡ 2 (mod 5). Then, without loss of generality, ns−1 ≡
ns ≡ 1 (mod 5) or ns−1 ≡ 2 (mod 5) and ns ≡ 0 (mod 5) or ns−1 ≡ 3 (mod 5) and

ns ≡ 4 (mod 5). This yields to

d6ns−1

5
e+ d6ns

5
e ≤ 6(ns−1 + ns) + 8

5
.
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Thus

t∑
i=1

γtdR(Pni) ≤
6(ns−1 + ns) + 8 + (6× 4t2) + 6t2

5

=
6(5t2 + ns−1 + ns + 1) + 2

5

=
6n+ 2

5

= d6n
5
e.

which contradicts the choice of S.

Case 4. n = 5k + 4.

In this case we have ns−1 +ns ≡ 3 (mod 5). Then, without loss of generality, ns−1 ≡
ns ≡ 4 (mod 5) or ns−1 ≡ 1 (mod 5) and ns ≡ 2 (mod 5) or ns−1 ≡ 0 (mod 5) and

ns ≡ 3 (mod 5). It follows that

d6ns−1

5
e+ d6ns

5
e ≤ 6(ns−1 + ns) + 7

5
.

Hence

t∑
i=1

γtdR(Pni
) ≤ 6(ns−1 + ns + 1) + 1 + (6× 4t2) + 6t2

5

=
6(5t2 + ns−1 + ns + 1) + 1

5

=
6n+ 1

5

= d6n
5
e,

a contradiction.

Case 5. n = 5k.

Then we have 5k = 5t2 +ns−1 +ns+1, and so ns−1 +ns ≡ 4 (mod 5). Then, without

loss of generality, ns−1 ≡ ns ≡ 2 (mod 5) or ns−1 ≡ 0 (mod 5) and ns ≡ 4 (mod 5)

or ns−1 ≡ 1 (mod 5) and ns ≡ 3 (mod 3). This implies in all cases

d6ns−1

5
e+ d6ns

5
e ≤ 6(ns−1 + ns) + 6

5
.
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Therefore,

t∑
i=1

γtdR(Pni
) ≤ 6(ns−1 + ns) + 6 + (6× 4t2) + 6t2

5

=
6(5t2 + ns−1 + ns + 1)

5

= d6n
5
e,

a contradiction.

Second, let t1 = 1 and suppose Pns is not the P4 component. Then n = 5t2 + ns and

n ≡ ns (mod 5). Now let n = 5k + ` where ` ∈ {0, 1, 2, 3, 4}. Then ns ≡ ` (mod 5).

We have γtdR(Pns
) = 6ns+m

5 , where m = 5 − ` if ` ∈ {1, 2, 3, 4} and m = 0 if ` = 0.

So

t∑
i=1

γtdR(Pni
) ≤ 6ns +m+ (6× 4t2) + 6t2

5

=
6(5t2 + ns) +m

5

=
6n+m

5

≤ d6n
5
e.

Finally, Let t1 = 0 then t = t2 and n = 5(t− 1) + 4. It follows that
∑t
i=1 γtdR(Pni

) =

6t > d 6n
5 e, and thus st−γtdR(P5(t−1)+4) = |S| = t− 1 and the proof is complete.

The next result is an immediate consequence of Propositions 3 and 4.

Corollary 1. For n ≥ 3, stγtdR(Pn) =

{
2 if n = 5
1 otherwise.

Proposition 5. For n ≥ 3, st−γtdR(Cn) =

{
2 if n = 5
1 otherwise.

Proof. Let Cn = v1v2 . . . vnv1 be a cycle on n vertices. By Proposition 2 γtdR(Cn) =

d 6n
5 e. First, suppose that n 6= 5. Note that Cn − vn = Pn−1 and Proposition 1 leads

to γtdR(Cn − vn) = γtdR(Pn−1) < d 6n
5 e. Hence, st−γtdR(Cn) = 1. Now we consider the

case of n = 5. by Proposition 2, γtdR(C5) = 6. Note that it follows from Proposition

1 that γtdR(C5 − vi) = γtdR(P4) = 6 = γtdR(C5). It means that st−γtdR(C5) ≥ 2.

Next, let S = {v1, v5} and note that C5 − S = P3. From Proposition 1, we obtain

γtdR(C5 − S) = 4 < d 6n
5 e, which yields st−γtdR(C5) ≤ 2. Therefore st−γtdR(C5) = 2.
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Proposition 6. For n ≥ 3, st+
γtdR(Cn) =∞

Proof. Let Cn = v1v2 . . . vn and let S = {vi1 , vi2 , . . . , vis}, where i1 < i2 < · · · < is,

be the smallest set of vertices whose removal from Cn increases the total double

Roman domination number. Suppose that Pn1 , Pn2 , . . . , Pns are the components of

Cn−S. By definition, each component must have at least two vertices. Let t1 be the

number of non-P4 components and let t2 be the number of P4 components. As in the

proof of Proposition 4, we see that

t∑
i=1

γtdR(Pni) ≤
6(n− s) + 4t1 + 6t2

5
.

