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Abstract: A full Nesterov-Todd step interior point method is designed and analyzed
in this paper to solve the weighted linear complementarity problem in Euclidean Jordan

algebra. Under appropriate conditions, it is proven that the full Nesterov-Todd step is

strictly feasible and the algorithm has a quadratic convergence rate to the target point
on the central path in the framework of Euclidean Jordan algebras. The obtained

iteration bound for the algorithm matches the best known current iteration bound for

this problem. To the best of our knowledge, this is the first full-step interior point
algorithm for the weighted complementarity problem in the space of Euclidean Jordan

algebras.
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interior-point method, polynomial complexity
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1. Introduction

The Weighted Linear Complementarity Problem (WLCP) proposed by Potra [16]

seeks to find a pair of vectors (x, s) belonging to the intersection of a manifold and a

cone such that their product in a given algebra, x◦s, is equal to a non-negative weight

vector w. The WLCP becomes a classical Linear Complementarity Problem (LCP)

when w = 0. The WLCP in Rn algebra is discussed in [16] and it is shown that the
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2 A full-NT step interior-point method for WLCP over SC

Fisher market equilibrium problem [22] and the linear programming and weighted

centering problem [3] can be written in the form of a WLCP. In the following, two

interior point methods (IMPs) for WLCP are proposed, both of which follow the

central path. In subsequent work, Potra [17] introduced the notion of sufficiency for

WLCP and extended the properties of the sufficient LCP introduced by Cottle et al.

[7] to the sufficient WLCP. Zhang [12] proposed a smoothing Newton algorithm for

solving monotone WLCP, which requires only one linear system of equations and per-

forms only one line search per iteration. Alzalg and Gafour [2] analyzed the iteration

complexity for a weighted logarithmic barrier decomposition algorithm for two-stage

stochastic convex quadratic semidefinite optimization with discrete support. Alzalg

[1] developed a primal-dual central path interior-point algorithm for symmetric cone

optimization (SCO) that uniquely equips the central path algorithm with different

choices selections of the displacement step while solving SCO.

Full-Newton step IPMs were first proposed by Roos et al. [19] for linear optimization

(LO), and the advantage of these methods is that they do not require line-searches

during the solution process to update the iterates. These methods have been extended

to different formulations of LCPs in the literature. Darvay’s key idea [8] for finding

search directions is to consider the algebraic equivalent transformation (AET) of the

central path system. He applied a continuously differentiable, invertible, and mono-

tone increasing function to both sides of the centering equation of the central path.

Furthermore, used Newton’s method to determine the search directions presenting a

full-Newton step IPM for LO. An infeasible version of this algorithm was introduced

by Kheirfam [14] for SCO.

Asadi et al. [4] proposed a full-Newton step IPM for monotone WLCP and proved

that the proposed algorithm has a quadratic rate of convergence to the target point on

the central path. Recently, infeasible IPMs as well as their computational complexities

were proposed in [5, 6] for solving the special WLCP. Based on the AET technique,

Kheirfam [13] proposed a full-Newton step IPM for the monotone WLCP and proved

that the iteration bound is the same as the one obtained for this problem.

Motivated by results as mentioned above, in this paper, we consider a full-Nesterov-

Todd (NT) step IPM for WLCP in the setting of Euclidean Jordan algebras (EJA).

With a nonzero weight vector, the theory of WLCP becomes more complicated than

the theory of LCP. However, we apply the Newton’s method to the system defining

the weighted central path for WLCP to get search directions and take full steps along

these directions. We prove the quadratic rate of convergence to the target points on

the weighted central path. By choosing appropriate values for the parameters, we

derive an iteration bound for the WLCP.

The paper is organized as follows. In Sect. 2, we briefly describe the WLCP and

recall the notion of the weighted central path and the NT scaling scheme. In Sect. 3,

we present our full-NT step IPM. Sect. 4 is devoted to the analysis of the algorithm.

The iteration bound is derived in Sect. 5. Concluding remarks are given in Sect. 6.
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2. WLCP and its central path

In this paper, we consider that the reader is well acquainted with EJA and symmetric

cones. Hence, we will mention well-known primary results and lemmas about EJA

in the appropriate place required. To learn more about Jordan algebras, we refer the

reader to the book of Faraut and Korányi [9].

Throughout this paper, let (J , ◦) denote an EJA with rank(J ) = r and Jordan

product x ◦ s. For any element x ∈ J , the Lyapunov transformation L : J → J is

given by

L(x)y := x ◦ y,∀y ∈ J .

