
تعداد نشریات | 5 |
تعداد شمارهها | 116 |
تعداد مقالات | 1,340 |
تعداد مشاهده مقاله | 1,342,338 |
تعداد دریافت فایل اصل مقاله | 1,276,419 |
A note on the maximum $A_{\alpha}$-spectral radius of some classes of graphs | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 21 خرداد 1404 | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.30097.2308 | ||
نویسندگان | ||
Jharna Kalita1؛ Somnath Paul1؛ Indulal G* 2؛ Deena C Scaria2، 3 | ||
1Department of Applied Sciences, Tezpur University, Napaam-784028, Assam, India | ||
2Department of Mathematics, St Aloysius College, Edathua, Alappuzha, 689573. India | ||
3Department of Mathematics, Marthoma College, Thiruvalla, India | ||
چکیده | ||
According to Nikiforov [V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017), no. 1, 81–107], the \(A_\alpha\)-matrix of a graph \(G\) is defined as \(A_\alpha(G) = \alpha D(G) + (1-\alpha)A(G)\), where \(\alpha \in [0, 1]\), \(D(G)\) is the diagonal matrix with the degrees of the vertices of \(G\) as the diagonal entries, and \(A(G)\) is the adjacency matrix. The \(A_\alpha\)-spectral radius of the \(A_\alpha\)-matrix is its largest eigenvalue. In this study, we characterize the graph that maximizes the \(A_\alpha\)-spectral radius within three specific classes of graphs: (i) graphs of order \(n\), with vertex connectivity \(\kappa(G) \leq k\) and minimum degree \(\delta(G) \geq k\); (ii) bipartite graphs of order \(n\) with vertex connectivity \(k\); and (iii) graphs of order \(n\), connectivity \(k\), and independence number \(r\). Furthermore, for each of these three families, we determine the location of the \(A_\alpha\)-spectral radius. | ||
کلیدواژهها | ||
Aα-matrix؛ Aα-spectral radius؛ vertex connectivity؛ minimum degree؛ bipartite graphs | ||
مراجع | ||
[1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM: Philadelphia, PA, USA, 1994.
[2] H. Guo and B. Zhou, On the α-spectral radius of graphs, Appl. Anal. Discrete Math. 14 (2020), no. 2, 431–458.
[3] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226 (1995), 593–616. https://doi.org/10.1016/0024-3795(95)00199-2
[4] D. Li, Y. Chen, and J. Meng, The aα-spectral radius of graphs with given degree sequence, arXiv preprint arXiv:1806.02603 (2018)
[5] J. Li, W.C. Shiu, W.H. Chan, and A. Chang, On the spectral radius of graphs with connectivity at most k, J. Math. Chem. 46 (2009), no. 2, 340–346. https://doi.org/10.1007/s10910-008-9465-5
[6] H. Lin, X. Huang, and J. Xue, A note on the $A_{\alpha}$-spectral radius of graphs, Linear Algebra Appl. 557 (2018), 430–437. https://doi.org/10.1016/j.laa.2018.08.008 [7] X. Liu and S. Liu, On the $A_{\alpha}$-characteristic polynomial of a graph, Linear Algebra Appl. 546 (2018), 274–288. https://doi.org/10.1016/j.laa.2018.02.014
[8] H. Lu and Y. Lin, Maximum spectral radius of graphs with given connectivity, minimum degree and independence number, J. Discrete Algorithms 31 (2015), 113–119. https://doi.org/10.1016/j.jda.2014.08.006
[9] V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017), no. 1, 81–107.
[10] V. Nikiforov, G. Pastén, O. Rojo, and R.L. Soto, On the $A_{\alpha}$-spectra of trees, Linear Algebra Appl. 520 (2017), 286–305. https://doi.org/10.1016/j.laa.2017.01.029
[11] V. Nikiforov and O. Rojo, On the $\alpha$-index of graphs with pendent paths, Linear Algebra Appl. 550 (2018), 87–104. https://doi.org/10.1016/j.laa.2018.03.036
[12] C. Wang and S. Wang, The $A_{\alpha}$-spectral radii of graphs with given connectivity, Mathematics 7 (2019), no. 1, Article ID: 44. https://doi.org/10.3390/math7010044
[13] J. Xue, H. H. Lin, S. Liu, and J. Shu, On the $A_{\alpha}$-spectral radius of a graph, Linear Algebra Appl. 550 (2018), 105–120. https://doi.org/10.1016/j.laa.2018.03.038 | ||
آمار تعداد مشاهده مقاله: 4 |