Note that s ≥ t1 + t2. Thus the last inequality leads to the contradiction

t∑
i=1

γtdR(Pni
) ≤ 6(n− s) + 6(t1 + t2)− 2t1

5
≤ 6n− 2t1

5
≤ d6n

5
e.

Hence st+
γtdR

(C13) =∞.

As a consequence of Propositions 5 and 6 we obtain the next result.

Corollary 2. For n ≥ 3, stγtdR(Cn) =

{
2 if n = 5
1 otherwise.

One can observe that for n ≥ 3, γtdR(Kn) = γtdR(K1,n−1) = 4, for 1 ≤ r ≤ t,

γtdR(Sr,t) = 6 and for n ≥ m ≥ 2,

γtdR(Km,n) =

{
5 if m = 2

6 if m ≥ 3

The above results, easily lead to the next corollaries.

Corollary 3. For n ≥ 3, stγtdR(Kn) = st−γtdR(Kn) = n− 2 and st+
γtdR(Kn) =∞.

Corollary 4. For n ≥ 3, stγtdR(K1,n−1) = st−γtdR(K1,n−1) = n−2 and st+
γtdR(K1,n−1) =

∞.

Corollary 5. For 1 ≤ r ≤ t, stγtdR(Sr,t) = st−γtdR(Sr,t) = r and st+
γtdR(Sr,t) =∞.

Corollary 6. For integers n ≥ m ≥ 2, st+
γtdR(Km,n) =∞ and

stγtdR(Km,n) = st−γtdR(Km,n) =

{
1 if m = 2
m− 2 if m ≥ 3.
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3. Bounds

In the sequel we present several simple bounds for the TDRD-stability of a graph.

Since for any graph G of order at least 3, γtdR(G) ≥ 4 with equality if and only if

∆(G) = n− 1 (see [11]), the proof of the first observation is trivial.

Observation 1. If G is a graph of order n ≥ 3, then st−γtdR(G) ≤ n − 2 with equality if
and only if ∆(G) = n− 1, or equivalently γtdR(G) = 4.

Proposition 7. Let G be a connected graph having a γtdR(G)-function f = (V0, V1, V2, V3)
with V3 6= ∅. Then

st−γtdR(G) ≤ min{deg(v)− 1 | v ∈ V3}.

Proof. Let v be an arbitrary vertex with f(v) = 3 and let S = pn(v, V2 ∪ V3) ∩ V0.

Since f is a TDRD-function, we have |S| ≤ ∆−1 and the function g defined on G−S
by g(v) = 2 and g(x) = f(x) for the remaining vertices, is a TDRD-function on G−S
of weight less than γtdR(G). Hence st−γtdR(G) ≤ deg(v)− 1 and the result follows.

Proposition 8. Let G be a connected graph of order n ≥ 3 with ∆(G) ≥ 3 and γtdR(G) ≥
5. Then

stγtdR(G) ≤ ∆− 1.

This bound is sharp double stars S∆,∆.

Proof. Let f = (V0, V1, V2, V3) be a γtdR(G)-function. If V3 6= ∅, then the result

follows from Proposition 7. Thus we assume that V3 = ∅. Then V2 6= ∅. If |V2| = 1

and V2 = {v}, then V −{v} = V1 and any vertex in V1 must be adjacent to v. Now for

any vertex w ∈ V1, the function f restricted to G− w is a TDRD-function of weight

ω(f)− 1 so stγtdR(G) = 1. Henceforth, we assume that |V2| ≥ 2. Let G1, G2, . . . , Gk
be the components of G[V1 ∪ V2] and let n(G1) = max{n(Gi) | 1 ≤ i ≤ k}. By

definition the induced subgraph G[V1∪V2] is an isolated free graph and so n(Gi) ≥ 2.

We distinguish two cases.

Case 1. Let n(G1) = 2 with V (G1) = {u, v}.
Without loss of generality, we may assume that g(v) = 2. Let Sv = {y ∈ N(v) ∩ V0 :

|N(y) ∩ V2| = 2}. Consider two situations.

Subcase 1.1. Let g(u) = 1.

If |Sv| = 0, then the function f restricted to G−{u, v} is a TDRD-function of weight

γtdR(G)− 3 and so stγtdR(G) ≤ 2. If |Sv| = 1 and Sv = {w}, then define the function

g on G − {u, v} by g(w) = 1 and g(x) = f(x) for the remaining vertices. Obviously,

g is a TDRD-function and γtdR(G−{u, v}) < γtdR(G) and so stγtdR(G) ≤ 2 ≤ ∆− 1.

Finally, let |Sv| ≥ 2 and w1, w2 ∈ S. Define g on G − ((Sv − {w1, w2}) ∪ {u, v}) by

g(w1) = g(w2) = 1 and g(x) = f(x) otherwise. Obviously, g is a TDRD-function of

G− ((Sv −{w1, w2})∪{u, v}) and so γtdR(G− ((Sv −{w1, w2})∪{u, v})) < γtdR(G).

Thus stγtdR(G) ≤ ∆− 1.
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Subcase 1.2. Assume that g(u) = 2.