Furthermore, the quadratic representation of x in J is defined by

P (x) := 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x).

Let K = {x2 = x ◦ x : x ∈ J } denote the corresponding symmetric cone (formed

by the squares of its elements). Given two linear transformations A and B in J , a

weight vector w ∈ K and q ∈ J , the WLCP follows (x, s) ∈ K ×K such that

Ax+Bs = q,

x ◦ s = w.
(2.1)

Let F = {(x, s) ∈ K ×K : Ax+Bs = q} denote the set of all feasible points of (2.1).

Define the solution set of (2.1) as F∗ = {(x, s) ∈ F : x ◦ s = w}, and the set of all

strictly feasible points of (2.1) as F0 = {(x, s) ∈ F : (x, s) ∈ int(K)× int(K)}, where

int(K) denotes the interior of K. Given an initial point (x0, s0) ∈ F0. Define

t0 = tr(x0◦s0)
n , c = x0 ◦ s0, γ = λmin(c)

t0 , w(t) = (1− t
t0 )w + t

t0 c, (2.2)

where t ∈]0, t0] and λmin(c) is the smallest eigenvalue of c. The central path of WLCP

(2.1) is the set of all points (x, s; t), with t ∈ [0, t0], satisfying

Ax+Bs = q,

x ◦ s = w(t),

x > 0, s > 0,

(2.3)

where x, s > 0 means that x, s ∈ int(K). A common way to define the search direction

is to use Newton’s method and linearize the second equation in (2.3). However, the

resulting Newton system has no unique solution for the search directions. The reason

is that x and s are not commutative operators in general. To overcome this problem,

a scaling scheme is applied to system (2.3) to guarantee that the scaled operators x

and s are commutative. Scaling is done based on the following lemma.
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Lemma 1. ([20, Lemma 28]) Let x, s, and z be elements of an EJA J . Additionally, let
x, s ∈ int(K) and let z be an invertible element. Then x ◦ s = αe iff P (z)x ◦ P (z)−1s = αe
for some scalar α, where e is an identity element of J .

Now we replace the second equation of system (2.3) with P (z)x ◦ P (z)−1s = w(t)

which leads to the following system:

Ax+Bs = q,

P (z)x ◦ P (z)−1s = w(t),

(P (z)x, P (z)−1s) ∈ int(K)× int(K).

(2.4)

Applying Newton’s method to the system (2.4), we have

A(x+ ∆x) +B(s+ ∆s) = q,

P (z)(x+ ∆x) ◦ P (z)−1(s+ ∆s) = w(t).

In needs, for any feasible x > 0 and s > 0 and neglecting the term P (z)∆x◦P (z)−1∆s,

we want to find direction (∆x,∆s) such that

A∆x+B∆s = 0,

P (z)x ◦ P (z)−1∆s+ P (z)−1s ◦ P (z)∆x = w(t)− P (z)x ◦ P (z)−1s.
(2.5)

In this paper, we consider the NT-scaling scheme, the resulting direction is called NT

search direction. This scaling scheme was first proposed by Nesterov and Todd [15]

for self-scaled cones and then updated by Faybusovich [10] for symmetric cones.

Lemma 2. ([10, Lemma 3.2]) Let x, s ∈ int(K). Then there exists a unique u ∈ int(K)
such that

x = P (u)s.

Moreover,

u = P (x
1
2 )
(
P (x

1
2 )s
)− 1

2

[
= P (s−

1
2 )
(
P (s

1
2 )x
) 1

2

]
.

The point u is called the scaling point of x and s. Let z = u−
1
2 , where u is the

NT-scaling point of x and s. Define

v =
P (u)−1/2x√

t

[
=
P (u)1/2s√

t

]
, (2.6)

and

dx =
P (u)−1/2∆x√

t
, ds =

P (u)1/2∆s√
t

. (2.7)
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With these notations, system (2.5) can be rewritten as

Ãdx + B̃ds = 0,

dx + ds = v−1 ◦
(
w(t)
t − v

2
)
,

(2.8)

where Ã =
√
tP (u)1/2A, B̃ =

√
tP (u)−1/2B. The search directions dx and ds are

obtained by solving (2.8) so that ∆x and ∆s are computed via (2.7). By taking a

full-NT step along these directions, a new iterate is obtained as follows:

x+ = x+ ∆x, s+ = s+ ∆s. (2.9)

To measure the proximity of each approximation (x, s) of (x(t), s(t)) as a solution to

(2.3), we introduce the proximity of a point (x, s; t) to the central path (2.4) by the

function

δ(v) := δ(x, s; t) =
∥∥∥w(t)

t
− v2

∥∥∥
F
,

where ‖x‖2F = tr(x2) denotes the Frobenius norm of x ∈ J . It is worth noting that

for any (x, s) ∈ F , we have

x ◦ s = w(t)⇔ v2 =
w(t)

t
⇔ δ(x, s; t) = 0.

We now outline the method.

Algorithm : Full−NT step IPM for WHLCP

Input

An accuracy parameter ε > 0;

A threshold parameter 0 < τ < 1;

An update parameter 0 < θ < 1;

Let (x0, s0) ∈ F0 with δ(x0, s0; t0) ≤ τ , where t0 = tr(x0◦s0)
n ;

Set k = 0;

while ‖w − xk ◦ sk‖ > ε do;

Set tk+1 = (1− θ)tk;

Obtain the search direction (∆xk,∆sk) by solving (2.8) and using (2.7);

Set (xk+1, sk+1) = (xk, sk) + (∆xk,∆sk);

Set k := k + 1;

end while.
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3. Analysis of the algorithm

Let x, s ∈ int(K) and t > 0. Using (2.6), (2.7) and (2.9) we have

x+ =
√
tP (u)1/2(v + dx), s+ =

√
tP (u)−1/2(v + ds). (3.1)

Since P (u)1/2 and P (u)−1/2 are automorphisms of int(K) [9, Theorem III.2.1 and

Proposition III.2.2], x+ and s+ will belong to int(K) if and only if v + dx and v + ds
belong to int(K). The following lemma provides a necessary and sufficient condition

for the strict feasibility of the iterates after a full-NT step.

Lemma 3. The full-NT step is strictly feasible iff w(t)
t

+ dx ◦ ds > 0.

Proof. We have

(v + dx) ◦ (v + ds) = v2 + v ◦ (dx + ds) + dx ◦ ds

= v2 + v ◦
(
v−1 ◦ (

w(t)

t
− v2)

)
+ dx ◦ ds

=
w(t)

t
+ dx ◦ ds, (3.2)

where the second equality is due to the second equation of (2.8). Therefore, v+dx > 0

and v + ds > 0 implies that w(t)
t + dx ◦ ds > 0. For the converse, we define

vx(α) = v + αdx, vs(α) = v + αds,

where α ∈ [0, 1]. It follows from the second equation of (2.8) that

vx(α) ◦ vs(α) = (v + αdx) ◦ (v + αds)

= v2 + αv ◦ (dx + ds) + α2dx ◦ ds

= v2 + α
(w(t)

t
− v2

)
+ α2dx ◦ ds

= (1− α)v2 + α
(w(t)

t
+ αdx ◦ ds

)
. (3.3)

Since w(t)
t + dx ◦ ds > 0 implies that dx ◦ ds > −w(t)

t . By substituting in (3.3), we get

vx(α) ◦ vs(α) > (1− α)
(
v2 + α

w(t)

t

)
.

Since v2 ∈ int(K), we have v2 + αw(t)
t ∈ int(K). Hence,

vx(α) ◦ vs(α) > (1− α)
(
v2 + α

w(t)

t

)
≥ 0, for all α ∈ [0, 1],
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this means that by [21, Lemma 2.15] det(vx(α)) and det(vs(α)) do not vanish for

α ∈ [0, 1]. Since det(vx(0)) = det(vs(0)) = det(v) > 0, by continuity, det(vx(α)) and

det(vs(α)) remain positive for all α ∈ [0, 1]. Furthermore, by [9, Theorem III.1.2], it

follows that all eigenvalues of vx(α) and vs(α) remain positive for all α ∈ [0, 1]. So

we find that all eigenvalues vx(1) = v + dx and vs(1) = v + ds are non-negative. The

proof is complete.

Corollary 1. The full-NT step is strictly feasible if ‖dx ◦ ds‖F < γ.

Proof. For each i, we have

λi

(w(t)

t
+ dx ◦ ds

)
≥ λmin

(w(t)

t
+ dx ◦ ds

)
≥ λmin(w(t))

t
− ‖dx ◦ ds‖F

≥ λmin(c)

t0
− ‖dx ◦ ds‖F = γ − ‖dx ◦ ds‖F ,

where the second inequality is due to Lemma 14 in [20] and the third inequality follows

from the fact that w(t)/t ≥ c/t0. By Lemma 3, the full-NT step is strictly feasible

if w(t)
t + dx ◦ ds > 0. This certainly holds if ‖dx ◦ ds‖F < γ. Therefore, the proof is

completed.