Let Su = {y ∈ N(u) ∩ V0 : |N(y) ∩ V2| = 2}. Then the function g defined on G− Su
by g(u) = 1 and g(x) = f(x) for remaining vertices, is a TDRD-function of G − Su
of weight less than ω(f) and so stγtdR(G) ≤ ∆− 1.

Case 2. Let n(G1) ≥ 3.

If G1 has a spanning tree with a leaf z assigned 1 under f , then the restriction of f on

G− z is a TDRD-function of weight γtdR(G)−1 leading to stγtdR(G) = 1. Henceforth

we may assume that every leaf of a spanning tree of G1 is assigned 2 under f . Let

T be a spanning tree of G1 and let v1v2 . . . vk be a diametral path in T . Root T at

vk. Let u1 = v1, u2, . . . , ut be the leaf neighbors of v2 in T . By assumption f(v1) =

f(u1) = · · · = f(ut) = 2. Note that Let Sui
= {y ∈ N(ui) ∩ V0 : |NG(y) ∩ V2| = 2}

and S′ui
= {y ∈ NG(ui) ∩ V1 : |N(y) ∩ V2| = 1} for each i ∈ {1, . . . , t}. Note that

|NG(ui)| = |
(
NG(ui)∩V2

)
|+ |Sui

|+ |
(
NG(ui)∩V0 \Sui

)
|+ |S′ui

|+ |
(
N(ui)∩V1 \S′ui

)
|.

If f(v2) = 2, then reassigning v1 the value 1, provides a TDRD-function of G− (Su1
∪

S′u1
) with weight less than ω(f) and so stγtdR(G) ≤ |Su1

∪ S′u1
| ≤ |N(u1) − {v2}| ≤

∆− 1.

Let f(v2) = 1. Assume first that S′ui
= ∅ for some i. If Sui

= ∅, then the function

f restricted to G− ui is a TDRD-function of G− ui with weight less than ω(f) and

so stγtdR(G) = 1. Assume that Sui
6= ∅ and let w ∈ Sui

. Set S = (Sui
− {w}) ∪ {ui}.

Then clearly |S| ≤ ∆−1 and the function g with g(w) = 1 and g(x) = f(x) otherwise

is a TDRD-function of G − S with weight less than ω(f) and so stγtdR(G) ≤ ∆ − 1.

Now let S′ui
6= ∅ for every i ∈ {1 . . . , t}, and let u′i ∈ S′ui

. Then T ′ = (T −{v3v2, v2ui |
2 ≤ i ≤ t}) + {uiu′i | 1 ≤ i ≤ t} is a spanning tree of G1 with a leaf assigned 1 under

f contradiction our earlier assumption. This completes the proof.

The path P5 and cycle C5 show that the condition ∆(G) ≥ 3 in Proposition 8 is

necessary.

Proposition 9. Let G be a connected graph of order n with γtdR(G) ≥ 5, then st−γtdR(G) ≤
n−∆(G)− 1.

Proof. Let u be a vertex of G with deg(u) = ∆(G). Note that γtdR(G[N [u]]) = 4 <

γtdR(G). Thus, we have that st−γtdR(G) ≤ |V (G)−N [u]| = n−∆(G)− 1.

The next corollaries are immediate consequence of Propositions 8 and 9.

Corollary 7. Let G be a connected graph of order n ≥ 3 with γtdR(G) ≥ 5. Then
stγtdR(G) ≤ min{∆, n−∆(G)− 1}.

Corollary 8. Let G be a connected graph of order n ≥ 3 with γtdR(G) ≥ 5 and ∆(G) ≥ 3.
Then stγtdR(G) ≤ n−2

2
.
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Proof. If ∆ ≤ n
2 , then the result follows from Proposition 8. Assume that ∆ > n

2 .

It follows from Proposition 9 that st−γtdR(G) ≤ n− n+1
2 − 1 ≤ n−2

2 as desired.

The double stars S∆,∆ shows that Corollary 8 is sharp. The complete graph shows

that the condition γtdR(G) ≥ 5 in Corollary 8 is necessary. Using the above corollaries

we can characterize all connected graph with large TDRD-stability.

Proposition 10. Let G be a connected graph of order n ≥ 4 with γtdR(G) ≥ 5. Then
stγtdR(G) = n− 3 if and only if G ∈ {P4, P5, C4, C5}.

Proof. If G ∈ {P4, P5, C4, C5}, then by Corollaries 1 and 2, we have stγtdR(G) =

n − 3. To prove the necessity, let G be a connected graph with stγtdR(G) = n − 3.

Note that ∆(G) ≥ 2, since G is connected having at least four vertices. It follows from

Proposition 9 that ∆(G) ≤ n− stγtdR(G)− 1 = 2 and thus ∆(G) = 2. Therefore G is

a path or cycle and we deduce from Corollaries 1 and 2 that G ∈ {P4, P5, C4, C5}.

We conclude this section with a problem.

Problem. Characterize all graphs G with maximum degree ∆ ≥ 3 and st−γtdR(G) =

∆− 1.
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