Lemma 4. The full-NT step is strictly feasible if δ(v) < 2γ

1+
√

1+
√
2
.

Proof. Since tr(dx ◦ ds) ≥ 0, by [11, Lemma 2.13 (ii)], we have

‖dx ◦ ds‖F ≤
1

2
√

2
‖dx + ds‖2F =

1

2
√

2

∥∥∥v−1 ◦ (w(t)

t
− v2

)∥∥∥2
F

≤ 1

2
√

2λ2min(v)

∥∥w(t)

t
− v2

∥∥2
F

=
δ2(v)

2
√

2λ2min(v)
≤ δ2(v)

2
√

2(γ − δ(v))
, (3.4)

where the first equality is due to the second equation of (2.8), the second inequality

follows from [18, Lemma 2.9], the second equality holds by the definition of δ(v), and

the last inequality follows from the following

δ(v) =
∥∥w(t)

t
− v2

∥∥
F

=

√√√√ r∑
i=1

λ2i
(w(t)

t
− v2

)
≥
∣∣λmin

(w(t)

t
− v2

)∣∣
≥ λmin

(w(t)

t
− v2

)
≥ λmin

(w(t)

t

)
− λ2min(v)

≥ λmin

( c
t0
)
− λ2min(v) = γ − λ2min(v).
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The full-NT step is strictly feasible, by Corollary 1 and (3.4), if

δ2(v)

2
√

2(γ − δ(v))
< γ,

or equivalently

δ2(v) + 2
√

2γδ(v)− 2
√

2γ2 < 0,

and it can readily be verified that this inequality holds if

δ(v) <
2γ

1 +
√

1 +
√

2
.

The proof is complete.

Lemma 5. Let x, s ∈ int(K) and t > 0, then

tr(x+ ◦ s+) ≤ tr(w(t) ◦ e) + t
√
rδ2(v)

2
√
2(γ − δ(v))

.

Proof. According to (3.1) and (3.2) it follows that

tr(x+ ◦ s+) = tr
(√

tP (u)1/2(v + dx) ◦
√
tP (u)−1/2(v + ds)

)
= ttr

(
(v + dx) ◦ (v + ds)

)
= tr(e ◦ w(t)) + ttr(dx ◦ ds)

≤ tr(e ◦ w(t)) + t
√
r‖dx ◦ ds‖F

≤ tr(e ◦ w(t)) +
t
√
rδ2(v)

2
√

2(γ − δ(v))
,

where the last inequality is deduced from (3.4). The proof is complete.

The quadratic rate of convergence to the target point (x(t), s(t)) is fixed in the next

lemma when considering full-NT steps. According to (2.6), the v-vector after the step

given by

v+ :=
P (u+)−1/2x+√

t

[
=
P (u+)1/2s+√

t

]
, (3.5)

where u+ is the scaling point of x+ and s+.

Lemma 6. Let δ(v) < 2γ

1+
√

1+
√
2

, then the full-NT step is strictly feasible and

δ(v+) ≤ δ2(v)

2
√
2(γ − δ(v))

.
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Proof. Since δ(v) < 2γ

1+
√

1+
√
2
, from Lemma 4, it follows that v + dx and v + ds

belong to the int(K). We have

δ(v+) =
∥∥∥w(t)

t
− (v+)2

∥∥∥
F

=
∥∥∥w(t)

t
− P (v + dx)1/2(v + ds)

∥∥∥
F

=
∥∥∥w(t)

t
− (v + dx) ◦ (v + ds)

∥∥∥
F

=
∥∥∥w(t)

t
− w(t)

t
− dx ◦ ds

∥∥∥
F

=
∥∥dx ◦ ds∥∥F ≤ δ2(v)

2
√

2(γ − δ(v))
,

where the second equality is due to [21, Proposition 5.9.3], the third equality follows

from [20, Lemma 30], the fourth equality is obtained from (3.2) and the inequality

is deduced from (3.4). The proof is complete.

Corollary 2. If δ(v) ≤
(
1− 1

2
√
2

)
γ, then the full-NT step is strictly feasible and

δ(v+) ≤
( δ
√
γ

)2
.

Lemma 7. Let t+ = (1− θ)t, where 0 < θ < 1. Then,

δ(x, s; t+) ≤
δ(v) + θ

t0
‖w − c‖F

1− θ .

Proof. Due to (2.2), we have

w(t+) = w(t) +
tθ

t0
(w − c).

Therefore, we have

δ(x, s; t+) =
∥∥∥w(t+)

t+
− v2

1− θ

∥∥∥
F

=
∥∥∥w(t) + tθ

t0 (w − c)
(1− θ)t

− v2

1− θ

∥∥∥
F

=
1

1− θ

∥∥∥(w(t)

t
− v2

)
+
θ

t0
(w − c)

∥∥∥
F

≤ 1

1− θ

(∥∥∥w(t)

t
− v2

∥∥∥
F

+
θ

t0
‖w − c‖F

)
=

1

1− θ

(
δ(v) +

θ

t0
‖w − c‖F

)
.

The proof is complete.
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4. Iteration bound

In this section, we determine the values of the barrier parameter θ and the threshold

parameter τ to ensure that the proposed algorithm is well-defined; that is, if δ(v) ≤ τ ,

then δ(x+, s+; t+) ≤ τ. Then, we obtain an upper bound on the number of iterations

of the algorithm.

From Lemmas 7 and 6, we deduce that

δ(x+, s+; t+) ≤ 1

1− θ

(
δ(v+) +

θ

t0
‖w − c‖F

)
≤ 1

1− θ

( δ2(v)

2
√

2(γ − δ(v))
+
θ

t0
‖w − c‖F

)
,

because δ(v) ≤ τ < γ, we have

δ(x+, s+; t+) ≤ 1

1− θ

( τ2

2
√

2(γ − τ)
+
θ

t0
‖w − c‖F

)
.

Substituting t0 = λmin(c)
γ , due to (2.2), in the last inequality, we get

δ(x+, s+; t+) ≤ 1

1− θ

( τ2

2
√

2(γ − τ)
+

γθ

λmin(c)
‖w − c‖F

)
,

if we take τ = γ
2 , we get

δ(x+, s+; t+) ≤ 1

1− θ

( τ

2
√

2
+

2τθ

λmin(c)
‖w − c‖F

)
.

Therefore, the condition δ(x+, s+; t+) ≤ τ holds if

1

1− θ

( τ

2
√

2
+

2τθ

λmin(c)
‖w − c‖F

)
≤ τ

or equivalently
1

1− θ

( 1

2
√

2
+

2θ

λmin(c)
‖w − c‖F

)
≤ 1.

If we take

θ =
λmin(c)

5(λmin(c) + ‖w − c‖F )
, (4.1)

then we have

1

1− θ

( 1

2
√

2
+

2θ

λmin(c)
‖w − c‖F

)
≤ 5

4

( 1

2
√

2
+

2

5

)
= 0.9419 < 1.
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Theorem 1. If τ = γ
2

and θ is defined as in (4.1), then Algorithm finds an ε-approximate
solution (x, s) ∈ F0 such that ‖w − x ◦ s‖F ≤ ε in at most

⌈
5
(
λmin(c) + ‖c− w‖F

)
λmin(c)

log
λmin(c)

2
+ ‖w − c‖F
ε

⌉

iterations.

Proof. We have

‖w − x ◦ s‖F ≤ ‖w(t)− x ◦ s‖F + ‖w(t)− w‖F

= t
∥∥∥w(t)

t
− v2

∥∥∥
F

+ ‖w(t)− w‖F
= tδ(v) + ‖w(t)− w‖F

≤ tγ

2
+

t

t0
‖c− w‖F

=
t

t0

(λmin(c)

2
+ ‖c− w‖F

)
.

Therefore, after k iterations, we deduce that ‖w − x ◦ s‖F ≤ ε is satisfied if

(λmin(c)

2
+ ‖c− w‖F

)
(1− θ)k ≤ ε.

Taking logarithms on both sides, we obtain

k log(1− θ) ≤ − log
λmin(c)

2 + ‖c− w‖F
ε

,

and using log(1− θ) ≤ −θ for θ ∈ (0, 1), we observe that the above inequality holds if

−kθ ≤ − log
λmin(c)

2 + ‖c− w‖F
ε

.

This gives

k ≥ 1

θ
log

λmin(c)
2 + ‖c− w‖F

ε
,

which completes the proof.
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5. Concluding remarks

Based on Euclidean Jordan algebras, we extended the full-Newton step IPM to WLCP

on the cone symmetric. It uses full steps, and the iterates always lie in the quadratic

convergence neighborhood. Finally, the order of the iteration bound coincides with

the currently best-known iteration bound for this type of problem.
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